数学中考压轴题集锦
- 格式:doc
- 大小:934.54 KB
- 文档页数:21
2024-2025年安徽省初中学业水平考试数学压轴题集(本卷收录近10年安徽省中考的第10、14、22、23题)一、选择题每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1.如图,在矩形ABCD 中,AB =5,AD =3.动点P 满意13PABABCDS S=矩形 .则点P 到A ,B 两点距离之和P A +PB 的最小值为( )A.29B.34C.52D.412.如图,Rt △ABC ,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满意∠P AB =∠PBC ,则线段CP 长的最小值为( ) 32 B.2 C.81313D.121313A.第1题图 第2题图3.如图,一次函数1y x =和二次函数22+y ax bx c =+图象相交于P ,Q 两点,则函数2(1)y ax b x c=+-+的图象可能是( )A. B. C. D.第3题图4.如图,正方形ABCD 的对角线BD 长为22,若直线l 满意: ①点D 到直线l 的距离为3;②A ,C 两点到直线l 距离相等.则符合题意的直线l 的条数是( ) A.1 B.2 C.3 D.45.如图,点P 是等边三角形ABC 外接圆⊙O 上点,在以下推断中,不正确的是( ) A.当弦PB 最长时,△APC 是等腰三角形 B.当△APC 是等腰三角形时,PO ⊥AC C.当PO ⊥AC 时,∠ACP =30°D.当∠ACP =30°时,△BPC 是直角三角形第4题图第5题图6.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.45C.10或45D.10或217第6题图7.如图所示,P是菱形ABCD的对角线AC上一点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象的大致形态是A. B.第7题图C. D.8.甲、乙两个打算在一段长为1200米的笔直马路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A. B. C. D.9.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是A.120°B.125°C.135°D.150°10.如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN等于A.65B.95C.125D.125第10题图第11题图二、填空题11. 在三角形纸片ABC 中,∠A =90°,∠C =30°,AC =30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得绽开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为__________cm.12. 如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③3=2ABG FGH S S △△;④AG +DF =FG .其中正确的是 .(把全部正确结论的序号都选上)第12题图 第14题图13.已知实数a 、b 、c 满意a b ab c +==,有下列结论:①若c ≠0,则111ab+=;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是 .(把全部正确结论的序号都选上)14. 如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中肯定成立的是 .(把全部正确结论的序号都填在横线上) ①12DCF BCD ∠=∠;②EF =CF ;③=2BEC CEF S S △△;④∠DFE =3∠AEF .15.已知矩形纸片ABCD 中,AB =1,BC =2,将该纸片折叠成一个平面图形,折痕EF 不经过A 点(E ,F 是该矩形边界上的点),折叠后点A 落在点A ’处,给出以下推断: ①当四边形A’CDF 为正方形时,EF =2;②当EF =2时,四边形A’CDF 为正方形; ③当EF =5时,四边BA’CD 为等腰梯形;④当四边形BA’CD 为等腰梯形时,EF =5. 其中正确的是 .(把全部正确结论的序号都填在横线上) 16.如图,P 是矩形ABCD 内的随意一点,连接P A 、PB 、PC 、PD ,得到△P AB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:①S 1+S 2=S 3+S 4;②S 2+S 4= S 1+S 3;③若S 3=2S 1,则S 4=2S 2 ④若S 1=S 2,则P 点在矩形的对角线上.其中正确的结论的序号是 .(把全部正确结论的序号都填在横线上)第15题图 第16题图 第18题图 17.定义运算(1)a b a b ⊗=-,下面给出了关于这种运算的几个结论:①2(2)6⊗-=;②a b b a ⊗=⊗;③若0a b +=,则()()2a a b b ab ⊗+⊗=;④若0a b ⊗=,则a =0.其中正确结论的序号是 .(填上你认为全部正确结论的序号)18.如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是 ________ _.(把全部正确答案的序号都填写在横线上)①∠BAD =∠ACD ;②∠BAD =∠CAD ;③AB +BD =AC +CD ;④AB -BD =AC -CD .19.已知二次函数的图象经过原点及点11(,)24--,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为 .20.如图为二次函数2y ax bx c =++的图象,在下列说法中:①a c <0;②方程20ax bx c ++=的根是11x =-,23x =;③0a b c ++>;④当x >1时,y 随x 的增大而增大.正确的说法有__________.(把正确的答案的序号都填在横线上)第20题图三、解答题21. 某超市销售一种商品,成本每千克40元,规定每千克不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满意一次函数关系,部分数据如下表:售价x (元/千克) 50 60 70 销售量y (千克) 100 80 60(1)求y 与x 之间的函数表达式; (2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入-成本); (3)试说明(2)中总利润W 随售价x 的改变而改变的状况,并指出售价为多少元时获得最大 利润, 最大利润是多少?22.已知正方形ABCD ,点M 为AB 的中点.(1)如图1,点G 为线段CM 上的一点,且∠AGB =90°,延长AG 、BG 分别与边BC 、CD 交于点E 、F .①求证:BE =CF ;②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满意2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 并延长交CD 于点F ,求tan ∠CBF 的值.第22题图 1 第22题图223.如图,二次函数2+y ax bx =的图象经过点(2,4)A 与(6,0)B .(1)求a ,b 的值; (2)点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为x (2<x <6),写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.24.如图,A ,B 分别在射线OA ,ON 上,且∠MON 为钝角,现以线段OA ,OB 为斜边向∠MON 的外侧作等腰直角三角形,分别是△OAP ,△OBQ ,点C ,D ,E 分别是OA ,OB ,AB 的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和ABPQ的值.第24题图1 第24题图2 第24题图325.为了节约材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?第25题图26.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD 的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线相互垂直,求ADEF的值.第26题图1 第26题图227.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”. (1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数2212421y x mx m =-++和225y ax bx =++,其中1y 的图象经过点(1,1)A ,若12y y +与1y 为“同簇二次函数”,求函数2y 的表达式,并求出当0≤x ≤3时,2y 的最大值.28.如图1,正六边形ABCDEF 的边长为a ,P 是BC 边上一动点,过P 作PM ∥AB 交AF 于M ,作PN ∥CD 交DE 于N .(1)①∠MPN = ;②求证:PM +PN =3a ;(2)如图2,点O 是AD 的中点,连接OM 、ON ,求证:OM =ON ;(3)如图3,点O 是AD 的中点,OG 平分∠MON ,推断四边形OMGN 是否为特别四边形?并说明理由.第28题图1 第28题图2 第28题图329.某高校生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在第x 天销售的相关信息如下表所示.销售量p (件)50p x =- 销售单价q (元/件)当1≤x ≤20时,1302q x =+;当21≤x ≤40时,52520q x=+(1)请计算第几天该商品的销售单价为35元/件;(2)求该网店第x 天获得的利润y 关于x 的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大利润是多少?30.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”;如图1,四边形ABCD 即为“准等腰梯形”;其中∠B =∠C .(1)在图1所示的“准等腰梯形”ABCD 中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形;(画出一种示意图即可) (2)如图2,在“准等腰梯形”ABCD 中∠B =∠C .E 为边BC 上一点,若AB ∥DE ,AE ∥DC ,求证:AB BEDC EC=; (3)在由不平行于BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E .若EB =EC ,请问当点E 在四边形ABCD 内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,状况又将如何?写出你的结论.(不必说明理由)第30题图1 第30题图2 第30题图331.如图1,在△ABC 中,D 、E 、F 分别为三边的中点,G 点在边AB 上,△BDG 与四边形ACDG 的周长相等,设BC =a 、AC =b 、AB =c . (1)求线段BG 的长;(2)求证:DG 平分∠EDF ;(3)连接CG ,如图2,若△BDG 与△DFG 相像,求证:BG ⊥CG .第31题图1 第31题图232.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满意关系式2(6)y a x h =-+.已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m. (1)当h =2.6时,求y 与x 的关系式;(不要求写出自变量x 的取值范围) (2)当h =2.6时,球能否越过球网?球会不会出界?请说明理由; (3)若球肯定能越过球网,又不出边界,求h 的取值范围.第32题图33.在△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕顶点C 顺时针旋转,旋转角为(0180)θθ︒︒<<,得到△A’B’C’..第33题图1 第33题图2 第33题图3 (1)如图(1),当AB ∥BC 时,设BA 与CD 相交于点D ,证明:△CDA 是等边三角形; (2)如图(2),连接A’A 、B’B ,设△ACA’和△BCB’的面积分别为'ACA S和'BCB S.求证:'':1:3ACA BCB SS=.(3)如图(3),设AC 中点为E ,B’A’中点为P ,AC =a ,连接EP ,当θ= °时,E P 长度最大,最大值为 .34.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证h 1=h 3;(2)设正方形ABCD 的面积为S .求证22231()S h h h =++;(3)若12312h h +=,当h 1改变时,说明正方形ABCD 的面积S 随h 1的改变状况.第34题图35.春节期间某水库养殖场为适应市场需求,连续用20天时间,采纳每天降低水位以削减 捕捞成本的方法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模爱好小组依据调查,整理出第x 天(1≤x ≤20且x 为整数)的捕捞与销售的相关信息如下:鲜鱼销售单价(元/kg ) 20单位捕捞成本(元/kg ) 55x - 捕捞量(kg )950x - (1)在此期间该养殖场每天的捕捞量与前一天的捕劳量相比是如何改变的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x 天的收入y (元)与x (天)之间的函数关系式;(当天收入=日销售额-日捕捞成本)(3)试说明(2)中的函数y 随x 的改变状况,并指出在第几天y 取得最大值,最大值是多少?36.如图,已知△ABC ∽△A 1B 1C 1,相像比为k (k >1),且△ABC 的三边长分别为a 、b 、c (a >b >c ),△A 1B 1C 1的三边长分别为a 1、b 1、c 1.(1)若c =a 1,求证:a =kc(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1,使得k=2?请说明理由.第36题图37.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相像三角形,并证明其中的一对;(2)连结FG,假如α=45°,AB=42,AF=3,求FG的长.第37题图38.已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.第38题图1 第38题图239.已知:点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.第39题图1 第39题图240.刚回营地的两个抢险分队又接到救灾吩咐:一分队马上动身往30千米的A镇;二分队因疲惫可在营地休息a(0≤a≤3)小时再往A镇参与救灾.一分队了发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形困难,必需由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时.(1)若二分队在营地不休息,问二分队几小时能赶到A镇?(2)若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?(3)下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为全部可能合理的代号,并说明它们的实际意义.(a)(b)(c)(d)第40题图。
一、解答题1.综合与探究.如图,抛物线y=ax2+bx+1与x轴交于A,C两点,点A(﹣1,0),C (3,0),与y轴交于点B,抛物线的顶点为D,直线l经过B,C两点.(1)求抛物线的函数解析式;(2)若P为抛物线上一点,横坐标为m,过点P作PM⊥y轴于点M,交线段BC于点N,当N是线段BC的黄金分割点时,求点P到x轴的距离;(3)若将抛物线向上平移个单位长度,点D的对应点为D′,坐标轴上是否存在点Q,使∠BD′Q=30°?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2.矩形OABC中,OA=8,OC=10,将矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在x轴和y轴上.在OA边上选取适当的点E,连接CE,将△EOC沿CE折叠.(1)i:如图①,当点O落在AB边上的点D处时,点E的坐标为;ii:如图②,将矩形OABC变为正方形,OC=10,当点E为AO中点时,点O落在正方形OABC内部的点D处,延长CD交AB于点T,求此时AT的长度.(2)如图③,当点O落在矩形OABC内部的点D处时,过点E作EG∥x轴交CD于点H,交BC于点G,设H(t,s),用含s的代数式表示t.3.【基础巩固】(1)如图1,点A ,F ,B 在同一直线上,若∠A =∠B =∠EFC ,求证:△AFE ∼△BCF ;【尝试应用】(2)如图2,AB 是半圆⊙O 的直径,弦长AC =BC =42,E ,F 分别是AC ,AB 上的一点,∠CFE =45°,若设AE =y ,BF =x ,求出y 与x 的函数关系及y 的最大值. 【拓展提高】(3)已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上.如图3,如果AD :BD =1:2,求CE :CF 的值.4.给出定义:有两个内角分别是它们对角的两倍的四边形叫做倍对角四边形.(1)如图1,在倍对角四边形ABCD 中,∠D =2∠B ,∠A =2∠C ,求∠B 与∠C 的度数之和;(2)如图2,锐角△ABC 内接于⊙O ,若边AB 上存在一点D ,使得BD =BO ,∠OBA 的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,∠AFE =2∠EAF .求证:四边形DBCF 是倍对角四边形;(3)如图3,在(2)的条件下,过点D 作DG ⊥OB 于点H ,交BC 于点G .当4DH =3BG 时,求△BGH 与△ABC 的面积之比.5.抛物线212y x mx n =-++与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知(1,0)A -,(0,2)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,求出P 点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当四边形CDBF 的面积最大时,求点E 的坐标.6.如图,抛物线2:C y ax bx c =++的对称轴为直线1x =-,且抛物线经过(1,0),(0,3)M D 两点,与x 轴交于点N .(1)点N 的坐标为_______.(2)已知抛物线1C 与抛物线C 关于y 轴对称,且抛物线1C 与x 轴交于点1,A B (点A 在点1B 的左边).①抛物线1C 的解析式为_________;②当抛物线1C 和抛物线C 上y 都随x 的增大而增大时,请直接写出此时x 的取值范围. (3)若抛物线n C 的解析式为(1)(2)(1,2,3)y x x n n =-+--=,抛物线n C 的顶点为n P ,与x 轴的交点为,n A B (点A 在点n B 的左边).①求123100AB AB AB AB ++++的值;②判断抛物线的顶点123,,,,n P P P P 是否在一条直线上,若在,请直接写出该直线的解析式;若不在,请说明理由.7.在平面直角坐标系xOy 中,规定:抛物线y =a (x ﹣h )2+k 的“伴随直线”为y =a (x ﹣h )+k .例如:抛物线y =2(x +1)2﹣3的“伴随直线”为y =2(x +1)﹣3,即y =2x ﹣1.(1)在上面规定下,抛物线y =(x +1)2﹣5的顶点坐标为_____,“伴随直线”为_____. (2)如图,顶点在第一象限的抛物线y =a (x ﹣1)2﹣4a (a ≠0)与其“伴随直线”相交于点A ,B (点A 在点B 的左侧),与x 轴交于点C ,D . ①若△ABC 为等腰三角形时,求a 的值;②如果点P (x ,y )是直线BC 上方抛物线上的一个动点,△PBC 的面积记为S ,当S 取得最大值274时,求a 的值.8.如图1,四边形ABCD 和四边形CEFG 都是菱形,其中点E 在BC 的延长线上,点G 在DC的延长线上,点H在BC边上,连结AC,AH,HF.已知AB=2,∠ABC=60°,CE=BH.(1)求证:△ABH≌△HEF;(2)如图2,当H为BC中点时,连结DF,求DF的长;(3)如图3,将菱形CEFG绕点C逆时针旋转120°,使点E在AC上,点F在CD上,点G在BC的延长线上,连结EH,BF.若EH⊥BC,请求出BF的长.9.如图,对称轴x=1的抛物线y=ax2+bx+c与x轴交于A(﹣2,0),B两点,与y轴交于点C(0,2),(1)求抛物线和直线BC的函数表达式;(2)若点Q是直线BC上方的抛物线上的动点,求△BQC的面积的最大值;(3)点P为抛物线上的一个动点,过点P作过点P作PD⊥x轴于点D,交直线BC于点E.若点P在第四象限内,当OD=4PE时,△PBE的面积;(4)在(3)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.10.将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG.(1)如图,若点A ,E ,D 第一次在同一直线上,BG 与CE 交于点H ,连接BE . ①求证:BE 平分∠AEC .②取BC 的中点P ,连接PH ,求证:PH ∥CG . ③若BC =2AB =2,求BG 的长.(2)若点A ,E ,D 第二次在同一直线上,BC =2AB =4,直接写出点D 到BG 的距离. 11.在平面直角坐标系中,三角形ABC 为等腰直角三角形,AC BC =,BC 交x 轴于点D .(1)若()4,0A -,()0,2C ,直接写出点B 的坐标 ;(2)如图,三角形OAB 与ACD △均为等腰直角三角形,连OD ,求AOD ∠的度数;(3)如图,若AD 平分BAC ∠,()4,0A -,(),0D m ,B 的纵坐标为n ,求2n m +的值.12.已知抛物线y=x2﹣3x﹣4与x轴交于A、B(A在B的左侧),与y轴交于点C,点D 是直线BC下方抛物线上的动点.(1)求直线BC的解析式;(2)如图1,过D作DE∥y轴交BC于E,点P是BC下方抛物线上的动点(P在D的右侧),过点P作PQ∥y轴交BC于Q,若四边形EDPQ为平行四边形.且周长最大.求点P的坐标;(3)如图2,当D点横坐标为1时,过A且平行于BD的直线交抛物线于另一点E,若M在x轴上,是否存在这样点的M,使得以M、B、D为顶点的三角形与△AEB相似?若存在,求出所有符合条件的点M的坐标;若不存在,说明理由.13.如图,在平面直角坐标系中,四边形AOBC是矩形,OB=4,OA=3,F是BC边上一个动点(不与B、C重合),过点F的反比例函数y=kx(k>0)的图象与边AC交于点E.(1)当BF=13BC时,求点E的坐标;(2)连接EF,求∠EFC的正切值;(3)将△EFC沿EF折叠,得到△EFG,当点G恰好落在矩形AOBC的对角线上时,求k的值.14.在平面直角坐标系中,抛物线:与x轴交于点A,B(点B 在点A的右侧).抛物线顶点为C点,△ABC为等腰直角三角形.(1)求此抛物线解析式.(2)若直线与抛物线有两个交点,且这两个交点与抛物线的顶点所围成的三角形面积等于6,求k的值.(3)若点,且点E,D关于点C对称,过点D作直线2l交抛物线于点M,N,过点E作直线轴,过点N作于点F,求证:点M,C,F三点共线.15.如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AB=2,将一张和△ABC一样大的纸片和△ABC重叠放置,点E是边BC上一点(不含点B、C),将△OCE 沿着OE翻折,点C落在点P处.(1)直接写出∠OBC、∠OCB的数量关系是.(2)连接DE,设△OPE的面积为S1,△ODE的面积为S2,在点E取边BC上每一点(除点B、C)的过程中,S1+S2的值是否变化?如果变化,请求出它的取值范围;如果不变,请求出S1+S2的值;(3)分别连接PD、PC,当点P与点B重合时,易知PO•PC=PE•PD,当点P不与点B重合时,PO•PC=PE•PD是否成立?请在图3、图4中选一种情况进行证明.16.如图,ABD△内接于O中,弦BC交AD于点E,连接CD,BG CD⊥交CD的延长线于点G,BG交O于点H,2∠=∠.ABC GBD(1)如图1,求证:DB平分GDE∠;(2)如图2,CN AB⊥于点N,CN=CG,求证:AN=HG;(3)如图3.在(2)的条件下,点F在AE上,连接BF、CF,且BF CF⊥,∠=∠,BC=5.求AE的长.BCN CBF217.【问题提出】如图①,在△ABC中,若AB=8,AC=4,求BC边上的中线AD的取值范围.【问题解决】解决此问题可以用如下方法:延长AD到点E,使DE=AD,再连结BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.由此得出中线AD的取值范围是__________【应用】如图②,如图,在△ABC中,D为边BC的中点、已知AB=10,AC=6,AD=4,求BC的长.【拓展】如图③,在△ABC中,∠A=90°,点D是边BC的中点,点E在边AB上,过点D作D F⊥DE交边AC于点F,连结EF.已知BE=5,CF=6,则EF的长为__________.18.如图,点P是矩形ABCD的边AB的其中一个四等分点(点P靠近点A),8AB ,将直角三角尺的顶点放在P处,直角尺的两边分别交AD、DC于点E,F,(如图1).(1)当点E与点D重合时,点F恰好与点C重合(如图2),求AD的长;(2)探究:将直尺从图2中的位置开始,绕点P逆时针旋转,当点E和点A重合时停止,在这个过程中,请你观察、猜想,并解答:①∠PEF的大小是否发生变化?请说明理由;②求出从点E与D重合开始,到点E与点A重合结束,线段EF的中点经过的路线的长度.19.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC,交BC于点E,点D在AC上,以AD为直径的⊙O经过点E,点F在⊙O上,且EF平分∠AED,交AC于点G,连接DF.(1)求证:△DEF ∽△GDF : (2)求证: BC 是⊙O 的切线: (3)若cos∠CAE =32,DF =102,求线段GF 的长. 20.如图,抛物线y =-212x +32x +2与x 轴负半轴交于点A ,与y 轴交于点B .(1)求A ,B 两点的坐标;(2)如图1,点C 在y 轴右侧的抛物线上,且AC =BC ,求点C 的坐标;(3)如图2,将△ABO 绕平面内点P 顺时针旋转90°后,得到△DEF (点A ,B ,O 的对应点分别是点D ,E ,F ),D ,E 两点刚好在抛物线上. ①求点F 的坐标; ②直接写出点P 的坐标.【参考答案】参考答案**科目模拟测试一、解答题 1.(1) 51或(3)存在,点Q的坐标为(﹣2﹣3,0)或(0,)或(1,0)【解析】【分析】(1)用待定系数法即可求解;(2)MP∥CO,则,进而求解;(3)当点Q在BD′的右侧时,连接BD′,过点D′分别作x轴、y轴的垂线,垂足分别为F (1,0)、E,tan∠EBD′=,故∠EBD′=30°=∠BD′F,故点Q与点F重合时,∠BD′F=∠BD′Q=30°;当点Q在BD′的左侧时,设点Q′D′交x轴和y轴分别为点Q′、Q″,求出直线D′Q′的表达式,即可求解.(1)解:将点A、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:;(2)∵MP∥CO,则,∵N是线段BC的黄金分割点,∴或,即或,而OB=1,故MO=512-或,即点P到x轴的距离为:512-或;(3)存在,理由:由抛物线的表达式知,点D(1,43),则将抛物线向上平移个单位长度,点D的对应点为D′的坐标为(1,3+1),①当点Q在BD′的右侧时,连接BD′,过点D′分别作x轴、y轴的垂线,垂足分别为F(1,0)、E,则BE3﹣13ED′=1,∴tan∠EBD′=,故∠EBD′=30°=∠BD′F,故点Q与点F重合时,∠BD′F=∠BD′Q=30°,即点Q的坐标为(1,0);②当点Q在BD′的左侧时,设点Q′D′交x轴和y轴分别为点Q′、Q″,则∠BD′Q′=30°,故∠Q′Q″O=30°+30°=60°,则∠D′Q′O=90°﹣60°=30°,故设直线Q′D′的表达式为y 3+t,将点D′的坐标代入上式得:3t,解得t=,故直线D′Q′的表达式为y=33x+,对于y=33x+,令y=33x+=0,解得x=﹣2﹣3,令x=0,则y=,故点Q′、Q″的坐标分别为(﹣2﹣3,0)、(0,),综上,点Q的坐标为(﹣2﹣3,0)或(0,)或(1,0).【点睛】本题是二次函数综合题,主要考查了一次函数的性质、三角形相似、解直角三角形等,其中(3),要注意分类求解,避免遗漏.2.(1)i:(0,5);ii:AT=52;(2)t=120s2+5.【解析】【分析】(1)i:如图①中,根据翻折变换的性质以及勾股定理得出BD的长,进而得出AE,EO的长即可得出答案.ii:如图②中,连接ET.证明△CET是直角三角形,由勾股定理得2222ED TD TC EC+=-,代入数据计算即可求出AT.(2)根据H点坐标得出各边长度,进而利用勾股定理求出t与s的关系即可.【详解】解:(1)i:如图①中,∵OA=8,OC=10,根据折叠的性质,∴OC=DC=10,∵BC=OA=8,∴BD2222108CD BC--,∴AD=10-6=4,设AE =x ,则EO =8-x ,∴x 2+42=(8-x )2,解得:x =3,∴AE =3,则EO =8-3=5,∴点E 的坐标为:(0,5);故答案为:(0,5); ii :如图②中,连接ET .∵点E 是AO 的中点,∴EA =EO ,∵OE =ED ,EC =EC ,∠EOC =∠EDC =90°,∴Rt △ECD ≌Rt △ECO (HL ),∴∠CEO =∠CED ,同法可证,Rt △ETA ≌Rt △ETD (HL ),∴∠AET =∠DET ,∴∠DET +∠CED =90°,即∠CET =90°,由折叠的性质得:ED =EO =12OA =5,OC =CD =10,AT =TD , 222125EC EO OC =+=, 设AT =x ,则TD =x ,∵2222ED TD TC EC +=-,即()222510125x x +=+-, 解得:52x =∴AT =52; (2)如图③中,过点H 作HW ⊥OC 于点W ,根据折叠的性质得:∠1=∠2,∵EG∥OC,∴∠1=∠3,∴∠2=∠3,∴EH=HC,设H(t,s),∴EH=HC=t,WC=10-t,HW=s,∴HW2+WC2=HC2,∴s2+(10-t)2=t2,∴t与s之间的关系式为:t=120s2+5.【点睛】本题属于四边形综合题,主要考查了翻折变换的性质以及勾股定理和全等三角形的判定与性质等知识,熟练构建直角三角形利用勾股定理得出相关线段长度是解题关键.3.(1)见解析;(2)y2x22(0≤x≤8),23)4:5【解析】【分析】(1)利用已知得出∠E=∠CFB,进而利用相似三角形的判定方法得出即可;(2)利用(1)得出△AFE∽△BCF,由相似三角形的性质:对应边的比值相等即可得到y 和x的数量关系,进而求出y与x的函数关系式;(3)首先证明△ADE∽△BFD,表示出ED,DF,EA,DB,AD,BF,再利用相似三角形的性质解决问题即可.【详解】(1)证明:∵∠A=∠EFC,∴∠E+∠EFA=∠EFA+∠CFB,∴∠E=∠CFB,∵∠A=∠B,∴△AFE∽△BCF;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∴AB=22AC BC+=8,∵AC=BC,∴∠A=∠B=45°,∴∠A=∠B=∠CFE=45°,由(1)可得△AFE∽△BCF,∴AE AFBF BC=,即842y xx-=,∴y=﹣28x2+2x(0≤x≤8),∴当x=4时,y最大=22;(3)解:连接DE,DF,∵△EFC与△EFD关于EF对称,∴∠EDF=∠ECF=60°,EC=ED,FC=FD,∵∠BDF+∠EDF=∠BDE=∠A+∠DEA,∵∠EDF=∠A=60°,∴∠BDF=∠DEA,∴△ADE∽△BFD,设AD=x,CE=DE=a,CF=DF=b,∵AD:BD=1:2,∴DB=2x,∴AB=3x=AC=BC,∴AE=3x﹣a,BF=3x﹣b,∵△ADE∽△BFD,∴DE EA AD DF DB BF==,∴323a x a xb x x b-==-,由前两项得,2ax=b(3x﹣a),由后两项得,(3x﹣a)(3x﹣b)=2x2,即:3x(3x﹣a)﹣b(3x﹣a)=2x2,∴3x(3x﹣a)﹣2ax=2x2,∴a =75x , ∴3425a x ab x -==, ∴CE :CF =4:5.【点睛】本题是圆的综合题,考查了相似三角形的判定与性质,圆的有关知识,勾股定理以及二次函数最值等知识,解题的关键是学会利用参数解决问题.4.(1)120°;(2)见解析;(3)215 【解析】【分析】(1)根据四边形内角和为360°,即可得出答案;(2)利用SAS 证明△BED ≌△BEO ,得∠BDE =∠BEO ,连接OC ,设∠EAF =α,则∠AFE =2α,则∠EFC =180°−∠AFE =180°−2α,可证∠EFC =∠AOC =2∠ABC 即可;(3)过点O 作OM ⊥BC 于M ,由(1)知∠BAC =60°,再证明△DBG ∽△CBA ,得2ΔΔ()DBG ABC S BD S BC =,再根据4DH =3BG ,BG =2HG ,得DG =52GH ,则ΔΔBHG BDG S S =HG DG =25,从而解决问题.【详解】(1)解:在倍对角四边形ABCD 中,∠D =2∠B ,∠A =2∠C ,∵∠A +∠B +∠C +∠D =360°,∴3∠B +∠3∠C =360°,∴∠B +∠C =120°,∴∠B 与∠C 的度数之和为120°;(2)证明:在△BED 与△BEO 中,BD BO EBD EBO BE BE =⎧⎪∠=∠⎨⎪=⎩, ∴△BED ≌△BEO (SAS ),∴∠BDE =∠BEO ,∵∠BOE =2∠BCF ,∴∠BDE =2∠BCF连接OC ,设∠EAF =α,则∠AFE =2α,∴∠EFC =180°﹣∠AFE =180°﹣2α,∵OA =OC ,∴∠OAC =∠OCA =α,∴∠AOC =180°﹣∠OAC ﹣∠OCA =180°﹣2α,∴∠EFC =∠AOC =2∠ABC ,∴四边形DBCF 是倍对角四边形;(3)解:过点O 作OM ⊥BC 于M ,∵四边形DBCF 是倍对角四边形,∴∠ABC +∠ACB =120°,∴∠BAC =60°,∴∠BOC =2∠BAC =120°,∵OB =OC ,∴∠OBC =∠OCB =30°,∴BC =2BM 33,∵DG ⊥OB ,∴∠HGB =∠BAC =60°,∵∠DBG =∠CBA ,∴△DBG ∽△CBA , ∴2ΔΔ()DBG ABC S BD S BC =13, ∵4DH =3BG ,BG =2HG , ∴DG =52GH ,∴ΔΔBHG BDG S S =25HG DG =, ∵ΔΔ15315DBG ABC S S == ∴ΔΔBHG ABC S S =215. 【点睛】本题是新定义题,主要考查了圆的性质,相似三角形的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质等知识,读懂题意,利用前面探索的结论解决新的问题是解题的关键.5.(1)213222y x x =-++;(2)存在,13(,4)2P ,235(,)22P ,335(,)22P -;(3)点()2,1E【解析】【分析】(1)把()1,0A -,()0,2C 代入抛物线的解析式,利用待定系数法求解即可;(2)先求解抛物线的对称轴3,2x = 再求解CD 的长,由CDP 是以CD 为腰的等腰三角形,可得123CP DP DP CD ===.再作CH ⊥对称轴于点H ,从而可得答案;(3)先求解()4,0B .再求解直线BC 的解析式为122y x =-+.过点C 作CM EF ⊥于M ,设1,22E a a ⎛⎫-+ ⎪⎝⎭,213,222F a a a ⎛⎫-++ ⎪⎝⎭,根据BCD CEF BEF CDBF S S S S =++四边形111222BD OC EF CM EF BN =⋅+⋅+⋅列函数关系式,从而可得答案.【详解】解:(1)∵抛物线212y x mx n =-++经过()1,0A -,()0,2C , ∴10,22,m n n ⎧--+=⎪⎨⎪=⎩解得3,22.m n ⎧=⎪⎨⎪=⎩ ∴抛物线的解析式为213222y x x =-++. (2)∵22131325222228y x x x ⎛⎫=-++=--+ ⎪⎝⎭, ∴抛物线的对称轴是直线32x =.∴32OD =. ∵()0,2C ,∴2OC =.在Rt OCD △中,由勾股定理,得2235222CD ⎛⎫=+= ⎪⎝⎭. ∵CDP 是以CD 为腰的等腰三角形,∴123CP DP DP CD ===.作CH ⊥对称轴于点H ,∴12HP HD ==.∴14DP =.∴13(,4)2P ,235(,)22P ,335(,)22P -. (3)当0y =时,由2132022x x -++=,解得11x =-,24x =, ∴()4,0B .设直线BC 的解析式为y kx b =+,得2,40,b k b =⎧⎨+=⎩解得1,22.k b ⎧=-⎪⎨⎪=⎩ ∴直线BC 的解析式为122y x =-+. 过点C 作CM EF ⊥于M ,设1,22E a a ⎛⎫-+ ⎪⎝⎭,213,222F a a a ⎛⎫-++ ⎪⎝⎭,∴2213112222222EF a a a a a ⎛⎫=-++--+=-+ ⎪⎝⎭. ∵BCD CEF BEF CDBF S S S S =++四边形111222BD OC EF CM EF BN =⋅+⋅+⋅ 2215111122(4)2222222a a a a a a ⎛⎫⎛⎫=⨯⨯+-++--+ ⎪ ⎪⎝⎭⎝⎭225134(2)22a a a =-++=--+. ∴根据题意04a ≤≤,∴当2a =时,CDBF S 四边形的最大值为132,此时点()2,1E . 【点睛】本题考查的是利用待定系数法求解抛物线的解析式,二次函数与等腰三角形,图形面积的最值问题,灵活运用二次函数的图象与性质解决问题是解题的关键.6.(1)(3,0)-;(2)①2(1)4y x =--+;②1x <-;(3)①5350;②不在,理由见解析【解析】【分析】(1)由题意可得,点N 和点M 关于1x =-轴对称,求解即可;(2)①先求得抛物线C 的解析式,再根据关于y 轴对称,求得抛物线1C 即可;②根据二次函数的性质,求解即可;(3)①由抛物线解析式可得抛物线n C 与x 轴交点的坐标为(1,0)A -,(2,0)n B n +,求得线段1AB 、2AB 、……、100AB 的值,即可求解;②求得顶点1P 、2P 、3P ,求得13P P 的解析式,然后验证2P 是否在直线上.【详解】解:(1)由题意可得,点N 和点M 关于1x =-轴对称∵(1,0)M∴点(3,0)N -故答案为(3,0)-(2)①由(1)得,抛物线C 过点(1,0)M 、(3,0)N -、(0,3)D抛物线C 的解析式为31y a x x =+-()(),将点(0,3)D 代入解析式得:(03)(01)3a +-=解得1a =-∴22(3)(1)(23)(1)4y x x x x x =-+-=-+-=-++,顶点坐标为(1,4)-∵抛物线C 与抛物线1C 关于y 轴对称∴抛物线1C 的顶点为(1,4),开口与抛物线C 相同∴抛物线1C 解析式为2(1)4y x =--+②抛物线C 的解析式为2(1)4y x =-++,由二次函数的性质可得,当1x <-时,y 随x 的增大而增大,抛物线1C 解析式为2(1)4y x =--+,由二次函数的性质可得,当1x <时,y 随x 的增大而增大, ∴当1x <-时,抛物线C 和抛物线1C 上y 都随x 的增大而增大, (3)①抛物线n C 的解析式为(1)(2)(1,2,3)y x x n n =-+--=可得抛物线n C 与x 轴交点的坐标为(1,0)A -,(2,0)n B n +,即1(3,0)B ,2(4,0)B ,……,100(102,0)B∴14AB =,25AB =,……,100103AB = ∴123100103455350AB AB AB AB =+++++=++②当1n =时,抛物线1C 的解析式为2(1)(3)(1)4y x x x =-+-=--+,1(1,4)P 当2n =时,抛物线2C 的解析式为2325(1)(4)()24y x x x =-+-=--+,2325(,)24P当3n =时,抛物线3C 的解析式为2(1)(5)(2)9y x x x =-+-=--+,3(2,9)P 设直线13P P 的解析式为y kx b =+,将点1(1,4)P ,3(2,9)P 代入得429k b k b +=⎧⎨+=⎩,解得51k b =⎧⎨=-⎩,即51y x =- 当32x =时,3132551224y =⨯-=≠ ∴点2325(,)24P 不在直线13P P 上∴抛物线的顶点123,,,,n P P P P 不在一条直线上【点睛】此题考查了二次函数的图像与性质,涉及了待定系数法求解二次函数和一次函数解析式,解题的关键是熟练掌握二次函数的有关性质.7.(1)(﹣1,﹣5),y =x ﹣4;(2)①a 的值为a =﹣2. 【解析】 【分析】(1)由“伴随直线”的定义即可求解;(2)①先求y =a (x −1)2−4a 的伴随直线为y =ax −5a ,再联立方程组2(1)45y a x ay ax a ⎧=--⎨=-⎩,求出A (1,−4a ),B (2,−3a ),C (−1,0),D (3,0),由于当△ABC 为等腰三角形时,只存在一种可能为AC =BC ,即可求a 的值;②先求直线BC 解析式为y =−ax −a ,过P 作x 轴的垂线交BC 于点Q ,设点P 的横坐标为x ,则P [x ,a (x −1)2−4a ],Q (x ,−ax −a ),23127()228PBC S a x a ∆=--,即可求面积的最大值,进而求a 的值. 【详解】(1)∵抛物线y =(x +1)2﹣5,∴顶点坐标为(﹣1,﹣5),“伴随直线”为y =x ﹣4, 故答案为:(﹣1,﹣5),y =x ﹣4;(2)①由“伴随直线”定义可得:y =a (x ﹣1)2﹣4a 的伴随直线为y =ax ﹣5a ,联立2(1)45y a x a y ax a ⎧=--⎨=-⎩,解得14x y a =⎧⎨=-⎩或23x y a=⎧⎨=-⎩,∴A (1,﹣4a ),B (2,﹣3a ),在y =a (x ﹣1)2﹣4a 中,令y =0可解得x =﹣1或x =3, ∴C (﹣1,0),D (3,0), ∴AC 2=4+16a 2,BC 2=9+9a 2,∵当△ABC 为等腰三角形时,只存在一种可能为AC =BC ,∴AC 2=BC 2,即4+16a 2=9+9a 2,解得=a ∵抛物线开口向下,∴a =∴若△ABC 为等腰三角形时,a 的值为 ②设直线BC 的解析式为y =kx +b , ∵B (2,﹣3a ),C (﹣1,0),∴200k b k b +=⎧⎨-+=⎩,解得k a b a =-⎧⎨=-⎩, ∴直线BC 解析式为y =﹣ax ﹣a ,如图,过P 作x 轴的垂线交BC 于点Q ,设点P 的横坐标为x , ∴P [x ,a (x ﹣1)2﹣4a ],Q (x ,﹣ax ﹣a ), ∵P 是直线BC 上方抛物线上的一个动点,∴22219(1)4(2)()24PQ a x a ax a a x x a x ⎡⎤=--++=--=--⎢⎥⎣⎦,∴23127()228PBC S a x a ∆=--, ∴当12x =时,△PBC 的面积有最大值278-a , ∴S 取得最大值274时,即272784-=a ,解得a =﹣2.【点睛】本题考查二次函数的综合应用,熟练掌握二次函数的图象及性质,理解新定义,将所求问题转化为直线与抛物线的知识是解题的关键.8.(1)见解析;(2)7;(3)2193.【解析】【分析】(1)根据两个菱形中,点E在BC的延长线上,点G在DC的延长线上这一特殊的位置关系和CE=BH可证明相应的边和角分别相等,从而证明结论;(2)由AB=BC,∠ABC=60 ,可证明△ABC是等边三角形,从而证明∠AHB=90°,再由△ABH≌△HEF,得∠HFE=∠AHB=90°,再得∠DPF=180°﹣∠HFE=90°,在Rt△DPF 中用勾股定理求出DF的长;(3)作FM⊥BG于点M,当EH⊥BC时,可证明CH=CM=12CG=12BH,从而求出BM、FM的长,再由勾股定理求出BF的长.【详解】解:(1)证明:如图1,∵四边形ABCD和四边形CEFG都是菱形,∴AB=BC,CE=EF,∵CE=BH,∴BH=EF,∵BH+CH=CE+CH,∴BC=HE,∴AB=HE;∵点E 在BC 的延长线上,点G 在DC 的延长线上, ∴AB ∥DG ∥EF , ∴∠B =∠E , 在△ABH 和△HEF 中, BH EF B E AB HE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABH ≌△HEF (SAS ).(2)如图2,设FH 交CG 于点P ,连结CF ,∵AB =BC ,∠ABC =60°, ∴△ABC 是等边三角形, ∵BH =CH , ∴AH ⊥BC , ∴∠AHB =90°,由(1)得,△ABH ≌△HEF , ∴∠HFE =∠AHB =90°, ∵DG ∥EF ,∴∠DPF =180°﹣∠HFE =90°, ∴PF ⊥CG ,∵CG =FG ,∠G =∠E =∠B =60°, ∴△GFC 是等边三角形, ∴PC =PG =12CG ;∵BC =AB =2, ∴CG =EF =BH =12BC =1,∴PC =12;∵CD =AB =2, ∴PD =12+2=52, ∵CF =CG =1,∴PF 2=CF 2﹣PC 2=12﹣(12)2=34, ∴22253()724DF PD PF =+=+=.(3)如图3,作FM ⊥BG 于点M ,则∠BMF =90°,∵EH ⊥BC ,即EH ⊥BG , ∴EH ∥FM ,∵∠CEF =∠ACB =60°, ∴EF ∥MH ,∴四边形EHMF 是平行四边形, ∵∠EHM =90°, ∴四边形EHMF 是矩形, ∴EH =FM ;∵EF =EC ,∠CEF =60°, ∴△CEF 是等边三角形, ∴CE =CF ,∵∠EHC =∠FMC =90°, ∴Rt △EHC ≌Rt △FMC (HL ), ∴CH =CM =12CG ;∵CG =CE =BH , ∴CH =12BH ,∴CM =CH =13BC =13×2=23,∴CF =CG =2CM =2×23=43, ∴2FM =(43)2﹣(23)2=43,∵BM =2+23=83,∴2224876219()339BF FM BM =++==. 【点睛】本题主要考查了几何综合,其中涉及到了菱形的性质,全等三角形的判定及性质,等边三角形的判定及性质,勾股定理,矩形的判定及性质等,熟悉掌握几何图形的性质和合理做出辅助线是解题的关键.9.(1)抛物线表达式为211242y x x =-++;直线表达式为122y x =-+;(2)△BQC的面积的最大值为2(3)△PBE 的面积为58(4)点N的坐标为(5(5235,45-)或(92,14). 【解析】 【分析】(1)首先根据二次函数的对称性求出点B 的坐标,然后利用待定系数法把点的坐标代入表达式求解即可;(2)过Q 点作QH 垂直x 轴交BC 于点H ,连接CQ ,BQ ,由二次函数表达式设点Q 的坐标为(x ,211242x x -++),表示出△BQC 的面积,根据二次函数的性质即可求出△BQC的面积的最大值;(3)根据题意设出点P 坐标为(m ,211m m 242-++),E 点坐标为(m ,122m -+),D 点坐标为(m ,0),表示出OD 和PE 的长度,根据OD =4PE 列出方程求出m 的值,即可求出PE 和BD 的长度,然后根据三角形面积公式求解即可;(4)当BD 是菱形的边和对角线时两种情况分别讨论,设出点M 和点N 的坐标,根据菱形的性质列出方程求解即可. 【详解】解:(1)∵抛物线的对称轴为x =1,A (﹣2,0), ∴B 点坐标为(4,0),∴将A (﹣2,0),B (4,0),C (0,2),代入y =ax 2+bx +c 得,42016402a b c a b c c -+=⎧⎪++=⎨⎪=⎩解得:14122a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的表达式为211242y x x =-++;设直线BC 的函数表达式为y kx b =+,∴将B (4,0),C (0,2),代入y kx b =+得,4002k b b +=⎧⎨+=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为122y x =-+. (2)如图所示,过Q 点作QH 垂直x 轴交BC 于点H ,交x 轴于点M ,连接CQ ,BQ ,设点Q 的坐标为(x ,211242x x -++),点H 的坐标为(x ,122x -+),∴HQ =221111224224x x x x x ⎛⎫-++--+=-+ ⎪⎝⎭,∴()221111111422222242QBC QHC QHB S S S QH OM QH BM QH OM BM QH OB x x x x ⎛⎫=+=+=+==⨯-+⨯=-+ ⎪⎝⎭△△△, ∴当221222bx a=-=-=⎛⎫⨯- ⎪⎝⎭时,2122222S =-⨯+⨯=, ∴△BQC 的面积的最大值为2;(3)设点P 坐标为(m ,211m m 242-++),E 点坐标为(m ,122m -+),D 点坐标为(m ,0),∴221111222424PE m m m m m ⎛⎫=-+--++=- ⎪⎝⎭,OD m =,∵OD =4PE ,∴21=44m m m ⎛⎫⨯- ⎪⎝⎭,整理得:250m m -=,解得:10m =(舍去),25m =,∴2211555444PE m m =-=⨯-=,D 点坐标为(5,0), ∴BD =1,∴115512248PBE S PE BD ==⨯⨯=△; (4)如图所示,当BD 是菱形的边时,BM 是菱形的边时,∵四边形BDNM 是菱形, ∴BD =BM =MN ,∴设M 点坐标为(a ,122a -+),N 点坐标为(a +1,122a -+),又∵B 点坐标为(4,0),D 点坐标为(5,0), ∴BD =1,()221422BM a a ⎛⎫=-+-+ ⎪⎝⎭, ∵BD =BM , ∴BD 2=BM 2, ∴()2214212a a ⎛⎫-+-+= ⎪⎝⎭, 整理得:2540760a a -+=, 解得:1225254455a a =+=-,, ∴N 点坐标为(2555+,55-)或(2555-,55), 当BD 是菱形的边时,DM 是菱形的边时,∵四边形BDMN 是菱形,B 点坐标为(4,0),D 点坐标为(5,0), ∴BD =MN =DM =1,∴设M 点坐标为(b ,122b -+),N 点坐标为(b -1,122b -+), ∴DM2=()221522b b ⎛⎫-+-+ ⎪⎝⎭, ∵BD =DM , ∴BD 2=DM 2,∴()2215212b b ⎛⎫-+-+= ⎪⎝⎭, 整理得:25481120b b -+=, 解得:122845b b ==,(舍去), ∴N 点坐标为(235,45-);当BD 是菱形的对角线时,∵四边形BMDN 是菱形,B 点坐标为(4,0),D 点坐标为(5,0), ∴M 点横坐标为45922+=, 将92x =代入122y x =-+得:y =14-, ∴M 点的坐标为(92,14-),又∵点M 和点N 关于x 轴对称, ∴点N 的坐标为(92,14).综上所述,点N 的坐标为(25552555235,45-)或(92,14). 【点睛】此题考查了一次函数和二次函数表达式的求法,二次函数的性质,二次函数中三角形最大面积问题,菱形存在性问题等知识,解题的关键是根据题意设出点的坐标,表示出三角形面积,根据菱形的性质列出方程求解.10.(1)①见解析;②见解析;③7 (2)57221+77【解析】 【分析】(1)①根据旋转的性质得到CB CE =,求得EBC BEC ∠=∠,根据平行线的性质得到EBC BEA ∠=∠,于是得到结论;②如图1,过点B 作CE 的垂线BQ ,根据角平分线的性质得到AB BQ =,求得=CG BQ ,根据全等三角形的性质得到BH GH =,根据三角形的中位线定理即可得到结论; ③如图2,过点G 作BC 的垂线GM ,解直角三角形即可得到结论.(2)如图3,连接DB ,DG ,过G 作GP BC ⊥交BC 的延长线于P ,GN DC ⊥交DC 的延长线于N ,根据旋转的性质得到4==CE BC ,2CD AB ==,解直角三角形得到1NG =,3PG =,根据三角形的面积公式即可得到结论.(1)解:①证明:矩形ABCD 绕着点C 按顺时针方向旋转得到矩形FECG ,CB CE ∴=,EBC BEC ∴∠=∠,又//AD BC ,EBC BEA ∴∠=∠, BEA BEC ∴∠=∠,BE ∴平分AEC ∠;②证明:如图1,过点B 作CE 的垂线BQ ,BE 平分AEC ∠,BA AE ⊥,BQ CE ⊥,AB BQ ∴=,CG BQ ∴=,90BQH GCH ∠=∠=︒,BQ AB CG ==,BHQ GHC ∠=∠, ()BHQ GHC AAS ∴∆≅∆,即点H 是BG 中点, 又点P 是BC 中点,//PH CG ∴;③解:如图2,过点G 作BC 的垂线GM ,22BC AB ==,1BQ ∴=,30BCQ ∴∠=︒,90ECG ∠=︒, 60GCM ∴∠=︒, 1CG AB CD ===,32GM ∴=,12CM =, 222253()()722BG BM MG ∴=+=+=;(2)解:如图3,连接DB ,DG ,过G 作GP BC ⊥交BC 的延长线于P ,GN DC ⊥交DC 的延长线于N ,24BC AB ==,2AB ∴=,将矩形ABCD 绕着点C 按顺时针方向旋转得到矩形FECG ,4CE BC ∴==,2CD AB ==,点A ,E ,D 第二次在同一直线上,90CDE,12CD CE ∴=,60DCE ∴∠=︒,30NCG ∴∠=︒,2CG =, 1NG ∴=,3PG =,523DBG DBC DCG BCG S S S S ∆∆∆∆∴=++=+,2227BG BP PG =+=,25722177DBG S DM BG ∆∴==+. 【点睛】本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线.11.(1)(2,2)-;(2)90°;(3)4- 【解析】 【分析】(1)如图1中,作BH y ⊥轴于H .只要证明()ACO CBH AAS △≌△即可解决问题; (2)过C 作CK x ⊥轴交OA 的延长线于K ,求证ACK DCO △≌△即可求出AOD ∠的度数可求;(3)作BE x ⊥轴于点E ,并延长交AC 的延长线于点F ,证明()ABE AFE ASA △≌△,由全等三角形的性质得出BE FE =,证明()ACD CBF ASA △≌△,得出BF AD =,则可得出答案. 【详解】解:(1)如图1中,作BH y ⊥轴于H .(4,0)-A ,(0,2)C ,4∴=OA ,2OC =,90AOC ACB BHC ∠=∠=∠=︒,90ACO BCH ∴∠+∠=︒,90CAO ACO ∠+∠=︒,CAO BCH ∴∠=∠,在ACO △与CBH 中,AOC BHCCAO BCH AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ACO CBH AAS ∴△≌△,4CH OA ∴==,2BH OC ==, 2OH CH OC ∴=-=,(2,2)C ∴-,故答案为:(2,2)-;(2)如图所示,过C 作CK x ⊥轴交OA 的延长线于K ,则90OCK ∠=︒,∵AOB 为等腰直角三角形, ∴45AOB ∠=︒, 又∵90OCK ∠=︒,∴9045K AOB AOB ∠=︒-∠=︒=∠, ∴OC CK =,ACD 为等腰直角三角形, 90ACD ∴∠=︒,AC DC =,90ACO OCD ∴∠+∠=︒,又∵90OCK ∠=︒,90ACO ACK ∴∠+∠=︒, ACK OCD ∴∠=∠,在ACK 与DCO 中,CK OC ACK OCD AC DC =⎧⎪∠=∠⎨⎪=⎩()ACK DCO SAS ∴△≌△,45DOC K ∴∠=∠=︒, 90AOD AOB DOC ∴∠=∠+∠=︒;(3)如图2中,作BE x ⊥轴于点E ,并延长交AC 的延长线于点F ,(4,0)-A ,(,0)D m ,4AD m ∴=+,AD 平分BAC ∠, BAE FAE ∴∠=∠,∵BE x ⊥轴于点E ,90AEB AEF ∴∠=∠=︒,在ABE △和AFE △中, AEB AEF AE AEBAE FAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABE AFE ASA ∴△≌△,BE FE ∴=,∵B 的纵坐标为n ,且点B 在第四象限,BE FE n ∴==-, 2BF BE FE n ∴=+=-, 90ACB AEB ∠=∠=︒,90CAD CDA CBF BDE ∴∠+∠=∠+∠=︒,又∵CDA BDE ∠=∠,CAD CBF ∴∠=∠,在ACD △和BCF △中,ACD BCF AC BCCAD CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ACD CBF ASA ∴△≌△,AD BF ∴=,42m n ∴+=-,即:24m n +=-, ∴2n m +的值为4-. 【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的性质和判定,角平分线的定义,坐标与图形性质,熟练掌握全等三角形的判定与性质是解题的关键.12.(1)y=x﹣4(2)P(4)(3)存在,M(,0)或(﹣17,0)【解析】【分析】(1)先分别求出A、B、C三点的坐标,即可利用待定系数法求出直线BC的解析式;(2)设E(x1,x1﹣4),Q(x2,x2﹣4),则D(x1,x12﹣3x1﹣4),P(x2,x22﹣3x2﹣4),由平行四边形的性质得到ED=QP,即(x1﹣4)﹣(x12﹣3x1﹣4)=(x2﹣4)﹣(x22﹣3x2﹣4),从而推出x1+x2=4,再由四边形EDPQ的周长(0<x<4),即可利用二次函数的性质得到答案;(3)分△AEB∽△BDM和△AEB∽△BM′D,利用相似三角形的性质求解即可.(1)解:∵抛物线y=x2﹣3x﹣4与x轴交于A、B(A在B的左侧),与y轴交于点C,∴令x=0,则y=4,令y=0,则x2﹣3x﹣4=0,解得:x1=﹣1,x2=4,∴C(0,﹣4),A(﹣1,0),B(4,0),设直线BC的解析式为:y=kx+b(k≠0),∴把B、C坐标代入上式得:,解得:,∴直线BC的解析式为:y=x﹣4;(2)解:如图1,过D作轴交BC于E,点P是BC下方抛物线上动点(P在D的右∥轴交BC于Q,侧),过点P作PQ y又∵抛物线的解析式为:y=x2﹣3x﹣4,直线BC的解析式为:y=x﹣4,∴设E(x1,x1﹣4),Q(x2,x2﹣4),则D(x1,x12﹣3x1﹣4),P(x2,x22﹣3x2﹣4),若四边形EDPQ为平行四边形,则ED=QP,即(x1﹣4)﹣(x12﹣3x1﹣4)=(x2﹣4)﹣(x22﹣3x2﹣4),∴,∴解得:x1=x2(不合题意,应舍去),x1+x2=4,∵,ED=4x1﹣x12,又∵四边形EDPQ的周长把x2=4﹣x1代入上式得:四边形EDPQ的周长(0<x<4),∵﹣2<0,∴当时,四边形EDPQ的周长有最大值12,此时,∴P(,);(3)解:如图2,若DM∥EB,则∠DMB=∠EBM,∵AE∥DB,∴∠EAB=∠DBM,∴△AEB∽△BDM,∴,∵xD=1,∴yD=1﹣3﹣4=﹣6,∴D(1,﹣6),∵B(4,0),D(1,﹣6),∴yBD=2x﹣8,∵AE∥BD,∴设yAE=2x+n并把A(﹣1,0)代入得:yAE=2x+2,联立,解得:(与A重合,应舍去)或,∴,,∴,∴,∴,∴M(,0),②如图3,若∠DM′B=∠BEA且∠EAB=∠DBM′,∴△AEB∽△BM′D,∴,∴,∴BM′=21,∴OM′=BM′﹣BO=21﹣4=17,∴M′(﹣17,0),综上所述,M(,0)或(﹣17,0).【点睛】本题主要考查了二次函数的综合,二次函数与平行四边形,二次函数与相似三角形,一次函数与二次函数综合等等,解题的关键在于能够熟练掌握相关知识.13.(1)E(43,3)(2)4 3(3)k=6【解析】【分析】(1)由OB=4、OA=3,求出点A、B、C的坐标分别为:(0,3)、(4,0)、(4,3),由BF=13BC得到点F(4,1),进而求解;(2)F点的横坐标为4,则F(4,),E的纵坐标为3,则E(,3),进而求解;(3)当点G落在对角线AB上时,得到EF∥AB,则MF是△CGB的中位线,则点F是BC 的中点,即可求解;当点G落在OC上时,由①知,CG⊥AB,如果G落在OC上,则OC⊥AB,由题意得AB和OC不垂直,故该情况不存在.(1)解:∵OB=4,OA=3,∴点A、B的坐标分别为:(0,3)、(4,0)∵四边形OACB为矩形,则点C(4,3),当BF=13BC时,点F(4,1),将点F的坐标代入y=kx并解得:k=4,故反比例函数的表达式为:y=4x,当y=3时,x=43,故E(43,3);(2)解:∵F点的横坐标为4,点F在反比例函数上,∴F(4,),∴CF=BC-BF=3-=,∵E的纵坐标为3,∴E(,3),∴CE=AC-AE=4-13k=,在Rt△CEF中,tan∠EFC==43;(3)①当点G落在对角线AB上时,在Rt△ABC中,tan∠ABC=ACBC=43=tan∠EFC,故EF∥AB,连接CG交EF于点M,则MG=MC,即点M是CG的中点,而EF∥AB,故MF是CGB的中位线,则点F是BC的中点,故点F的坐标为(4,32),将点F的坐标代入反比例函数表达式得:k=4×32=6;②当点G落在OC上时,由①知,CG⊥AB,如果G落在OC上,则OC⊥AB,由题意得AB和OC不垂直,故点G不会落在OC上;综上,k=6.【点睛】。
一、解答题1.如图,在平面直角坐标系xOy中,直线AP交x轴于点P(p,0),与y轴交于点A (0,a),且a、p满足+(p﹣1)2=0.(1)求直线AP的解析式;(2)如图1,直线x=﹣2与x轴交于点N,点M在x轴上方且在直线x=﹣2上,若△MAP 的面积等于6,请求出点M的坐标;(3)如图2,已知点C(﹣2,4),若点B为射线AP上一动点,连接BC,在坐标轴上是否存在点Q,使△BCQ是以BC为底边的等腰直角三角形,直角顶点为Q,若存在,请求出点Q坐标;若不存在,请说明理由.2.已知:如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b(b>0)交x轴于点A,交y轴于点C,以OA,OC为边作矩形ABCO,矩形ABCO的面积是36.(1)求直线AC的解析式.(2)点P为线段AB上一点,点Q为第一象限内一点,连接PO,PQ,∠OPQ=90°,且OP=PQ,设AP的长为t,点Q的横坐标为d,求d与t的函数关系式.(不要求写出自变量t的取值范围)(3)在(2)的条件下,过点Q作QE∥PO交AB的延长线于点E,作∠POC的平分线OF交PE于点F,交PQ于点K,若KQ=2EF,求点Q的坐标.3.如图1,ΔABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点.(1)求证:∠BDE=∠ACD;(2)若DE=2DF,过点E作EG//AC交AB于点G,求证:AB=2AG;(3)将“点D在BA的延长线上,点E在BC上”改为“点D在AB上,点E在CB的延长线上”,“点F是DE与AC的交点”改为“点F是ED的延长线与AC的交点”,其它条件不变,如图2.①求证:AB·BE=AD·BC;②若DE=4DF,请直接写出SΔABC:SΔDEC的值.4.在平面直角坐标系xOy中,⊙O的半径为1.对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,C3的横、纵坐标都是整数.在线段B1C1,B2C2,B3C3中,⊙O的以点A为中心的“关联线段”是;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A 为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是⊙O的以点A为中心的“关联线段”,直接写出OA的最小值和最大值,以及相应的BC长.5.综合与探究如图,在平面直角坐标系中,点()0,10A ,点B 是x 轴的正半轴上的一个动点,连接AB ,取AB 的中点M ,将线段MB 绕着点B 按顺时针方向旋转90°,得到线段BC .过点B 作x 轴的垂线交直线AC 于点D .设点B 坐标是(),0t(1)当6t =时,点M 的坐标是 ;(2)用含t 的代数式表示点C 的坐标;(3)是否存在点B ,使四边形AOBD 为矩形?若存在,请求出点B 的坐标;若不存在,请说明理由;(4)在点B 的运动过程中,平面内是否存在一点N ,使得以A 、B 、N 、D 为顶点的四边形是菱形?若存在,请直接写出点N 的纵坐标(不必要写横坐标);若不存在,请说明理由.6.抛物线1C :211211y x t x t ---≠=()()()与x 轴交于A 、B 两点(点A 在点B 的左侧)(1)若2t -=,求线段AB 的长;(2)猜想:随着t 的变化,A 、B 两点是否会有一定点?若会,请求出该定点的坐标;若不会,请说明理由;(3)求线段AB 的长(用t 表示)(4)若1t >,将抛物线1C 经过适当平移后,得到抛物线2C :221y x t t --=()+,A 、B 的对应点分别为D m (、n ),2E m (+、n ); ①求抛物线2C 的解析式;②将抛物线2C 位于直线DE 下方的部分沿直线DE 向上翻折,连同G 在DE 上方的部分组成一个新图形,记为图形G ,若直线132y x b b -=+(<)与圆形G 有且只有两个公共点,求b 的取值范围.7.如图1,直线l 1:y =kx 与直线l 2:y =﹣12x +b 相交于点A (4,3),直线l 2:y =﹣12x +b 与x 轴交于点B ,点E 为线段AB 上一动点,过点E 作EF ∥y 轴交直线l 1于点F ,连接BF .(1)求k、b的值;(2)如图2,若点F坐标为(8,6),∠OFE的角平分线交x轴于点M.①求线段OM的长;②点N在直线l1的上方,当△OFN和△OFM全等时,直接写出点N的坐标.8.如图,△ABC为等腰三角形,AB=AC,将CA绕点C顺时针旋转至CD,连接AD,E为直线CD上一点,连接AE;(1)如图1,若∠BAC=60°,∠ACD=90°,E为CD中点,23AB=,求△BCE的面积;(2)如图2,若∠ACD=90°,点E在线段CD上且∠DAE+∠ABC=90°,AE的延长线与BC的延长线交于点F,连接DF,求证:2=;BC DF(3)如图3,AB=1,∠BAC=90°,∠ACD=105°,若BE恰好平分∠AEC,点P为线段AE上的动点,点E′与点E关于直线DP对称,AE′与CD交于点Q,连接CE′,当'+-''的值最小时,直接写出CQ的值.2CE AE CE9.如图1,已知数轴上的点A、B对应的数分别是﹣5和1.(1)若P到点A、B的距离相等,求点P对应的数;(2)动点P从点A出发,以2个单位/秒的速度向右运动,设运动时间为t秒,问:是否存在某个时刻t,恰好使得P到点A的距离是点P到点B的距离的2倍?若存在,请求出t 的值;若不存在,请说明理由;(3)如图2在数轴上的点M和点N处各竖立一个挡板(点M在原点左侧,点N在原点右侧且OM>ON),数轴上甲、乙两个弹珠同时从原点出发,甲弹珠以2个单位/秒的速度沿数轴向右运动,乙弹珠以5个单位/秒的速度沿数轴向左运动.当弹珠遇到挡板后立即以原速度向反方向运动,若甲、乙两个弹珠相遇的位置恰好到点M和点N的距离相等,试探究点M对应的数m与点N对应的数n是否满足某种数量关系,请写出它们的关系式,并说明理由.10.在平面直角坐标系xOy中,已知点A(1,0)和点B(5,0).对于线段AB和直线AB外的一点C,给出如下定义:点C到线段AB两个端点的连线所构成的夹角∠ACB叫做线段AB关于点C的可视角,其中点C叫做线段AB的可视点.(1)在点D(-2,2)、E(1,4)、F(3,-2)中,使得线段AB的可视角为45°的可视点是;(2)⊙P为经过A,B两点的圆,点M是⊙P上线段AB的一个可视点.① 当AB为⊙P的直径时,线段AB的可视角∠AMB为度;② 当⊙P的半径为4时,线段AB的可视角∠AMB为度;(3)已知点N为y轴上的一个动点,当线段AB的可视角∠ANB最大时,求点N的坐标.11.图形的旋转变换是研究数学相关问题的重要手段之一,在研究三角形的旋转过程中,发现下列问题:如图1,在ABC中,AB AC∠=,MN分别为AB、BC边上一=,BACα点,连接MN,且MN AC∥,将ABC绕点B在平面内旋转.(1)观察猜想 ABC 绕点B 旋转到如图2所示的位置,若60α=︒,则AM CN 的值为______. (2)类比探究 若90α=︒,将ABC 绕点B 旋转到如图3所示的位置,求AM CN 的值. (3)拓展应用若90α=︒,M 为AB 的中点,4AB =,当AM BN ⊥时,请直接写出CN 的值.12.如图1,抛物线y 14=-x 2+bx +c 经过点C (6,0),顶点为B ,对称轴x =2与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将△MPC 逆时针旋转90°,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线y 14=-x 2+bx +c 只有一个交点时,求点M 的坐标.(3)△MPC 在(2)的旋转变换下,若PC 2=2).①求证:EA =ED .②当点E 在(1)所求的抛物线上时,求线段CM 的长.13.如图1,在平面直角坐标系中,已知△ABC 中,∠ABC =90°,B (4,0),C (8,0),tan∠ACB =2,抛物线y =ax 2+bx 经过A ,C 两点.(1)求点A的坐标及抛物线的解析式;(2)如图2,过点A作AD⊥AB交BC的垂线于点D,动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒,过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG取得最大值?最大值是多少?②连接EQ,在点P,Q运动过程中,t为何值时,使得△CEQ与△ABC相似?14.在平面直角坐标系中,抛物线:与x轴交于点A,B(点B 在点A的右侧).抛物线顶点为C点,△ABC为等腰直角三角形.(1)求此抛物线解析式.(2)若直线与抛物线有两个交点,且这两个交点与抛物线的顶点所围成的三角形面积等于6,求k的值.(3)若点,且点E,D关于点C对称,过点D作直线2l交抛物线于点M,N,过点E作直线轴,过点N作于点F,求证:点M,C,F三点共线.15.如图1:抛物线y=ax2+bx﹣4交x轴于点A、B,连接AC、BC,tan∠ABC=1,tan∠BAC=4.(1)抛物线的解析式为;(2)点P在第三象限的抛物线上,连接PC、PA,若点P横坐标为t,△PAC的面积为S,求S与t的函数关系式;(3)如图2,在(2)的条件下,当S=6时,点G为第四象限抛物线上一点,连接PG,CH ⊥PG 于点H ,连接OH ,若tan∠OHG 34=,求GH 的长. 16.已知抛物线24y ax bx =++(a ≠0)与x 轴交于点A (3-,0)、B (2,0),与y 轴交于点C ,直线y mx n =+经过两点A 、C .(1)求a ,b 的值;(2)如图1,点Р在已知抛物线上,且位于第二象限,当四边形PABC 的面积最大时,求点P 的坐标.(3)如图2,将已知抛物线向左平移12个单位,再向下平移2个单位.记平移后的抛物线为'y ,若抛物线'y 与原抛物线的对称轴交于点Q .点E 是新抛物线'y 的对称轴上一动点,在(2)的条件下,当△PQE 是等腰三角形时,请直接写出点E 的坐标.17.如图,已知四边形ABCD 内接于⊙O ,直径DF 交BC 于点G .(1)如图1,求证:∠BAD -∠BCF =90°;(2)如图2,连接AC ,当∠BAC =∠CFD +∠ACD 时,求证:CA =CB ;(3)如图3,在(2)的条件下,AC 交DF 于点H ,∠BAC =∠DGB ,45CG BG =,AC =9,求△CDH 的面积.18.同学们学过正方形与等腰三角形发现它们都是轴对称图形,它们之间有很多相似,在正边形ABCD 中,E 是对角线AC 上一点(不与点A 、C 重合),以AD 、AE 为邻边作平行四边形AEGD ,GE 交CD 于点M ,连接CG .(1)如图1,当12AE AC <时,过点E 作EF BE ⊥交CD 于点F ,连接GF 并延长交AC 于点H .求证:EB EF =;(2)在ABC 中,AB AC =,90BAC ∠=︒.过点A 作直线AP ,点C 关于直线AP 的对称点为点D ,连接BD ,CD 直线BD 交直线AP 于点E .如图2,①依题意补全图形;②请用等式表示线段EB ,ED ,BC 之间的数量关系,并予以证明.19.已知抛物线y 14=-kx 212-(k ﹣2)x +2与y 轴交于点A ,与x 轴交于B 、C (点B 在点C 的左边).(1)直接写出点B 的坐标;(2)当k =1时(如图),求:①在直线AC 上方的抛物线上一点M ,求点M 到直线AC 的最大距离及此时点M 的坐标;②将线段OA 绕x 轴上的动点P (m ,0)顺时针旋转90°得到线段O ′A ′,若线段O ′A ′与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.20.如图,在平面直角坐标系中,抛物线的对称轴是直线1x =,且与x 轴交于A ,B 两点,与y 轴交于点()0,3C -,OB OC =.(1)求抛物线的解析式.(2)在抛物线上是否存在点Q,使得BCQ△是以BC为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.(3)设抛物线上的一点P的横坐标为m,且在直线BC的下方,求使BCP的面积为最大整数时点P的坐标.【参考答案】**科目模拟测试一、解答题1.(1)y=3x-3;(2)(-2,3);(3)Q的坐标为(-72,0)或(0,74)或(0,132)【解析】【分析】(1)根据算术平方根的非负性及偶次方的非负性得到a+3=0,p-1=0,求出a,p,得到点P,A的坐标,设直线AP的解析式为y=kx+b,利用待定系数法求出函数解析式;(2)过M作MD交x轴于D,连接AD,由MD,△MAP的面积等于6,顶点△DAP的面积等于6,求出DP,得到点D坐标,求出直线DM的解析式,即可求出M的坐标;(3)设B(t,3t-3),分三种情况,①当点Q在轴负半轴时,过B作BE⊥x轴于E,证明△BEQ≌△QNC(AAS),得到O Q=QE-OE=ON+QN,即4-t=2+3-3t,求出t值即可;②当Q在y轴正半轴上时,过C作CF⊥y轴于F,过B作BG⊥y轴于G,证明△CQF≌△QBG(AAS),得到O Q=OG-QG=OF-QF,即3t-3-2=4-t,求出t即可;③当Q在y轴正半轴上时,过点C作CF⊥y轴于F,过B作BT⊥y轴于T,同②可证△CFQ≌△QTB(AAS),得到OQ=OT+QT=OF+QF,即3t-3+2=4+t,求出t值即可.(1)解:∵+(p﹣1)2=0.∴a+3=0,p-1=0,解得a=-3,p=1,∴P(1,0),A(0,-3),设直线AP的解析式为y=kx+b,∴,解得,∴直线AP的解析式为y=3x-3;(2)解:过M作MD交x轴于D,连接AD,∵MD,△MAP的面积等于6,∴△DAP的面积等于6,∴,即,∴DP=4,∴D(-3,0)设直线DM的解析式为y=3x+c,则,∴c=9,∴直线DM的解析式为y=3x+9,令x=-2,得y=3,∴M(-2,3);(3)解:存在设B(t,3t-3),①当点Q在x轴负半轴时,过B作BE⊥x轴于E,如图,∴OE=t,BE=3-3t,∵△BCQ是以BC为底边的等腰直角三角形,∴BQ=CQ,∠BQC=90°,∴∠BQE=90°-∠NQC=∠QCN,又∵∠BEQ=∠QN C,∴△BEQ≌△QNC(AAS),∴QN=BE=3-3t,QE=CN=4,∴OQ=QE-OE=ON+QN,即4-t=2+3-3t,∴t=12,∴OQ=72,∴Q(-72,0);②当Q在y轴正半轴上时,过C作CF⊥y轴于F,过B作BG⊥y轴于G,如图,∴BG=t,OG=3t-3,∵△BCQ是以BC为底边的等腰直角三角形,∴BQ=CQ,∠BCQ=90°,∴∠CQF=90°-∠BQG=∠GBQ,又∵∠CFQ=∠BGQ=90°,∴△CQF≌△QBG(AAS),∴CF=QG=2,QF=BG=t,∴O Q=OG-QG=OF-QF,即3t-3-2=4-t,∴t=94,∴OQ=4-t=74,∴Q(0,74);③当Q在y轴正半轴上时,过点C作CF⊥y轴于F,过B作BT⊥y轴于T,如图,∴BT=t,OT=3t-3,同②可证△CFQ≌△QTB(AAS),∴CF=BT=t,QF=CF=2,∴O Q=OT+QT=OF+QF,即3t-3+2=4+t,∴t=52,∴OQ=4+t=132,∴Q(0,132);综上,Q的坐标为(-72,0)或(0,74)或(0,132).【点睛】此题是一次函数与图形的综合题,考查了待定系数法求函数解析式,全等三角形的判定即性质,等腰直角三角形的性质,算术平方根的非负性及偶次方的非负性,熟记全等三角形的判定即性质是解题的关键.2.(1)直线AC的解析式为y=﹣x+6;(2)d=4-t;(3)Q(212,1).【解析】【分析】(1)先由解析式求出得A、C点的坐标,得OA=OC,得四边形ABCO为正方形,再根据正方形的面积求得边长,便可得b的值;(2)过点Q作QG⊥AB交AB延长沿于点G,证明Rt△AOP≌Rt△GPQ(AAS),得到AP=GQ,进而求得结论便可;(3)过点P作PH⊥OF于点H,延长PH交EQ的延长线于点R,EQ的延长线与x轴交于点N,过Q作QM⊥x轴于点M.证明Rt△AOP≌Rt△GPQ(CCS),得PK=QR,∠R=∠OKP,再证明∠R=∠FPR,得EP=ER,再证FE=NR,设FE=NR=k,NQ=m,在Rt△PQE中,由勾股定理列出方程,得到k与m的关系,解Rt△PQE得tan∠PEQ,进而把这个函数值运用到△OAP中,求得t的值,再运用(2)中结论得Q的纵坐标d的值,再运用到△QNM中求得NM,NQ的值,进而求得ON,便可得Q的横坐标的值.【详解】解:(1)∵直线y=﹣x+b(b>0)交x轴于点A,交y轴于点C,A b C b,∴(,0),(0,)∴OA=OC=b,∴矩形ABCO为正方形,∵矩形ABCO的面积是36.∴b=6,即直线AC的解析式为y=﹣x+6;(2)如图,过点Q作QG⊥AB交AB延长沿于点G,∵∠OPQ=90°,∴∠APO+∠GPQ=90°,∵∠APO+∠AOP=90°,∴∠AOP=∠GPQ,∵在矩形ABCO,∠OAP=90°,QG⊥AB,∴∠QGP=∠OAP=90°,∵PQ=OP,∴Rt△AOP≌Rt△GPQ(AAS),∴AP=GQ,∵AP=t,∴GQ=t,∴d=4-t;(2)过点P 作PH ⊥OF 于点H ,延长PH 交EQ 的延长线于点R ,EQ 的延长线与y 轴交于点N ,过Q 作QM ⊥y 轴于点M .则AP =t ,QM =d ,且d =6-t .∵OF 平分∠POC ,∴∠POF =∠COF =∠PFO ,∴PF =PO ,∵PH ⊥OF ,∠OPQ =90°,∴∠OPH =∠FPH ,∠KPH =∠POH ,在△OPK 和△PQR 中,90OPK PQR PO QP POK QPR ∠∠︒⎧⎪⎨⎪∠∠⎩====, ∴△OPK ≌△PQR (ASA ),∴PK =QR ,∠R =∠OKP ,∵∠OKP +∠POK =∠POK +∠OPH =90°,∴∠OKP =∠OPH ,∴∠R =∠OPH ,∵PO =PF ,PH ⊥OF ,∴∠OPH =∠FPH ,∴∠R =∠FPR ,∴EP =ER ,∵PE ∥ON ,OP ∥EN ,∴四边形OPEN 是平行四边形,∴EN =PO =PF ,∴PE -PF =ER -EN ,∴FE =NR ,设FE=NR=k,则KQ=2FE=2k,又设NQ=m,∴PK=QR=m+k,∴PQ=m+3k,∴PO=EN=PF=m+3k,∴QE=EN-QR=m+3k-m=3k,PE=PF+FE=4k+m,在Rt△PQE中,∵PE2=PQ2+QE2,∴(4k+m)2=(3k+m)2+(3k)2,∴k1=0(舍去),k2=m,∴PQ=4m,QE=3m,∴tan∠PEN=43 PQQE=,∵OP∥EN,∴∠OPA=∠PEN,∴tan∠APO=43,∵AO=6,∴AP=4.5,∴t=4.5,∴QM=d=6-t=1.5,∵PE∥OC,∴∠QNM=∠PEN,∴tan∠QNM=tan∠PEN=43,∴NM=9 tan8QMQNM=∠,∴m=NQ158 =,∴PE=ON=4k+m=5m=758,∴OM=ON+NM=212,∴Q(212,1).【点睛】本题是一次函数与四边形的综合题,主要考查了一次函数的图象与性质,全等三角形的性质与判定,正方形的性质,旋转的性质,解直角三角形的应用,等腰三角形的性质与判定,平行四边形的性质与判定,是一道综合性极强的题目,解决这类问题常用到数形结合、方程和转化等数学思想方法.构造全等三角形是解题的关键,也是问题的突破口.3.(1)见解析;(2)见解析;(3)①见解析;②16:15.【解析】【分析】(1)运用等腰三角形的性质及三角形的外角性质就可解决问题.(2)如图1,证明△DCA ≌△EDG (AAS ),得AD =EG ,根据等腰三角形的判定得:DG =AB ,由平行线分线段成比例定理得:2DE DG DF AD ==,由此可得结论; (3)①如图2,作辅助线,构建三角形全等,证明△DCA ≌△EDG (AAS ),得DA =EG ,再证明△ACB ∽△GEB ,列比例式可得结论;②如图3,作辅助线,构建△ABC 和△DCE 的高线,先得14AF AD EG DG ==,设AF =a ,则EG =AD =4a ,DG =16a ,根据AH ∥PD ,得123164PD BD a AH AB a ===,设PD =3h ,AH =4h ,根据EG ∥AC ,同理得41164BG BE a AB BC a ===,设BE =y ,BC =4y ,利用三角形面积公式代入可得结论.【详解】(1)证明:∵AC =AB ,∴∠ACB =∠B ,∵DC =DE ,∴∠DCE =∠DEC ,∴∠ACD +∠ACB =∠B +∠BDE ,∴∠BDE =∠ACD ;(2)证明:如图1,∵EG ∥AC ,∴∠DAC =∠DGE ,∠BEG =∠ACB ,由(1)知:∠DCA =∠BDE ,∵DC =DE ,∴△DCA ≌△EDG (AAS ),∴AD =EG ,∵∠B =∠ACB =∠BEG ,∴EG =BG =AD ,∵DE =2DF ,AF ∥EG , ∴2DE DG DF AD==, ∴DG =2AD =2AG ,∴AB =DG =2AG ;(3)解:①如图2,过点E 作EG ∥AC ,交AB 的延长线于点G ,则有∠A =∠G ,∵AB =AC ,CD =DE ,∴∠ACB =∠ABC ,∠DCE =∠DEC ,∴∠ACD +∠DCE =∠EDG +∠DEC ,∴∠ACD =∠EDG ,在△DCA 和△EDG 中,∵ACD EDG A G CD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DCA ≌△EDG (AAS ).∴DA =EG ,∵AC ∥EG ,∴△ACB ∽△GEB ,∴AC BC EG BE=, ∵EG =AD ,AC =AB ,∴AB •BE =AD •BC ;②如图3,过A 作AH ⊥BC 于H ,过D 作DP ⊥BC 于P ,则AH ∥PD ,∴AF AD DF EG DG DE==,∵DE=4DF,∴14 AF ADEG DG==,设AF=a,则EG=AD=4a,DG=16a,∵∠ACB=∠ABC,∴∠GBE=∠BEG,∴BG=EG=4a,∴BD=12a,∵AH∥PD,∴123164 PD BD aAH AB a===,设PD=3h,AH=4h,∵EG∥AC,∴41164 BG BE aAB BC a===,设BE=y,BC=4y,∴S△ABC=12BC•AH=4?42y h=162yh=8yh,S△DCE=12CE•PD=5?32y h=152yh,∴S△ABC:S△DEC=8yh:152yh=16:15.【点睛】本题是三角形的综合题,考查了相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质和判定等知识,第三问有难度,利用参数表示各线段的长是本题的关键,综合性较强.4.(1)B2C2;(23)OA最小值为1,相应的BC=OA最大值为2,相应的BC=【解析】【分析】(1)结合题意,根据旋转和圆的性质分析,即可得到答案;(2)根据题意,分B C''在x轴上方和x轴上方两种情况;根据等边三角形、勾股定理、全等三角形的性质,得AD OD==(3)结合题意,得当AC'为⊙O的直径时,OA取最小值;当A、B'、O三点共线时,OA 取最大值;根据勾股定理、等腰三角形的性质计算,即可得到答案.【详解】(1)线段B 1C 1绕点A 旋转得到的11B C '',均不能成为⊙O 的弦∴线段B 1C 1不是⊙O 的以点A 为中心的“关联线段”;线段B 2C 2绕点A 旋转得到的22B C '',如下图:∴线段B 2C 2是⊙O 的以点A 为中心的“关联线段”;线段B 3C 3绕点A 旋转得到的33B C '',均不能成为⊙O 的弦∴线段B 3C 3不是⊙O 的以点A 为中心的“关联线段”;故答案为:B 2C 2;(2)∵△ABC 是边长为1的等边三角形,点A (0,t ),⊙O 的半径为1 ∴//B C x ''轴分B C ''在x 轴上方和x 轴上方两种情况:当B C ''在x 轴上方时,B C ''与y 轴相交于点D ,见下图:∵1OB OC ''== ∴1122B D B C '''==∴2232OD OB B D ''=-= ∵△ABC 是边长为1的等边三角形,即△AB C ''是边长为1的等边三角形,∴AC D OC D ''∠=∠,AD B C ''⊥∴AC D OC D ''△≌△∴32AD OD == ∴3AO AD OD =+=∴3t =;当B C ''在x 轴上方时,B C ''与y 轴相交于点D ,见下图:同理,3AO AD OD =+=∴()0,3A -;∴t 3=-;∴3t =或3-;(3)当AC '为⊙O 的直径时,OA 取最小值,如下图:∴OA 最小值为1,90AB C ''∠=︒∴223BC B C AC AB ''''==-=当A 、B '、O 三点共线时,OA 取最大值,2OA AC '== ,如下图:作AE OC '⊥交OC '于点E ,作C F AO '⊥交AO 于点F ,如下图∵2OA AC '== ∴1122OE OC '== ∴2215AE AO OE - ∵11222AE OC OB C F '''⨯=⨯⨯ ∴1152C F AE '== ∴2214OF OC C F ''=-= ∴34B F OB OF ''=-= ∴26BC B C C F B F ''''==+=∴OA 最小值为1,相应的3BC =;OA 最大值为2,相应的62BC =. 【点睛】 本题考查了旋转、圆、等边三角形、勾股定理、全等三角形、等腰三角形的知识;解题的关键是熟练掌握旋转、圆周角、等腰三角形三线合一、勾股定理的性质,从而完成求解.5.(1)(3,5)M ,(2)1(5,)2C t t +;(3)(20,0)B ;(4)154或10. 【解析】【分析】(1)利用中点坐标公式计算即可.(2)如图1中,作ME OB ⊥于E ,CF x ⊥轴于F .证明()MEB BFC AAS ∆≅∆,利用全等三角形的性质即可解决问题.(3)如图2中,存在.由题意当CF OA =时,可证四边形AOBD 是矩形,构建方程即可解决问题.(4)分三种情形:①如图3中,当AD BD =时,以AB 为对角线可得菱形ADBN ,此时点N 在y 轴上.②如图4中,当AD AB =时,以BD 为对角线可得菱形ABND .此时点N 的纵坐标为6.③因为BD AB ≠,所以不存在以AD 为对角线的菱形.【详解】解:(1)如图1中,(0,10)A ,(6,0)B ,AM BM =,(3,5)M ∴,(2)如图1中,作ME OB ⊥于E ,CF x ⊥轴于F .//ME OA ,AM BM =,12OE EB t ∴==,152ME OA ==, 90MEB CFB CBM ∠=∠=∠=︒,90MBE CBF ∴∠+∠=︒,90MBE BME ∠+∠=︒,BME CBF ∴∠=∠,BM BC =,()MEB BFC AAS ∴∆≅∆,5BF ME ∴==,12CF BE t ==, 5OF OB BF t ∴=+=+,1(5,)2C t t ∴+. (3)存在.如图2中,作ME OB ⊥于E ,CF x ⊥轴于F .理由:由题意当=10CF OA =时,//OA CF ,∴四边形AOFC 是平行四边形,90AOF ∠=︒,∴四边形AOFC 是矩形,90DAO AOB DBO ∴∠=∠=∠=︒,∴四边形AOBD 是矩形,又∵由(2)得12CF BE t ==,即:1102t =,解得:20t =.(20,0)B ∴. (4)①如图3中,当AD BD =时,以AB 为对角线可得菱形ADBN ,此时点N 在y 轴上.AD BD =,BAD ABD ∴∠=∠,//BD y 轴,OAB ABD ∴∠=∠,OAB BAD ∴∠=∠.tan tan OAB BAD ∴∠=∠, ∴12OB BC OA BA ==,即1102t =, 5t ∴=,5OB ∴=,设AN NB m ==,在Rt OBN △中,则有2225(10)m m =+-,解得254m =, 25151044ON OA AN ∴=-=-=, ∴点N 的纵坐标为154. ②如图4中,当AD AB =时,以BD 为对角线可得菱形ABND .此时点N 的纵坐标为10.③BD AB ≠,∴不存在以AD 为对角线的菱形.综上所述,满足条件的点N 的纵坐标为154或10. 【点睛】本题属于四边形综合题,考查了矩形的判定和性质,菱形的判定和性质,翻折变换,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.6.(1)6;(2)会,(1,0);(3)22t -;(4)①y 2=(x -2)2+1;②52<b <3. 【解析】【分析】(1)根据题意令y 1=0,解得x ,即AB 点的横坐标,进而即可求得AB 的长;(2)由题意可知当x =1时,y 1=0,进而可以得出该定点的坐标;(3)由(1)可知AB 点的横坐标,进而即可用t 表示线段AB 的长;(4)①由题意可知t >1时,点A 、B 的坐标分别为:(1,0),(2t -1,0),进而依据AB =DE ,即可求解;②根据题意将点D 、E 的坐标代入抛物线表达式得:m =1,故点D 、E 的坐标为:(1,2)、(3,2),当直线过点D 时,2=-12×1+b ,解得:b =52,同理直线过点E 时,b =72,而b <3,即可求解. 【详解】解:(1)令y 1=0,解得:x =1或2t -1,当t =-2,则x =1或-5,所以线段AB =1-(2t -1)=2-2t =6; (2)会有一定点,理由如下:当x =1时,y 1=0,所以会有一定点(1,0);(3)由(1)可知当y 1=0,解得:x =1或2t -1,所以线段AB 的长为:1(21)22t t --=-;(4)①t >1时,点A 、B 的坐标分别为:(1,0),(2t -1,0),因为平移距离相等可得AB =DE ,即2t -1-1=m +2-m =2,解得:t =2,所以点B (3,1),把t =2,代入221y x t t --=()+, 可得抛物线C 2的解析式为:y 2=(x -2)2+1;②将点D 、E 的坐标代入抛物线表达式得:n =(m -2)2+1=(m +2-2)2+1,解得:m =1,故点D 、E 的坐标为:(1,2)、(3,2);图象G 如下图所示,当直线过点D 时,2=-12×1+b ,解得:b =52, 同理直线过点E 时,b =72,而b <3, 所以b 的取值范围为:52<b <3. 【点睛】 本题考查的是二次函数综合运用,涉及到一次函数、图形过定点等,其中(3),要注意分类讨论避免遗漏.7.(1)34k =,5b =;(2)①OM =5;②()3,6N 或724,55N ⎛⎫ ⎪⎝⎭【解析】【分析】(1)分别将将(4,3)A 代入y kx =和12y x b =-+中,求解即可; (2)①设直线AB 与y 轴交与点C ,与FM 交于点D ,证明△AFD ≌△EFD ,得到AD =ED ,利用中点坐标公式求得点D 坐标,用待定系数法求得直线FD 的函数表达式,令0y =,即可求得点M 的坐标,从而求得OM ;②点N 在直线l 1的上方,当△OFN 和△OFM 全等时,满足题意的点N 有两个,分别画出相关的图形,分类讨论求解即可.【详解】解:(1)∵直线l 1:y kx =和直线l 2:12y x b =-+相交于点A ∴将(4,3)A 代入y kx =中,得:43k =解得:34k = ∴将(4,3)A 代入12y x b =-+中,得:1432b -⨯+= 解得:5b =∴3,54k b == (2)① 设直线AB 与y 轴交与点C ,与FM 交于点D ,如下图:∵34k =,5b = ∴直线l 1的函数表达式为34y x =,直线l 2的函数表达式为152y x =-+ ∵(4,3)A∴22345OA +设直线AB 与y 轴交与点C ,与FM 交于点D则()0,5C∴5OC =∴5OA OC ==∴∠OCA =∠OAC∵//FE y 轴∴∠OCA =∠FEA又∵∠OAC =∠FAE∴∠FAE =∠FEA∴FA =FE又∵FM 是∠OFE 的角平分线∴∠AFM =∠EFM又∵FD =FD∴△AFD ≌△EFD∴AD =ED∴点D 为AE 的中点∵//FE y 轴∴点F 和点E 的横坐标相同将8x =代入152y x =-+中,得1y = ∴()8,1E∵(4,3)A ,()8,1E∴()6,2D设线段FM 所在的直线函数表达式为()0y ax b a =+≠将()()8,6,6,2F D 代入y ax b =+中,得:8662k b k b +=⎧⎨+=⎩解得:210k b =⎧⎨=-⎩∴线段FM 所在的直线函数表达式为210y x =-令0y =,得2100x -=解得:5x =∴()5,0M∴OM =5② 当,OFN FOM 全等时,有两种情况,情况一,如下图所示:∵OFN FOM ≅△△∴∠OFN =∠FOM ,FN =OM ,ON =FM∴//FN OM∵OM =5∴FN =5,8F x =∴853N x =-=,6N F y y ==∴()3,6N情况二,当△OMF 和△ONF 关于直线l 1对称时,如下图所示:∵OFN FOM ≅△△∴ON =OM =5,∠NOF =∠MOF∵OP =OP∴△NOP ≌△MOP∴PN =PM∵()8,6F ∴226810OF + 又∵1122OMF F S OM y OF PM =⋅=⋅ ∴F OM y OF PM ⋅=⋅ ∴56==310PM ⨯ ∴MN =2PM =6,OP 2222534OM PM -- ∵1122OMN N S MN OP OM y =⋅=⋅△ ∴642455N y ⨯== ∴2222247555N N x ON y ⎛⎫=-=- ⎪⎝⎭∴724,55N ⎛⎫ ⎪⎝⎭ 综上所述,满足题意点有两个,分别是:()3,6N 或724,55N ⎛⎫ ⎪⎝⎭ 【点睛】本题考查用待定系数法求一次函数表达式,三角形全等的性质和证明,两条直角交点的求法以及三角形的等面积法等知识点,牢记相关内容并能灵活应用数形结合思想解题是本题的关键.8.(1)32;(2)见解析;(3)222- 【解析】【分析】(1)过点,,A E D 分别作BC 的垂线,垂足分别为,,H I G ,连接BE ,证明Rt AHC Rt CGD △≌△,根据含30度角的直角三角形的性质求得CE ,进而求得EI ,根据三角形的面积公式求解即可;(2)过点,A D 分别作BC 的垂线,交BC 及BC 的延长线于点,H G ,证明Rt AHC Rt CGD △≌△,进而可得HAF △是等腰直角三角形,DGF 是等腰直角三角形,即可证明2222DF DG HC BC ===,即2BC DF =; (3)延长,EA EC ,过点B 分别作,BN EN BM CM ⊥⊥,垂足分别为,N N ,解直角三角形Rt ABN △可得45ABN ∠=︒,进而可得30AEC NEM ∠=∠=︒,进求得DE 的长度,由点P 为线段AE 上的动点,点E ′与点E 关于直线DP 对称,AE ′与CD 交于点Q ,连接CE ′,构造相似三角形,在线段DC 上截取322DF =-,连接E F ',则CDE E DF ''△∽△,求得目标等量关系()21E F CE ''=-,根据()221CE AE CE CE AE E F AE AF '''''+-=-+=+≥''则当,,A E F '三点共线时,取得最小值,此时Q 点与F 点重合,根据CQ CF CD FD ==-即可求得答案.【详解】(1)如图,过点,,A E D 分别作BC 的垂线,垂足分别为,,H I G ,连接BE ,AB =AC ,将CA 绕点C 顺时针旋转至CD ,AC CD ∴=∠BAC =60°,ABC ∴是等边三角形,AC CD ∴=,60BAC ∠=︒AH BC ⊥ 1302CAH CAB ∴∠=∠=︒ ,AH HC DG GC ⊥⊥,∠ACD =90°,90AHC CGD ∴∠=∠=︒90ACH DCG ACH HAC ∴∠+∠=∠+∠=︒DCG HAC ∴∠=∠Rt AHC Rt CGD ∴△≌△HC GD ∴=,30CAH DCG ∠=∠=︒ E 为CD 中点,23AB =, 11322CE CD AB ∴=== 在Rt CEI △中,30ECI ∠=︒1322EI CE ∴== 1133232222BCE S BC EI ∴=⋅⋅=⨯⨯=△ (2)如图,过点,A D 分别作BC 的垂线,交BC 及BC 的延长线于点,H G ,,AH HC DG GC ⊥⊥,∠ACD =90°,90AHC CGD ∴∠=∠=︒90ACH DCG ACH HAC ∴∠+∠=∠+∠=︒DCG HAC ∴∠=∠Rt AHC Rt CGD ∴△≌△AH CG ∴=,DG HC =AC CD =, AH BC ⊥∴BAH HAC ∠=∠,90ABC BAH ∠+∠=︒∠DAE +∠ABC =90°,DAE HAC DCG ∴∠=∠=∠AC CD =,∠ACD =90°,45DAC ∴∠=︒DAE EAC CAH EAC ∴∠+∠=∠+∠45HAF =∠=︒即45HAF ∠=︒HAF ∴△是等腰直角三角形AH HF ∴=CG HF ∴=CG CF HF CF ∴-=-即HC FG =又DG HC =FG DG ∴= ∴DGF 是等腰直角三角形 2222DF DG HC BC ∴=== 即2BC DF =(3)如图,延长,EA EC ,过点B 分别作,BN EN BM CM ⊥⊥,垂足分别为,N N ,BE 恰好平分∠AEC ,BM BN ∴=∠BAC =90°,∠ACD =105°,AB =AC ,AB =1,在Rt ABC 中,2BC 45ABC ACB ∴∠=∠=︒150BCE ACB ACE ∴∠=∠+∠=︒30BCM ∴∠=︒60CBM ∴∠=︒22BM ∴= 2BN BM ∴==在Rt ABN △中21,AB BN ==2cos BN ABN AB ∴∠==45ABN ∴∠=︒90NBC ∴∠=︒9060150NBM NBC CBM ∴∠=∠+∠=︒+︒=︒在四边形ENBM 中,90,150M N NBM ∠=∠=︒∠=︒30AEC NEM ∴∠=∠=︒ 1152BEC AEC ∴∠==︒ 又30BCM BEC CBE ∠=∠+∠=︒15CBE CEB ∴∠=∠=︒CB CE ∴=2= 1CD CA AB ===21DE CE CD ∴=-=-如图,点P 为线段AE 上的动点,点E ′与点E 关于直线DP 对称,AE ′与CD 交于点Q ,连接CE ′, ∴21DE DE '==-211DE CD '-= 若211DF E D -=',则322DF =- 在线段DC 上截取322DF =-,连接E F ',则DF ED E D CD'=',又E DF CDE ''∠=∠ CDE E DF ''∴△∽△ 21CE CD E F E D '∴==''-()21E F CE ''= ∴()221CE AE CE CE AE E F AE AF '''''+-=+=+≥'' 则当,,A E F '三点共线时,取得最小值,此时Q 点与F 点重合,此时1(322)22CQ CF CD FD ==-=--=【点睛】本题考查了三角形全等的性质与判定,相似三角形的性质与判定,角平分线的性质,解直角三角形,第三问是阿氏圆模型,找到点F 的位置是解题的关键.9.(1)点P 对应的数为-2;(2)当t =2或6时,恰好使得P 到点A 的距离是点P 到点B 的距离的2倍;(3)m +13n =0.【解析】【分析】(1)设点P 对应的数为x ,表示出BP 与PA ,根据BP =PA 求出x 的值,即可确定出点P 对应的数;(2)表示出点P 对应的数,进而表示出PA 与PB ,根据PA =2PB 求出t 的值即可;(3)因为OM >ON ,只有甲乙均反弹之后在中点相遇一种情况,设点M 对应的数为m ,点N 对应的数为n ,时间为t ,则M 、N 的中点对应的数为2m n +,根据甲、乙两个弹珠相遇的位置恰好到点M 和点N 的距离相等列出关系式即可.【详解】解:(1)点A 、B 对应的数分别是﹣5和1,设点P 对应的数为x ,则BP =1-x ,PA =x +5,∵BP =PA ,∴1-x =x +5,解得:x =-2,∴点P 对应的数为-2;(2)P 对应的数为-5+2t ,∴PA =2t ,PB =|-5+2t -1|=|2t -6|,∵PA =2PB ,∴2t =2|2t -6|,当t =2t -6时,t =6;当t +2t -6=0时,t =2;答:当t =2或6时,恰好使得P 到点A 的距离是点P 到点B 的距离的2倍;(3)设点M 对应的数为m ,点N 对应的数为n ,时间为t ,则M 、N 的中点对应的数为2m n +, ∴MN =n -m ,OM =-m ,ON =n ,∴()()252502t t n m m n t m m ⎧+=-⎪+⎨⎛⎫=-+- ⎪⎪⎝⎭⎩,即()()351073352t n m n m t ⎧=-⎪⎨-=⎪⎩, 化简得m +13n =0.【点睛】本题考查了二元一次方程的应用,数轴,两点间的距离,运用分类讨论思想、方程思想及数形结合思想是解题的关键.10.(1)点E(2)① 90;② 30或150(3)N(00,【解析】【分析】(1)AE、BE、AB满足勾股定理,且AE=AB,可知ABE△为等腰直角三角形,则∠AEB=45°,故E点可使线段AB的可视角为45°.(2)①由半径所对的圆周角为90°即可得出∠AMB为90°.②连接AP、BP,即可得出ABP△为等边三角形,由圆周角定理即可求得∠AMB为30°或150°.(3)以AB为弦作圆M且过点N,由圆周角定理可得出当圆心角AMB最大时,圆周角ANB最大,由直线与圆的位置关系得出当y轴与圆M相切时圆心角AMB最大,进而可求得N点坐标.(1)连接AE,BE∵AE=4,AB=4,AE⊥AB∴ABE△为等腰直角三角形∴∠AEB=45°.故使得线段AB的可视角为45°的可视点是点E.(2)①有题意可知,此时AB为⊙P直径由半径所对的圆周角为90°可知∠AMB为90°②当⊙P的半径为4时,AB为⊙P一条弦,连接AP,BP∵BP=AP=4,AB=4∴ABP△为等边三角形∴∠APB=60°当点M在圆心一侧由圆周角定理知∠AMB=当点M不在圆心一侧由内切四边形性质可知∠AMB=180°-30°=150°。
中考数学压轴题100题精选【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax2+bx 过A 、C 两点. (1)直接写出点A 的坐标,并求出抛物线的解析式;A P 图16(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G .当t 为何值时,线段EG 最长? ②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。
中考数学选填压轴题练习一.根的判别式(共1小题)1.(2023•广州)已知关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,则的化简结果是()A.﹣1B.1C.﹣1﹣2k D.2k﹣3【分析】首先根据关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,得判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,由此可得k≤1,据此可对进行化简.【解答】解:∵关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,∴判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,整理得:﹣8k+8≥0,∴k≤1,∴k﹣1≤0,2﹣k>0,∴=﹣(k﹣1)﹣(2﹣k)=﹣1.故选:A.二.函数的图象(共1小题)2.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为()A.4200米B.4800米C.5200米D.5400米【分析】设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米,由题意及图象可知,然后根据“游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟”可进行求解.【解答】解:由图象可知:小州游玩行走的时间为75+10﹣40=45(分钟),小温游玩行走的时间为205﹣100=105(分钟),设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米由图象可得:,解得:x+y+z=2700,∴游玩行走的速度为:(2700﹣2100)÷10=60 (米/分),由于游玩行走速度恒定,则小温游路线①④⑤⑥⑦⑧的路程为:3x+3y=105×60=6300,∴x+y=2100,∴路线①③⑥⑦⑧各路段路程之和为:2x+2y+z=x+y+z+x+y=2700+2100=4800(米).故选:B.三.动点问题的函数图象(共1小题)3.(2023•河南)如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.【分析】如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,结合图象可知,当点P在AO上运动时,PB=PC,AO=,易知∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,可知AO=OB=,过点O作OD⊥AB,解直角三角形可得AD=AO•cos30°,进而得出等边三角形ABC的边长.【解答】解:如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,\结合图象可知,当点P在AO上运动时,,∴PB=PC,,又∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∴△APB≌△APC(SSS),∴∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,∴OB=,即AO=OB=,∴∠BAO=∠ABO=30°,过点O作OD⊥AB,垂足为D,∴AD=BD,则AD=AO•cos30°=3,∴AB=AD+BD=6,即等边三角形ABC的边长为6.故选:A.四.反比例函数系数k的几何意义(共1小题)4.(2023•宁波)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x 轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC =2BC,△ABE的面积为9,四边形ABDE的面积为14,则a﹣b的值为12,a的值为9.【分析】依据题意,设A(m,),再由AE∥x轴,BD∥y轴,AC=2BC,可得B(﹣2m,﹣),D (﹣2m,﹣),E(,),再结合△ABE的面积为9,四边形ABDE的面积为14,即可得解.【解答】解:设A(m,),∵AE∥x轴,且点E在函数y=上,∴E(,).∵AC=2BC,且点B在函数y=上,∴B(﹣2m,﹣).∵BD∥y轴,点D在函数y=上,∴D(﹣2m,﹣).∵△ABE的面积为9,∴S△ABE=AE×(+)=(m﹣)(+)=m••==9.∴a﹣b=12.∵△ABE的面积为9,四边形ABDE的面积为14,∴S△BDE=DB•(+2m)=(﹣+)()m=(a﹣b)••()•m=3()=5.∴a=﹣3b.又a﹣b=12.∴a=9.故答案为:12,9.五.反比例函数图象上点的坐标特征(共2小题)5.(2023•德州)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(6,3),D是OA的中点,AC,BD交于点E,函数的图象过点B.E.且经过平移后可得到一个反比例函数的图象,则该反比例函数的解析式()A.y=﹣B.C.D.【分析】先根据函数图象经过点B和点E,求出a和b,再由所得函数解析式即可解决问题.【解答】解:由题知,A(6,0),B(6,3),C(0,3),令直线AC的函数表达式为y1=k1x+b1,则,解得,所以.又因为点D为OA的中点,所以D(3,0),同理可得,直线BD的函数解析式为y2=x﹣3,由得,x=4,则y=4﹣3=1,所以点E坐标为(4,1).将B,E两点坐标代入函数解析式得,,解得.所以,则,将此函数图象向左平移3个单位长度,再向下平移4个单位长度,所得图象的函数解析式为:.故选:D.6.如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为4.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=k1x+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,,当D的坐标为(2+3,)时,BD2==9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣3,)时,BD2=+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.六.反比例函数与一次函数的交点问题(共1小题)7.(2023•湖州)已知在平面直角坐标系中,正比例函数y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,点A(t,p)和点B(t+2,q)在函数y=k1x的图象上(t≠0且t≠﹣2),点C(t,m)和点D(t+2,n)在函数的图象上.当p﹣m与q﹣n的积为负数时,t的取值范围是()A.或B.或C.﹣3<t<﹣2或﹣1<t<0D.﹣3<t<﹣2或0<t<1【分析】将交点的横坐标1代入两个函数,令二者函数值相等,得k1=k2.令k1=k2=k,代入两个函数表达式,并分别将点A、B的坐标和点C、D的坐标代入对应函数,进而分别求出p﹣m与q﹣n的表达式,代入解不等式(p﹣m)(q﹣n)<0并求出t的取值范围即可.【解答】解:∵y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,∴k1=k2.令k1=k2=k(k>0),则y=k1x=kx,=.将点A(t,p)和点B(t+2,q)代入y=kx,得;将点C(t,m)和点D(t+2,n)代入y=,得.∴p﹣m=kt﹣=k(t﹣),q﹣n=k(t+2)﹣=k(t+2﹣),∴(p﹣m)(q﹣n)=k2(t﹣)(t+2﹣)<0,∴(t﹣)(t+2﹣)<0.∵(t﹣)(t+2﹣)=•=<0,∴<0,∴t(t﹣1)(t+2)(t+3)<0.①当t<﹣3时,t(t﹣1)(t+2)(t+3)>0,∴t<﹣3不符合要求,应舍去.②当﹣3<t<﹣2时,t(t﹣1)(t+2)(t+3)<0,∴﹣3<t<﹣2符合要求.③当﹣2<t<0时,t(t﹣1)(t+2)(t+3)>0,∴﹣2<t<0不符合要求,应舍去.④当0<t<1时,t(t﹣1)(t+2)(t+3)<0,∴0<t<1符合要求.⑤当t>1时,t(t﹣1)(t+2)(t+3)>0,∴t>1不符合要求,应舍去.综上,t的取值范围是﹣3<t<﹣2或0<t<1.故选:D.七.二次函数图象与系数的关系(共3小题)8.(2023•乐至县)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).现有以下结论:①abc<0;②5a+c=0;③对于任意实数m,都有2b+bm≤4a﹣am2;④若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,则y1<y2,其中正确的结论是()A.①②B.②③④C.①②④D.①②③④【分析】根据题意和函数图象,利用二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,a>0,b>0,c<0,∴abc<0,故①正确,∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).∴﹣=﹣2,a+b+c=0,∴b=4a,∴a+b+c=a+4a+c=0,故5a+c=0,故②正确,∵当x=﹣2时,y=4a﹣2b+c取得最小值,∴am2+bm+c≥4a﹣2b+c,即2b+bm≥4a﹣am2(m为任意实数),故③错误,∵抛物线开口向上,对称轴为直线x=﹣2,若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,∴y1<y2,故④正确;故选:C.9.(2023•丹东)抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为A(﹣3,0),与y轴交于点C,点D是抛物线的顶点,对称轴为直线x=﹣1,其部分图象如图所示,则以下4个结论:①abc>0;②E(x1,y1),F(x2,y2)是抛物线y=ax2+bx(a≠0)上的两个点,若x1<x2,且x1+x2<﹣2,则y1<y2;③在x轴上有一动点P,当PC+PD的值最小时,则点P的坐标为;④若关于x的方程ax2+b(x﹣2)+c =﹣4(a≠0)无实数根,则b的取值范围是b<1.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性和增减性即可解决问题.【解答】解:根据所给函数图象可知,a>0,b>0,c<0,所以abc<0,故①错误.因为抛物线y=ax2+bx的图象可由抛物线y=ax2+bx+c的图象沿y轴向上平移|c|个单位长度得到,所以抛物线y=ax2+bx的增减性与抛物线y=ax2+bx+c的增减性一致.则当x<﹣1时,y随x的增大而减小,又x1<x2,且x1+x2<﹣2,若x2<﹣1,则E,F两点都在对称轴的左侧,此时y1>y2.故②错误.作点C关于x轴的对称点C′,连接C′D与x轴交于点P,连接PC,此时PC+PD的值最小.将A(﹣3,0)代入二次函数解析式得,9a﹣3b+c=0,又,即b=2a,所以9a﹣6a+c=0,则c=﹣3a.又抛物线与y轴的交点坐标为C(0,c),则点C坐标为(0,﹣3a),所以点C′坐标为(0,3a).又当x=﹣1时,y=﹣4a,即D(﹣1,﹣4a).设直线C′D的函数表达式为y=kx+3a,将点D坐标代入得,﹣k+3a=﹣4a,则k=7a,所以直线C′D的函数表达式为y=7ax+3a.将y=0代入得,x=.所以点P的坐标为(,0).故③正确.将方程ax2+b(x﹣2)+c=﹣4整理得,ax2+bx+c=2b﹣4,因为方程没有实数根,所以抛物线y=ax2+bx+c与直线y=2b﹣4没有公共点,所以2b﹣4<﹣4a,则2b﹣4<﹣2b,解得b<1,又b>0,所以0<b<1.故④错误.所以正确的有③.故选:A.10.(2023•河北)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴为直线x=0,抛物线y=﹣x2+m2x的对称轴为直线x=,∴这两个函数图象对称轴之间的距离==2.故选:A.八.二次函数图象上点的坐标特征(共1小题)11.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac 的值为()A.﹣1B.﹣2C.﹣3D.﹣4【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.九.二次函数与不等式(组)(共1小题)12.(2023•西宁)直线y1=ax+b和抛物线(a,b是常数,且a≠0)在同一平面直角坐标系中,直线y1=ax+b经过点(﹣4,0).下列结论:①抛物线的对称轴是直线x=﹣2;②抛物线与x轴一定有两个交点;③关于x的方程ax2+bx=ax+b有两个根x1=﹣4,x2=1;④若a >0,当x<﹣4或x>1时,y1>y2.其中正确的结论是()A.①②③④B.①②③C.②③D.①④【分析】根据直线y1=ax+b经过点(﹣4,0).得到b=4a,于是得到=ax2+4ax,求得抛物线的对称轴是直线x=﹣﹣=2;故①正确;根据Δ=16a2>0,得到抛物线与x轴一定有两个交点,故②正确;把b=4a,代入ax2+bx=ax+b得到x2+3x﹣4=0,求得x1=﹣4,x2=1;故③正确;根据a>0,得到抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,于是得到结论.【解答】解:∵直线y1=ax+b经过点(﹣4,0).∴﹣4a+b=0,∴b=4a,∴=ax2+4ax,∴抛物线的对称轴是直线x=﹣﹣=2;故①正确;∵=ax2+4ax,∴Δ=16a2>0,∴抛物线与x轴一定有两个交点,故②正确;∵b=4a,∴方程ax2+bx=ax+b为ax2+4ax=ax+4a得,整理得x2+3x﹣4=0,解得x1=﹣4,x2=1;故③正确;∵a>0,抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,∴当x<﹣4或x>1时,y1<y2.故④错误,故选:B.一十.三角形中位线定理(共1小题)13.(2023•广州)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点M是边AC上一动点,点D,E分别是AB,MB的中点,当AM=2.4时,DE的长是 1.2.若点N在边BC上,且CN=AM,点F,G分别是MN,AN的中点,当AM>2.4时,四边形DEFG面积S的取值范围是3≤S≤4.【分析】依据题意,根据三角形中位线定理可得DE=AM=1.2;设AM=x,从而DE=x,由DE∥AM,且DE=AM,又FG∥AM,FG=AM,进而DE∥FG,DE=FG,从而四边形DEFG是平行四边形,结合题意可得DE边上的高为(4﹣x),故四边形DEFG面积S=4x﹣x2,进而利用二次函数的性质可得S的取值范围.【解答】解:由题意,点D,E分别是AB,MB的中点,∴DE是三角形ABM的中位线.∴DE=AM=1.2.如图,设AM=x,∴DE=AM=x.由题意得,DE∥AM,且DE=AM,又FG∥AM,FG=AM,∴DE∥FG,DE=FG.∴四边形DEFG是平行四边形.由题意,GF到AC的距离是x,BC==8,∴DE边上的高为(4﹣x).∴四边形DEFG面积S=2x﹣x2,=﹣(x﹣4)2+4.∵2.4<x≤6,∴3≤S≤4.故答案为:1.2;3≤S≤4.一十一.矩形的性质(共2小题)14.(2023•宁波)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道()A.△ABE的面积B.△ACD的面积C.△ABC的面积D.矩形BCDE的面积【分析】作AG⊥ED于点G,交BC于点F,可证明四边形BFGE是矩形,AF⊥BC,可推导出S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,所以只需知道S△ABC,就可求出S﹣S1﹣S2的值,于是得到问题的答案.【解答】解:作AG⊥ED于点G,交BC于点F,∵四边形BCDE是矩形,∴∠FBE=∠BEG=∠FGE=90°,BC∥ED,BC=ED,BE=CD,∴四边形BFGE是矩形,∠AFB=∠FGE=90°,∴FG=BE=CD,AF⊥BC,∴S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,∴只需知道S△ABC,就可求出S﹣S1﹣S2的值,故选:C.15.(2023•河南)矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为2或1+.【分析】以点D,M,N为顶点的三角形是直角三角形时,分两种情况:如图1,当∠MND=90°时,如图2,当∠NMD=90°时,根据矩形的性质和等腰直角三角形的性质即可得到结论.【解答】解:以点D,M,N为顶点的三角形是直角三角形时,分两种情况:①如图1,当∠MND=90°时,则MN⊥AD,∵四边形ABCD是矩形,∴∠A=90°,∴MN∥AB,∵M为对角线BD的中点,∴AN=DN,∵AN=AB=1,∴AD=2AN=2;如图2,当∠NMD=90°时,则MN⊥BD,∵M为对角线BD的中点,∴BM=DM,∴MN垂直平分BD,∴BN=DN,∵∠A=90°,AB=AN=1,∴BN=AB=,∴AD=AN+DN=1+,综上所述,AD的长为2或1+.故答案为:2或1+.一十二.正方形的性质(共2小题)16.如图,在边长为4的正方形ABCD中,点G是BC上的一点,且BG=3GC,DE⊥AG于点E,BF∥DE,且交AG于点F,则tan∠EDF的值为()A.B.C.D.【分析】由正方形ABCD的边长为4及BG=3CG,可求出BG的长,进而求出AG的长,证△ADE∽△GAB,利用相似三角形对应边成比例可求得AE、DE的长,证△ABF≌△DAE,得AF=DE,根据线段的和差求得EF的长即可.【解答】解:∵四边形ABCD是正方形,AB=4,∴BC=CD=DA=AB=4,∠BAD=∠ABC=90°,AD∥BC,∴∠DAE=∠AGB,∵BG=3CG,∴BG=3,∴在Rt△ABG中,AB2+BG2=AG2,∴AG=,∵DE⊥AG,∴∠DEA=∠DEF=∠ABC=90°,∴△ADE∽△GAB,∴AD:GA=AE:GB=DE:AB,∴4:5=AE:3=DE:4,∴AE=,DE=,又∵BF∥DE,∴∠AFB=∠DEF=90°,又∵AB=AD,∠DAE=∠ABF(同角的余角相等),∴△ABF≌△DAE,∴AF=DE=,∴EF=AF﹣AE=,∴tan∠EDF=,故选:A.17.(2023•湖州)如图,标号为①,②,③,④的四个直角三角形和标号为⑤的正方形恰好拼成对角互补的四边形ABCD,相邻图形之间互不重叠也无缝隙,①和②分别是等腰Rt△ABE和等腰Rt△BCF,③和④分别是Rt△CDG和Rt△DAH,⑤是正方形EFGH,直角顶点E,F,G,H分别在边BF,CG,DH,AE上.(1)若EF=3cm,AE+FC=11cm,则BE的长是4cm.(2)若,则tan∠DAH的值是3.【分析】(1)将AE和FC用BE表示出来,再代入AE+FC=11cm,即可求出BE的长;(2)由已知条件可以证明∠DAH=∠CDG,从而得到tan∠DAH=tan∠CDG,设AH=x,DG=5k,GH =4k,用x和k的式子表示出CG,再利用tan∠DAH=tan∠CDG列方程,解出x,从而求出tan∠DAH 的值.【解答】解:(1)∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∵AE+FC=11cm,∴BE+BF=11cm,即BE+BE+EF=11cm,即2BE+EF=11cm,∵EF=3cm,∴2BE+3cm=11cm,∴BE=4cm,故答案为:4;(2)设AH=x,∵,∴可设DG=5k,GH=4k,∵四边形EFGH是正方形,∴HE=EF=FG=GH=4k,∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∠ABE=∠CBF=45°,∴CG=CF+GF=BF+4k=BE+8k=AH+12k=x+12k,∠ABC=∠ABE+∠CBF=45°+45°=90°,∵四边形ABCD对角互补,∴∠ADC=90°,∴∠ADH+∠CDG=90°,∵四边形EFGH是正方形,∴∠AHD=∠CGD=90°,∴∠ADH+∠DAH=90°,∴∠DAH=∠CDG,∴tan∠DAH=tan∠CDG,∴,即,整理得:x2+12kx﹣45k2=0,解得x1=3k,x2=﹣15k(舍去),∴tan∠DAH===3.故答案为:3.一十三.正多边形和圆(共1小题)18.(2023•河北)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=30度;(2)中间正六边形的中心到直线l的距离为2(结果保留根号).【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=,由图1知AG=BF=2PE=2,OM=PE=,∵,∴,∴,∵,∴,∴.∴中间正六边形的中心到直线l的距离为2,故答案为:2.一十四.扇形面积的计算(共1小题)19.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5.若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为.【分析】根据不共线三点确定一个圆,根据对称性得出圆心的位置,进而垂径定理、勾股定理求得r,连接OE,取ED的中点T,连接OT,在Rt△OET中,根据勾股定理即可求解.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.一十五.轴对称-最短路线问题(共1小题)20.(2023•安徽)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM 是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB=P A'+PB最小,即可得P A+PB 最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF 最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S四边形ABCD=(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB =P A'+PB最小,此时P A+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴S△ADK=m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,S梯形DKTC =(m+2﹣m)•2=2,∴S四边形ABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.一十六.翻折变换(折叠问题)(共2小题)21.(2023•乐至县)如图,在平面直角坐标系xOy中,边长为2的等边△ABC的顶点A、B分别在x轴、y 轴的正半轴上移动,将△ABC沿BC所在直线翻折得到△DBC,则OD的最大值为+1.【分析】过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,在Rt△ABO 中利用斜边中线性质求出OE,根据OE+DE≥OD确定当D、O、E三点共线时OD最大,最大值为OD =OE+DE.【解答】解:如图,过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,∵等边三角形ABC的边长为2,∴AB=2,∠ABC=60°,由翻折可知:∠DBC=∠ABC=60°,DB=AB=2,∴∠DBF=60°,∵DF⊥AB,∴∠DFB=90°,∴∠BDF=30°,∴BF=BD=1,∴DF=BF=,∵E是AB的中点,∴AE=BE=OE=AB=1,∴EF=BE+BF=2,∴DE===,∴OD≤DE+OE=+1,∴当D、E、O三点共线时OD最大,最大值为+1.故答案为:+1.22.(2023•南京)如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在B′处,CB′⊥AD,垂足为F.若CF=4cm,FB′=1cm,则BE=cm.【分析】作EH⊥BC于点H,由CF=4cm,FB′=1cm,求得B′C=5cm,由折叠得BC=B′C=5cm,由菱形的性质得BC∥AD,DC=BC=5cm,∠B=∠D,因为CB′⊥AD于点F,所以∠BCB′=∠CFD =90°,则∠BCE=∠B′CE=45°,DF==3cm,所以∠HEC=∠BCE=45°,则CH=EH,由=sin B=sin D=,=cos B=cos D=,得CH=EH=BE,BH=BE,于是得BE+BE =5,则BE=cm.【解答】解:作EH⊥BC于点H,则∠BHE=∠CHE=90°,∵CF=4cm,FB′=1cm,∴B′C=CF+FB′=4+1=5(cm),由折叠得BC=B′C=5cm,∠BCE=∠B′CE,∵四边形ABCD是菱形,∴BC∥AD,DC=BC=5cm,∠B=∠D,∵CB′⊥AD于点F,∴∠BCB′=∠CFD=90°,∴∠BCE=∠B′CE=∠BCB′=×90°=45°,DF===3(cm),∴∠HEC=∠BCE=45°,∴CH=EH,∵=sin B=sin D==,=cos B=cos D==,∴CH=EH=BE,BH=BE,∴BE+BE=5,∴BE=cm,故答案为:.一十七.旋转的性质(共1小题)23.(2023•西宁)如图,在矩形ABCD中,点P在BC边上,连接P A,将P A绕点P顺时针旋转90°得到P A′,连接CA′,若AD=9,AB=5,CA′=2,则BP=2.【分析】过A′点作A′H⊥BC于H点,如图,根据旋转的性质得到P A=P A′,再证明△ABP≌△PHA′得到PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=4﹣x,然后在Rt△A′CH中利用勾股定理得到x2+(4﹣x)2=(2)2,于是解方程求出x即可.【解答】解:过A′点作A′H⊥BC于H点,如图,∵四边形ABCD为矩形,∴BC=AD=9,∠B=90°,∵将P A绕点P顺时针旋转90°得到P A′,∴P A=P A′,∵∠P AB+∠APB=90°,∠APB+∠A′PH=90°,∴∠P AB=∠A′PH,在△ABP和△PHA′中,,∴△ABP≌△PHA′(AAS),∴PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=9﹣x﹣5=4﹣x,在Rt△A′CH中,x2+(4﹣x)2=(2)2,解得x1=x2=2,即BP的长为2.故答案为:2.一十八.相似三角形的判定与性质(共2小题)24.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则=(结果用含k的代数式表示).【分析】方法一:先根据轴对称的性质和已知条件证明DE∥AC,再证△BDE∽△BAC,推出EC=k•AB,通过证明△ABC∽△ECF,推出CF=k2•AB,即可求出的值.方法二:证明AD=DF=BD,可得BF⊥AC,设AB=AC=1,BC=k,CF=x,则AF=1﹣x,利用勾股定理列方程求出x的值,进而可以解决问题.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DF A,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DF A,∴∠FDE=∠DF A,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.25.(2023•广东)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.一十九.相似三角形的应用(共1小题)26.(2023•南京)如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB 的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cm B.40cm C.42cm D.45cm【分析】过点B作BC⊥AH,垂足为C,再证明A字模型相似△AOH∽△ABC,从而可得=,过点A作AD⊥BH,垂足为D,然后证明A字模型相似△ABD∽△OBH,从而可得=,最后进行计算即可解答.【解答】解:如图:过点B作BC⊥AH,垂足为C,∵OH⊥AC,BC⊥AC,∴∠AHO=∠ACB=90°,∵∠BAC=∠OAH,∴△AOH∽△ABC,∴=,∴=,如图:过点A作AD⊥BH,垂足为D,∵OH⊥BD,AD⊥BD,∴∠OHB=∠ADB=90°,∵∠ABD=∠OBH,∴△ABD∽△OBH,∴=,∴=,∴+=+,∴+=,∴+=1,解得:OH=36,∴跷跷板AB的支撑点O到地面的高度OH是36cm,故选:A.二十.解直角三角形(共1小题)27.(2023•丹东)如图,在平面直角坐标系中,点O是坐标原点,已知点A(3,0),B(0,4),点C在x 轴负半轴上,连接AB,BC,若tan∠ABC=2,以BC为边作等边三角形BCD,则点C的坐标为(﹣2,0);点D的坐标为(﹣1﹣2,2+)或(﹣1+2,2﹣).【分析】过点C作CE⊥AB于E,先求处AB=5,再设BE=t,由tan∠ABC=2得CE=2t,进而得BC =,由三角形的面积公式得S△ABC=AC•OB=AB•CE,即5×2t=4×(3+OC),则OC=﹣3,然后在Rt△BOC中由勾股定理得,由此解出t1=2,t2=10(不合题意,舍去),此时OC=﹣3=2,故此可得点C的坐标;设点D的坐标为(m,n),由两点间的距离公式得:BC2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,由△BCD为等边三角形得,整理:,②﹣①整理得m=3﹣2n,将m=3﹣2n代入①整理得n2﹣4n+1=0,解得n=,进而再求出m即可得点D的坐标.【解答】解:过点C作CE⊥AB于E,如图:∵点A(3,0),B(0,4),由两点间的距离公式得:AB==5,设BE=t,∵tan∠ABC=2,在Rt△BCE中,tan∠ABC=,∴=2,∴CE=2t,由勾股定理得:BC==t,∵CE⊥AB,OB⊥AC,AC=OC+OA=3+OC,∴S△ABC=AC•OB=AB•CE,即:5×2t=4×(3+OC),∴OC=﹣3,在Rt△BOC中,由勾股定理得:BC2﹣OB2=OC2,即,整理得:t2﹣12t+20=0,解得:t1=2,t2=10(不合题意,舍去),∴t=2,此时OC=﹣3=2,∴点C的坐标为(﹣2,0),设点D的坐标为(m,n),由两点间的距离公式得:BC2=(﹣2﹣0)2+(0﹣4)2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,∵△BCD为等边三角形,∵BD=CD=BC,∴,整理得:,②﹣①得:4m+8n=12,∴m=3﹣2n,将m=3﹣2n代入①得:(3﹣2n)2+n2﹣8n=4,整理得:n2﹣4n+1=0,解得:n=,当n=时,m=3﹣2n=,当n=时,m=3﹣2n=,∴点D的坐标为或.故答案为:(﹣2,0);或.二十一.解直角三角形的应用(共1小题)28.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH 拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5B.4C.3D.2【分析】设AE=a,DE=b,则BF=a,AF=b,解直角三角形可得,化简可得(b﹣a)2=ab,a2+b2=3ab,结合勾股定理及正方形的面积公式可求得S正方形EFGH;S正方形ABCD=1:3,进而可求解n的值.【解答】解:设AE=a,DE=b,则BF=a,AF=b,∵tanα=,tanβ=,tanα=tan2β,∴,∴(b﹣a)2=ab,∴a2+b2=3ab,∵a2+b2=AD2=S正方形ABCD,(b﹣a)2=S正方形EFGH,∴S正方形EFGH:S正方形ABCD=ab:3ab=1:3,∵S正方形EFGH:S正方形ABCD=1:n,∴n=3.故选:C.。
中考数学压轴题100题精选【含答案】【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【002】如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax2+bx 过A 、C 两点. (1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G .当t 为何值时,线段EG 最长? ②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。
中考数学压轴题专项训练十套(含答案)中考数学压轴题专项训练(一)做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在直角梯形 $OABC$ 中,$AB\parallel OC$,$BC\perp x$ 轴于点 $C$,$A(1,1)$,$B(3,1)$.动点$P$ 从点 $O$ 出发,沿 $x$ 轴正方向以每秒 $1$ 个单位长度的速度移动.过点 $P$ 作 $PQ\perp OA$,垂足为 $Q$.设点$P$ 移动的时间为 $t$ 秒($0<t<4$),$\triangle OPQ$ 与直角梯形 $OABC$ 重叠部分的面积为 $S$.1)求经过 $O$,$A$,$B$ 三点的抛物线解析式.2)求 $S$ 与 $t$ 的函数关系式.3)将 $\triangle OPQ$ 绕着点 $P$ 顺时针旋转$90^{\circ}$,是否存在 $t$,使得 $\triangle OPQ$ 的顶点$O$ 或 $Q$ 在抛物线上?若存在,直接写出 $t$ 的值;若不存在,请说明理由.解析:1)由题意可知,经过 $O$,$A$,$B$ 三点的抛物线为$y=ax^{2}+bx+c$,代入三点的坐标可得:begin{cases}a+b+c=1\\4a+2b+c=1\\9a+3b+c=1end{cases}$解得 $a=-\dfrac{1}{4}$,$b=\dfrac{5}{4}$,$c=\dfrac{1}{2}$,即经过 $O$,$A$,$B$ 三点的抛物线解析式为 $y=-\dfrac{1}{4}x^{2}+\dfrac{5}{4}x+\dfrac{1}{2}$.2)设 $\triangle OPQ$ 的高为 $h$,则 $\triangle OPQ$ 的面积为 $\dfrac{1}{2}xh$,其中 $x=OP=t$.由于 $\triangle OPQ$ 与直角梯形 $OABC$ 重叠部分的面积为 $S$,所以$S=\dfrac{1}{2}(AB+BC)h=\dfrac{1}{2}(3+2t)h$.又因为 $P$ 沿 $x$ 轴正方向以每秒 $1$ 个单位长度的速度移动,所以 $h$ 的变化率为$\dfrac{\mathrm{d}h}{\mathrm{d}t}=-1$,即 $h=-t+4$.综上所述,$S=\dfrac{1}{2}(3+2t)(-t+4)=-t^{2}+5t-6$,即$S$ 与 $t$ 的函数关系式为 $S=-t^{2}+5t-6$.3)将 $\triangle OPQ$ 绕着点 $P$ 顺时针旋转$90^{\circ}$,则 $\triangle OPQ$ 变为 $\triangle OP'Q'$,其中$P'$,$Q'$ 分别为 $P$,$Q$ 绕着点 $P$ 顺时针旋转$90^{\circ}$ 后的点.易知 $\triangle OP'Q'$ 的顶点为 $O'$,坐标为 $(1+t,1)$.将 $O'$ 的坐标代入抛物线的解析式中,得到 $y=-\dfrac{1}{4}(1+t)^{2}+\dfrac{5}{4}(1+t)+\dfrac{1}{2}$.令 $y=0$,解得 $t=2\pm\sqrt{3}$.由于 $0<t<4$,所以 $t=2+\sqrt{3}$,即存在 $t$,使得$\triangle OPQ$ 的顶点 $O$ 在抛物线上.答案:(1)$y=-\dfrac{1}{4}x^{2}+\dfrac{5}{4}x+\dfrac{1}{2}$;(2)$S=-t^{2}+5t-6$;(3)$t=2+\sqrt{3}$.2)正方形以每秒5个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止。
中考数学压轴题集锦精选100题(含答案)一、中考压轴题1.如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且=,弦AD的延长线交切线PC于点E,连接BC.(1)判断OB和BP的数量关系,并说明理由;(2)若⊙O的半径为2,求AE的长.【分析】(1)首先连接OC,由PC切⊙O于点C,可得∠OCP=90°,又由∠BAC=30°,即可求得∠COP=60°,∠P=30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半,证得OB=BP;(2)由(1)可得OB=OP,即可求得AP的长,又由=,即可得∠CAD=∠BAC=30°,继而求得∠E=90°,继而在Rt△AEP中求得答案.【解答】解:(1)OB=BP.理由:连接OC,∵PC切⊙O于点C,∴∠OCP=90°,∵OA=OC,∠OAC=30°,∴∠OAC=∠OCA=30°,∴∠COP=60°,∴∠P=30°,在Rt△OCP中,OC=OP=OB=BP;(2)由(1)得OB=OP,∵⊙O的半径是2,∴AP=3OB=3×2=6,∵=,∴∠CAD=∠BAC=30°,∴∠BAD=60°,∵∠P=30°,∴∠E=90°,在Rt△AEP中,AE=AP=×6=3.【点评】此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.2.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.3.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?【分析】(1)需先算出从2005年到2007年,每年盈利的年增长率,然后根据2005年的盈利,算出2006年的利润;(2)相等关系是:2008年盈利=2007年盈利×每年盈利的年增长率.【解答】解:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160解得x1=0.2,x2=﹣2.2(不合题意,舍去)∴1500(1+x)=1500(1+0.2)=1800答:2006年该公司盈利1800万元.(2)2160(1+0.2)=2592答:预计2008年该公司盈利2592万元.【点评】本题的关键是需求出从2005年到2007年,每年盈利的年增长率.等量关系为:2005年盈利×(1+年增长率)2=2160.4.如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式.【分析】(1)首先连接PB,由直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△P AB是等边三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO;(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式.【解答】(1)证明:连接PB,∵直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°,∵P A=PB,∴△P AB是等边三角形,∴AB=P A,∠BAO=60°,∴AB=OP,∠BAO=∠OPD,在△POD和△ABO中,∴△POD≌△ABO(ASA);(2)解:由(1)得△POD≌△ABO,∴∠PDO=∠AOB,∵∠AOB=∠APB=×60°=30°,∴∠PDO=30°,∴OP=OD•tan30°=3×=,∴点P的坐标为:(﹣,0)∴,解得:,∴直线l的解析式为:y=x+3.【点评】此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质、等边三角形的判定与性质以及待定系数法求一次函数的解析式.此题综合性较强,难度适中,注意准确作出辅助线,注意数形结合思想的应用.5.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.6.用两种方法解答:已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,求代数式(m2+mp+1)(n2+np+1)的值.【分析】本题主要是利用韦达定理来计算.已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,有四个等式可供使用:m+n=2﹣p①,mn=1②,m2+(p﹣2)m+1=0③,n2+(p﹣2)n+1=0④.通过变形方法,合理地选择解题方法.【解答】解:∵m、n是x2+(p﹣2)x+1=0的根,∴m+n=2﹣p,mn=1.方法一:m2+(p﹣2)m+1=0,n2+(p﹣2)n+1=0.即m2+pm+1=2m,n2+pn+1=2n.原式=2m×2n=4mn=4.方法二:(m2+mp+1)(n2+np+1)=(m2+mp)(n2+np)+m2+mp+n2+np+1=m2n2+m2np+mpn2+mnp2+m2+mp+n2+np+1=1+mp+np+p2+m2+n2+mp+np+1=2+p2+m2+n2+2(m+n)p=2+p2+m2+n2+2(2﹣p)p=2+p2+m2+n2+4p﹣2p2=2+(m+n)2﹣2mn+4p﹣2p2+p2=2+(2﹣p)2﹣2+4p﹣2p2+p2=4﹣4p+p2+4p﹣p2=4.【点评】本题主要是通过根与系数的关系来求值.注意把所求的代数式转化成m+n=2﹣p,mn=1的形式,正确对所求式子进行变形是解题的关键.7.如图,⊙O是等边△ABC的外接圆,AB=2,M、N分别是边AB、AC的中点,直线MN交⊙O于E、F两点,BD∥AC交直线MN于点D.求出图中线段DM上已有的一条线段的长.【分析】连接OA交MN于点G,则OA⊥BC,由三角形的中位线的性质可得MN的长,易证得△BMD≌△AMN,有DM=MN,由相交弦定理得ME•MF=MA•MB,就可求得EM,DE的值.【解答】解:∵M,N分别是边AB,AC的中点∴MN∥BC,MN=BC=1又∵BD∥AC∴∠DBA=∠A=60°∵BM=AM,∠BMD=∠AMN∴△BMD≌△AMN∴DM=MN=1连接OA交MN于点G,则OA⊥BC∴OA⊥EF∴EG=FG,MG=FN由相交弦定理得:ME•MF=MA•MB∴EM(EM+1)=1解得EM=(EM=不合题意,舍去)∴DE=DM﹣EM=∴DE(3﹣DE)=1解得DE=(DE=不合题意,舍去).【点评】本题利用了三角形的中位线的性质,等边三角形的性质,全等三角形的判定和性质,一元二次方程的解法求解.8.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等.(2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解.【解答】(1)证明:∵∠AEB=∠DEC=90°,∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,∵△BEC是等边三角形,∴CE=BE,又AE=DE,∴△AEC≌△DEB.(2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD.∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,∴AB∥DC,AB==CD,∴四边形ABCD为平行四边形且是矩形,∴OA=OB=OC=OD,又∵BE=CE,∴OE所在直线垂直平分线段BC,∴BF=FC,∠EFB=90°.∴OF=AB=×2=1,∵△BEC是等边三角形,∴∠EBC=60°.在Rt△AEB中,∠AEB=90°,∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°,∴BE=AB•cos30°=,在Rt△BFE中,∠BFE=90°,∠EBF=60°,∴BF=BE•cos60°=,EF=BE•sin60°=,∴OE=EF﹣OF==,∵AE=ED,OE=OE,AO=DO,∴△AOE≌△DOE.∴S△AOE=S△DOE∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2).【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.9.如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.解答下列问题:(1)位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;(2)求位置Ⅲ中的圆心P在数轴上表示的数;(3)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,求点N所经过路径长及该纸片所扫过图形的面积;(4)求OA的长.[(2),(3),(4)中的结果保留π].【分析】(1)先求出圆的半径,再根据切线的性质进行解答;(2)根据位置Ⅰ中的长与数轴上线段ON相等求出的长,再根据弧长公式求出的长,进而可得出结论;(3)作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形,在Rt△NPH中,根据sin∠NPH==即可∠NPH、∠MP A的度数,进而可得出的长,【解答】解:(1)∵⊙P的直径=4,∴⊙P的半径=2,∵⊙P与直线有一个交点,∴位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;故答案为:2,相切;(2)位置Ⅰ中的长与数轴上线段ON相等,∵的长为=π,NP=2,∴位置Ⅲ中的圆心P在数轴上表示的数为π+2.(3)点N所经过路径长为=2π,S半圆==2π,S扇形==4π,半⊙P所扫过图形的面积为2π+4π=6π.(4)如图,作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形.在Rt△NPH中,PN=2,NH=NC﹣HC=NC﹣P A=1,于是sin∠NPH==,∴∠NPH=30°.∴∠MP A=60°.从而的长为=,于是OA的长为π+4+π=π+4.【点评】本题考查的是直线与圆的关系、弧长的计算、扇形的面积公式,在解答此题时要注意Ⅰ中的长与数轴上线段ON相等的数量关系.10.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接P A、PB、PC、PD.(1)当BD的长度为多少时,△P AD是以AD为底边的等腰三角形?并证明;(2)在(1)的条件下,若cos∠PCB=,求P A的长.【分析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解;(2)过点P作PE⊥AD于E.根据锐角三角函数的知识和垂径定理进行求解.【解答】解:(1)当BD=AC=4时,△P AD是以AD为底边的等腰三角形.∵P是优弧BAC的中点,∴=.∴PB=PC.又∵∠PBD=∠PCA(圆周角定理),∴当BD=AC=4,△PBD≌△PCA.∴P A=PD,即△P AD是以AD为底边的等腰三角形.(2)过点P作PE⊥AD于E,由(1)可知,当BD=4时,PD=P A,AD=AB﹣BD=6﹣4=2,则AE=AD=1.∵∠PCB=∠P AD(在同圆或等圆中,同弧所对的圆周角相等),∴cos∠P AD=cos∠PCB=,∴P A=.【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.11.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.12.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【解答】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴即:∴∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【点评】主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.13.一个不透明的口袋里有红、黄、绿三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有1个,任意摸出一个黄球的概率为.(1)试求口袋里绿球的个数;(2)若第一次从口袋中任意摸出一球(不放回),第二次任意摸出一球,请你用树状图或列表法,求出两次都摸到红球的概率.【分析】(1)根据概率的求解方法,利用方程求得绿球个数;(2)此题需要两步完成,所以采用树状图法或者列表法都比较简单,解题时要注意是放回实验还是不放回实验,此题为不放回实验.【解答】解:(1)设口袋里绿球有x个,则,解得x=1.故口袋里绿球有1个.(2)红一红二黄绿红一红二,红一黄,红一绿,红一红二红一,红二黄,红一绿,红二黄红一,黄红二,黄绿,黄绿红一,绿红二,绿黄,绿故,P(两次都摸到红球)=.【点评】(1)解题时要注意应用方程思想;(2)列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.【分析】(1)分两种情况讨论,当k=1时,可求出函数为一次函数,必与x轴有一交点;当k≠1时,函数为二次函数,若与x轴有交点,则△≥0.(2)①根据(k﹣1)x12+2kx2+k+2=4x1x2及根与系数的关系,建立关于k的方程,求出k 的值;②充分利用图象,直接得出y的最大值和最小值.【解答】解:(1)当k=1时,函数为一次函数y=﹣2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k﹣1)x2﹣2kx+k+2=0.△=(﹣2k)2﹣4(k﹣1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1,函数图象与x轴两个交点,∴k<2,且k≠1.由题意得(k﹣1)x12+(k+2)=2kx1①,将①代入(k﹣1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=,x1x2=,∴2k•=4•.解得:k1=﹣1,k2=2(不合题意,舍去).∴所求k值为﹣1.②如图,∵k1=﹣1,y=﹣2x2+2x+1=﹣2(x﹣)2+.且﹣1≤x≤1.由图象知:当x=﹣1时,y最小=﹣3;当x=时,y最大=.∴y的最大值为,最小值为﹣3.【点评】本题考查了抛物线与x轴的交点、一次函数的定义、二次函数的最值,充分利用图象是解题的关键.15.如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)所求概率为;(2)方法①(树状图法)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为,方法②(列表法)1 2 3 4第一次抽取第二次抽取1(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.17.如图,反比例函数的图象经过点A(4,b),过点A作AB⊥x轴于点B,△AOB 的面积为2.(1)求k和b的值;(2)若一次函数y=ax﹣3的图象经过点A,求这个一次函数的解析式.【分析】(1)由△AOB的面积为2,根据反比例函数的比例系数k的几何意义,可知k的值,得出反比例函数的解析式,然后把x=4代入,即可求出b的值;(2)把点A的坐标代入y=ax﹣3,即可求出这个一次函数的解析式.【解答】解:(1)∵反比例函数的图象经过点A,AB⊥x轴于点B,△AOB的面积为2,A(4,b),∴OB×AB=2,×4×b=2,∴AB=b=1,∴A(4,1),∴k=xy=4,∴反比例函数的解析式为y=,即k=4,b=1.(2)∵A(4,1)在一次函数y=ax﹣3的图象上,∴1=4a﹣3,∴a=1.∴这个一次函数的解析式为y=x﹣3.【点评】本题主要考查了待定系数法求一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.18.图(1)是一个10×10格点正方形组成的网格.△ABC是格点三角形(顶点在网格交点处),请你完成下面的两个问题:(1)在图(1)中画出与△ABC相似的格点△A1B1C1和△A2B2C2,且△A1B1C1与△ABC的相似比是2,△A2B2C2与△ABC的相似比是;(2)在图(2)中用与△ABC,△A1B1C1,△A2B2C2全等的格点三角形(每个三角形至少使用一次),拼出一个你熟悉的图案,并为你设计的图案配一句贴切的解说词.【分析】(1)△A1B1C1与△ABC的相似比是2,则让△ABC的各边都扩大2倍就可.△A2B2C2与△ABC的相似比是;△ABC的直角边是2,所以△A2B2C2与的直角边是即一个对角线的长度.斜边为2.依此画图即可;(2)拼图有审美意义即可,答案不唯一.【解答】解:【点评】本题主要考查了相似图形的画法,做这类题时根据的是相似图形的性质,即相似比相等.对应角相等.19.如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F,(1)求的长;(2)若,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由.【分析】(1)连接OE、OF,利用相切证明四边形AFOE是正方形,再根据弧长公式求弧长;(2)先求出直线M1N1与圆相切时d的值,结合1≤d≤4,划分d的范围,分类讨论.【解答】解:(1)连接OE、OF,∵矩形ABCD的边AD、AB分别与⊙O相切于点E、F,∴∠A=90°,∠OEA=∠OF A=90°∴四边形AFOE是正方形∴∠EOF=90°,OE=AE=∴的长==π.(2)如图,将直线MN沿射线DA方向平移,当其与⊙O相切时,记为M1N1,切点为R,交AD于M1,交BC于N1,连接OM1、OR,∵M1N1∥MN∴∠DM1N1=∠DMN=60°∴∠EM1N1=120°∵MA、M1N1切⊙O于点E、R∴∠EM1O=∠EM1N1=60°在Rt△EM1O中,EM1===1∴DM1=AD﹣AE﹣EM1=+5﹣﹣1=4.过点D作DK⊥M1N1于K在Rt△DM1K中DK=DM1×sin∠DM1K=4×sin∠60°=2即d=2,∴当d=2时,直线MN与⊙O相切,当1≤d<2时,直线MN与⊙O相离,当直线MN平移到过圆心O时,记为M2N2,点D到M2N2的距离d=DK+OR=2+=3>4,∴当2<d≤4时,MN直线与⊙O相交.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.20.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)试判断DE与BD是否相等,并说明理由;(2)如果BC=6,AB=5,求BE的长.【分析】(1)可通过连接AD,AD就是等腰三角形ABC底边上的高,根据等腰三角形三线合一的特点,可得出∠CAD=∠BAD,根据圆周角定理即可得出∠DEB=∠DBE,便可证得DE=DB.(2)本题中由于BE⊥AC,那么BE就是三角形ABC中AC边上的高,可用面积的不同表示方法得出AC•BE=CB•AD.进而求出BE的长.【解答】解:(1)DE=BD证明:连接AD,则AD⊥BC,在等腰三角形ABC中,AD⊥BC,∴∠CAD=∠BAD(等腰三角形三线合一),∴=,∴DE=BD;(2)∵AB=5,BD=BC=3,∴AD=4,∴S△ABC=•AC•BE=•CB•AD,∴BE=4.8.【点评】本题主要考查了等腰三角形的性质,圆周角定理等知识点的运用,用等腰三角形三线合一的特点得出圆周角相等是解题的关键.21.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.【分析】(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt △BDO中,利用勾股定理列式求解即可.【解答】(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠P AE+∠OAD=90°,∴∠AOD=∠P AE,在△AOD和△P AE中,,∴△AOD≌△P AE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即解得k=1,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3在Rt△BDO中,由勾股定理得:BO===3.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.22.如图,AD是⊙O的直径.(1)如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是22.5°,∠B2的度数是67.5°;(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;(3)如图③,垂直于AD的n条弦B1C1,B2C2,B3C3,…,B n∁n把圆周2n等分,请你用含n的代数式表示∠B n的度数(只需直接写出答案).【分析】根据条件可以先求出圆的各段弧的度数,根据圆周角等于所对弧的度数的一半,就可以求出圆周角的度数.【解答】解:(1)垂直于AD的两条弦B1C1,B2C2把圆周4等分,则是圆的,因而度数是45°,因而∠B1的度数是22.5°,同理的度数是135度,因而,∠B2的度数是67.5°;(2)∵圆周被6等分∴===360°÷6=60°∵直径AD⊥B1C1∴==30°,∴∠B1==15°∠B2==×(30°+60°)=45°∠B3==×(30°+60°+60°)=75°;(3)B n∁n把圆周2n等分,则弧BnD的度数是:,则∠B n AD=,在直角△AB n D中,.【点评】本题是把求圆周角的度数的问题转化为求弧的度数的问题,依据是圆周角等于所对弧的度数的一半.23.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小红家有4人,明年小红家减少多少农业税?(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?【分析】(1)设降低的百分率为x,则降低一次后的数额是25(1﹣x),再在这个数的基础上降低x,则变成25(1﹣x)(1﹣x)即25(1﹣x)2,据此即可列方程求解;(2)每人减少的税额是25x,则4个人的就是4×25x,代入(1)中求得的x的值,即可求解;(3)每个人减少的税额是25x,乘以总人数16000即可求解.【解答】解:(1)设降低的百分率为x,依题意有,25(1﹣x)2=16,解得,x1=0.2=20%,x2=1.8(舍去);(2)小红全家少上缴税25×20%×4=20(元);(3)全乡少上缴税16000×25×20%=80 000(元).答:降低的增长率是20%,明年小红家减少的农业税是20元,该乡农民明年减少的农业税是80 000元.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.24.在△ABC中,AB=AC,D为BC上一点,由D分别作DE⊥AB于E,DF⊥AC于F.设DE=a,DF=b,且实数a,b满足9a2﹣24ab+16b2=0,并有=2566,∠A使得方程x2﹣x•sin A+sin A﹣=0有两个相等的实数根.(1)试求实数a,b的值;(2)试求线段BC的长.【分析】(1)由题意可知:2a2b=2566,则2a2b=248,则a2b=48.化简9a2﹣24ab+16b2=0得:(3a﹣4b)2=0,则3a﹣4b=0,即3a=4b,则根据,可求得a与b的值;(2)要求BC的长需求出BD和CD的长,知BD、CD分别是直角三角形BDE和直角三角形CDF中的斜边.又知在△ABC中,AB=AC,则∠B=∠C,则根据三角函数只要知道∠B或∠C的读数即可,要求∠B或∠C的读数需求的∠A的读数,根据判别式可以求得∠A的读数.【解答】解:(1)由条件有,解得;(2)又由关于x的方程的判别式△=sin2A﹣sin A+=(sin A﹣)2=0,则sin A=,而∠A为三角形的一个内角,所以∠A1=60°或∠A2=120° 2分当∠A=60°时,△ABC为正三角形,∠B=∠C=60°于是分别在Rt△BDE和Rt△CDF中有BD=,CD=所以BC=BD+DC=.当∠A=120°时,△ABC为等腰三角形,∠B=∠C=30°同上方法可得BC=14. 3分所以线段BC的长应为或14.【点评】考查了解直角三角形以及判别式的应用.25.某市城建部门经过长期市场调查发现,该市年新建商品房面积P(万平方米)与市场新房均价x(千元/平方米)存在函数关系P=25x;年新房销售面积Q(万平方米)与市场新房均价x(千元/平方米)的函数关系为Q=﹣10;(1)如果年新建商品房的面积与年新房销售面积相等,求市场新房均价和年新房销售总额;(2)在(1)的基础上,如果市场新房均价上涨1千元,那么该市年新房销售总额是增加还是减少?变化了多少?结合年新房销售总额和积压面积的变化情况,请你提出一条合理。
中考数学压轴题100题精选【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax2+bx 过A 、C 两点. (1)直接写出点A 的坐标,并求出抛物线的解析式;A P 图16(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G .当t 为何值时,线段EG 最长? ②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。
中考压轴题数学100道1、求解一元二次方程的根。
2、求解一元二次不等式的解集。
3、求解三角形的面积和周长。
4、求解三角形的内角和外角。
5、求解三角形的边长和高度。
6、求解圆的面积和周长。
7、求解圆柱体的体积和表面积。
8、求解圆锥体的体积和表面积。
9、求解二次函数的图像和性质。
10、求解一次函数的图像和性质。
11、求解正比例函数的图像和性质。
12、求解反比例函数的图像和性质。
13、求解多项式的因式分解和化简。
14、求解多项式的根和零点。
15、求解多项式的系数和次数。
16、求解多项式的最高次项和常数项。
17、求解绝对值的几何意义和代数意义。
18、求解算术平均数、加权平均数和几何平均数的概念和应用。
19、求解方差的计算方法和应用。
20、求解标准差的计算方法和应用。
21、求解概率的计算方法和应用。
22、求解互斥事件的概率和相互独立事件的概率的计算方法。
23、求解排列组合的应用,如分组分配问题、染色问题、排列问题等。
24、求解相似三角形的判定和性质,如相似三角形的定义、判定方法、相似三角形的性质等。
25、求解二次函数的图像和性质,如开口方向、对称轴、顶点坐标、零点等。
26、求解圆的性质和判定方法,如圆心、半径、直径、切线等概念以及垂径定理、圆心角定理等应用。
27、求解函数的图像和性质,如正比例函数、反比例函数、一次函数、二次函数等。
28、求解勾股定理的应用,如直角三角形的判定方法、勾股定理的应用等。
29、求解平行四边形的判定和性质,如平行四边形的定义、判定方法、对角线互相平分等性质等应用。
30、求解菱形的判定和性质,如菱形的定义、判定方法、对角线互相垂直且平分等性质等应用。
31、求解梯形的判定和性质,如梯形的定义、判定方法、等腰梯形等性质等应用。
32、求解扇形的计算方法和应用,如扇形的面积公式、弧长公式等应用。
33、求解圆柱体的体积和表面积,如圆柱体的底面积、侧面积、表面积等应用。
34、求解圆锥体的体积和表面积,如圆锥体的底面积、体积公式等应用。
数学中考压轴题集锦1、如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.2、如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.3、已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.4、如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD 的长.5、《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a=.【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.6、如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.7、抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM ∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.8、如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.9、如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.10、如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.详细答案:1解:(1)将点A(2,4)代入y=中,得,m=2×4=8,∴反比例函数的解析式为y=,将点B(a,1)代入y=中,得,a=8,∴B(8,1),将点A(2,4),B(8,1)代入y=kx+b中,得,,∴,∴一次函数解析式为y=﹣x+5;(2)∵直线AB的解析式为y=﹣x+5,∴C(10,0),D(0,5),如图,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根据勾股定理得,AD==,在Rt△BCF中,根据勾股定理得,BC==,∴AD=BC.2、解:(1)如图1中,连接OC.∵AB⊥CD,∴∠CHO=90°,在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,∴r2=42+(r﹣2)2,∴r=5.(2)如图1中,连接OD.∵AB⊥CD,AB是直径,∴==,∴∠AOC=∠COD,∵∠CMD=∠COD,∴∠CMD=∠COA,∴sin∠CMD=sin∠COA==.(3)如图2中,连接AM.∵AB是直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵∠E+∠ABM=90°,∴∠E=∠MAB,∴∠MAB=∠MNB=∠E,∵∠EHM=∠NHFM∴△EHM∽△NHF,∴=,∴HE•HF=HM•HN,∵HM•HN=AH•HB,∴HE•HF=AH•HB=2•(10﹣2)=16.3、解:(1)∵抛物线的对称轴为x=1,∴x=﹣=1,即=1,解得b=2.∴y=﹣x2+2x+c.将A(2,2)代入得:﹣4+4+c=2,解得:c=2.∴抛物线的解析式为y=﹣x2+2x+2.配方得:y=﹣(x﹣1)2+3.∴抛物线的顶点坐标为(1,3).(2)如图所示:过点A作AC⊥BM,垂足为C,则AC=1,C(1,2).∵M(1,m),C(1,2),∴MC=m﹣2.∴cot∠AMB==m﹣2.(3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上,∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP∥y轴,∴点Q与点P关于x轴对称.∴点Q的纵坐标为﹣.将y=﹣代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣,解得:x=或x=.∴点Q的坐标为(,﹣)或(,﹣).4、解(1)证明:如图1中,在△AOB和△AOC中,,∴△AOB≌△AOC,∴∠C=∠B,∵OA=OC,∴∠OAC=∠C=∠B,∵∠ADO=∠ADB,∴△OAD∽△ABD.(2)如图2中,∵BD⊥AC,OA=OC,∴AD=DC,∴BA=BC=AC,∴△ABC是等边三角形,在Rt△OAD中,∵OA=1,∠OAD=30°,∴OD=OA=,∴AD==,∴BC=AC=2AD=.(3)如图3中,作OH⊥AC于H,设OD=x.∵△DAO∽△DBA,∴==,∴==,∴AD=,AB=,∵S2是S1和S3的比例中项,∴S22=S1•S3,∵S2=AD•OH,S1=S△OAC=•AC•OH,S3=•CD•OH,∴(AD•OH)2=•AC•OH••CD•OH,∴AD2=AC•CD,∵AC=AB.CD=AC﹣AD=﹣,∴()2=•(﹣),整理得x2+x﹣1=0,解得x=或,经检验:x=是分式方程的根,且符合题意,∴OD=.5、解:【问题】∵抛物线y=a(x﹣2)2﹣经过原点O,∴0=a(0﹣2)2﹣,a=,故答案为:;【操作】:如图①,抛物线:y=(x﹣2)2﹣,对称轴是:直线x=2,由对称性得:A(4,0),沿x轴折叠后所得抛物线为:y=﹣(x﹣2)2+如图②,图象G对应的函数解析式为:y=;【探究】:如图③,由题意得:当y=1时,(x﹣2)2﹣=0,解得:x1=2+,x2=2﹣,∴C(2﹣,1),F(2+,1),当y=1时,﹣(x﹣2)2+=0,解得:x1=3,x2=1,∴D(1,1),E(3,1),由图象得:图象G在直线l上方的部分,当1<x<2或x>2+时,函数y随x增大而增大;【应用】:∵D(1,1),E(3,1),∴DE=3﹣1=2,∵S=DE•h≥1,△PDE∴h≥1;①当P在C的左侧或F的右侧部分时,设P[m,],∴h=(m﹣2)2﹣﹣1≥1,(m﹣2)2≥10,m﹣2≥或m﹣2≤﹣,m≥2+或m≤2﹣,②如图③,作对称轴交抛物线G于H,交直线CD于M,交x轴于N,∵H(2,),∴HM=﹣1=<1,∴当点P不可能在DE的上方;③∵MN=1,且O(0,0),a(4,0),∴P与O或A重合时,符合条件,∴m=0或m=4;综上所述,△PDE的面积不小于1时,m的取值范围是:m=0或m=4或m≤2﹣或m≥2+.6、解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.7、解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,t+3),∴PN=t +3﹣(t 2﹣t +3)=﹣(t ﹣)2+联立直线CD 与抛物线解析式可得,解得或,∴C (0,3),D (7,),分别过C 、D 作直线PN 的直线,垂足分别为E 、F ,如图1,则CE=t ,DF=7﹣t ,∴S △PCD =S △PCN +S △PDN =PN•CE +PN•DF=PN=[﹣(t ﹣)2+]=﹣(t ﹣)2+,∴当t=时,△PCD 的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有=或=两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴=,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当=时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,);当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,)或(,﹣).8、解:(1)猜想:β=α+90°,γ=﹣α+180°连接OB,∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180°﹣2α,∴2β=360°﹣(180°﹣2α),∴β=α+90°,∵D是BC的中点,DE⊥BC,∴OE是线段BC的垂直平分线,∴BE=CE,∠BED=∠CED,∠EDC=90°∵∠BCA=∠EDC+∠CED,∴β=90°+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,∴O、A、E、B四点共圆,∴∠EBO+∠EAG=180°,∴∠EBA+∠OBA+∠EAG=180°,∴γ+α=180°;(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA=90°,∠BCE=45°,由(1)可知:O、A、E、B四点共圆,∴∠BEC=90°,∵△ABE的面积为△ABC的面积的4倍,∴,∴,设CE=3x,AC=x,由(1)可知:BC=2CD=6,∵∠BCE=45°,∴CE=BE=3x,∴由勾股定理可知:(3x)2+(3x)2=62,x=,∴BE=CE=3,AC=,∴AE=AC+CE=4,在Rt△ABE中,由勾股定理可知:AB2=(3)2+(4)2,∴AB=5,∵∠BAO=45°,∴∠AOB=90°,在Rt△AOB中,设半径为r,由勾股定理可知:AB2=2r2,∴r=5,∴⊙O半径的长为5.9、(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DEO=90°,∴∠DEO=∠ACB,∵OD∥BC,∴∠DOE=∠ABC,∴△DOE~△ABC;(2)证明:∵△DOE~△ABC,∴∠ODE=∠A,∵∠A和∠BDC是所对的圆周角,∴∠A=∠BDC,∴∠ODE=∠BDC,∴∠ODF=∠BDE;(3)解:∵△DOE~△ABC,∴,即S△ABC =4S△DOE=4S1,∵OA=OB,∴,即S△BOC=2S1,∵,∴,∴,即,∴.10、解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=c2+2c+c,解得c=﹣3或c=0(舍去),∴c=﹣3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵直线BE经过点B(3,0),E(1,﹣4),∴利用待定系数法可得直线BE的表达式为y=2x﹣6.∵点F在BE上,∴m=2×2﹣6=﹣2,即点F的坐标为(0,﹣2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,∵S△PQN=S△APM,∴,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,n2﹣4n),R点的坐标为(n,n2﹣4n),N点的坐标为(n,n2﹣2n﹣3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴时,NQ取最小值1.此时Q点的坐标为;②点Q在直线PN的右侧时,Q点的坐标为(n+11,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴时,NQ取最小值1.此时Q点的坐标为.综上可知存在满足题意的点Q,其坐标为或.。