2018-2019学年四川省巴中中学八年级(上)期中数学试卷
- 格式:pdf
- 大小:3.16 MB
- 文档页数:17
四川巴中2018-2019学度初二上年末数学试题含解析〔时刻:120分钟,总分值:120分〕【一】选择题。
个小题,每题只有一个正确旳选项,每小题3分,总分值30分〕 1、以下方程组中是二元一次方程组旳是〔 〕A 、⎩⎨⎧=-=+.2,32y xy x B 、⎩⎨⎧=+=.3,1y x xyC 、⎩⎨⎧=+=.52,3y xD 、⎩⎨⎧=-=+.63,832z x y x2、四个三角形分别满足以下条件:○1三角形旳三边之比为;○2三角形旳三边分别是9、40、41;○3三角形三内角之比为1:2:3;○4三角形一边上旳中线等于这边旳一半。
其中直角三角形有〔 〕个A 、4B 、3C 、2D 、1 3、在平面直角坐标系中,点A 旳坐标为〔4,3〕,将线段OA 绕原点O 顺时针旋转900得到OA /,那么点A /旳坐标是〔 〕 A 、〔-3, 4〕 B 、〔3,-4〕 C 、〔-4,3〕 D 、〔4,-3〕 4、在平面直角坐标系中,一次函数b kx y +=旳图象通过【二】【三】四象限,那么以下结论正确旳选项是〔 〕A 、k >0,b >0B 、k >0, b <0C 、k <0, b >0D 、k <0, b <0.5、如图,a ∥b,∠1=65°,∠2=140°,那么∠3=〔〕A 、100°B 、105°C 、110°D 、115° 6、以下语句正确旳有〔 〕个○1256旳平方根是±4;○2一对相反数旳立方根之和为0;○3平方根等于本身旳数有1和0; 4A 、1B 、2C 、3D 、47、2350x y +-=,那么x y 旳值是〔 〕A 、19B 、-6C 、9D 、16-8. 以下四组点中,能够在同一个正比例函数图象上旳一组点是〔 〕A 、〔2,-3〕、〔-4,6〕B 、〔-2,3〕、〔4,6〕C 、〔-2,-3〕、〔4,-6〕D 、〔2,3〕、〔-4,6〕 9, 小刚想测量教学楼旳高度,他用一根绳子从楼顶垂下,发觉绳子垂到地面后还多了2米,当他把绳子旳下端拉开6米后,发觉绳子下端刚好接触地面,那么教学楼旳高度是〔 〕米A 、10B 、12C 、14D 、8A 、1(1,5)Pa -和2(2,1)Pb -关于x 轴对称,那么2013()a b +旳值是1。
2018-2019(含答案)八年级(上)期中数学试卷 (14).................................................................................................................................................................2018.10.22一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目的要求的.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.下列四个等式从左到右的变形,是多项式因式分解的是()A.B.C.D.3.下列运算正确的是()A. B.C. ∙D.4.分解因式结果正确的是()A. B.C. D.5.长方形的面积为,若它的一边长为,则它的周长为()A. B.C. D.6.如图,有、、三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在,两边高线的交点处B.在,两边中线的交点处C.在,两边垂直平分线的交点处D.在,两内角平分线的交点处7.若,,则和的值分别为()A.,B.,C.,D.,8.的值为()A. B. C. D.9.根据下列已知条件,能唯一画出的是()A.,,B.,,C.,,D.,10.如图,已知中,,,是高和的交点,则线段的长度为()A. B. C. D.11.如图,中,,是的中点,的垂直平分线分别交、、于点、、,则图中全等三角形的对数是()A.对B.对C.对D.对12.如图,和分别沿着边、翻折形成的,若,与交于点,则的度数为()A. B. C. D.二、填空题(每小题3分,共18分)13.如果点和点关于轴对称,则的值是________.14.如图,的周长为,的垂直平分线交于点,为垂足,,则的周长为________.15.如图,,,不再添加辅助线和字母,要使,需添加的一个条件是________(只写一个条件即可)16.点是内一点,且点到三边的距离相等,,则________.17.若是一个完全平方式,则的值为________.18.阅读下文,寻找规律.计算:,,….观察上式,并猜想:________.根据你的猜想,计算:________.(其中是正整数)三、解答题:19.在平面直角坐标系中,,,.在平面直角坐标系中,,,.在图中作出关于轴的对称;写出关于轴对称的各顶点坐标:________;________;________.20.化简求值:,其中.21.因式分解:.22.如图,是中点,,.证明:.23.已知:如图,的角平分线与的垂直平分线交于点,,,垂足分别为,.①求证:;②若,,求的周长.24.阅读理解:如图①,在中,若,,求边上的中线的取值范围.解决此问题可以用如下方法:延长到点使,再连接(或将绕着点逆时针旋转得到),把、,集中在中,利用三角形三边的关系即可判断.中线的取值范围是________;24.问题解决:如图②,在中,是边上的中点,于点,交于点,交于点,连接,求证:;24.问题拓展:如图③,在四边形中,,,,以为顶点作一个角,角的两边分别交,于、两点,连接,探索线段,,之间的数量关系,并加以证明.答案1. 【答案】A【解析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:、是轴对称图形,故符合题意;、不是轴对称图形,故不符合题意;、不是轴对称图形,故不符合题意;、不是轴对称图形,故不符合题意.故选:.2. 【答案】D【解析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【解答】解:、是整式的乘法,故错误;、没把一个多项式化为几个整式的积的形式,故错误;、没把一个多项式化为几个整式的积的形式,故错误;、把一个多项式化为几个整式的积的形式,故正确;故选:.3. 【答案】C【解析】原式各项计算得到结果,即可作出判断.【解答】解:、原式,错误;、原式,错误;、原式,正确;、原式,错误,故选4. 【答案】D【解析】首先提取公因式,进而利用平方差公式进行分解即可.【解答】解:.故选:.5. 【答案】D【解析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:,则周长是:.故选.6. 【答案】C【解析】要求到三小区的距离相等,首先思考到小区、小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段的垂直平分线上,同理到小区、小区的距离相等的点在线段的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.【解答】解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在,两边垂直平分线的交点处.故选.7. 【答案】C【解析】已知等式利用完全平方公式化简,整理即可求出所求式子的值.【解答】解:已知等式整理得: ①,②,①-②得:,即;① ②得:,即,故选8. 【答案】D【解析】应用乘法分配律,求出算式的值为多少即可.【解答】解:故选:.9. 【答案】C【解析】要满足唯一画出,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有选项符合,是满足题目要求的,于是答案可得.【解答】解:、因为,所以这三边不能构成三角形;、因为不是已知两边的夹角,无法确定其他角的度数与边的长度;、已知两角可得到第三个角的度数,已知一边,则可以根据来画一个三角形;、只有一个角和一个边无法根据此作出一个三角形.故选.10. 【答案】B【解析】易证后就可以得出,进而可求出线段的长度.【解答】解:∵ ,∴ ,∴ ,,∴ ,在和中,,∴ ,∴ ,故选.11. 【答案】D【解析】根据线段垂直平分线上的点到线段两端点的距离相等可得,然后判断出和全等,再根据等腰三角形三线合一的性质可得,从而得到关于直线轴对称,再根据全等三角形的定义写出全等三角形即可得解.【解答】解:∵ 是的垂直平分线,∴ ,又∵ ,∴ ,∵ ,是的中点,∴ ,∴ 关于直线轴对称,∴ ,,,综上所述,全等三角形共有对.故选.12. 【答案】B【解析】根据,三角形的内角和定理分别求得,,的度数,然后根据折叠的性质求出、、的度数,在中,根据三角形的内角和定理求出的度数,继而可求得的度数,最后根据三角形的外角定理求出的度数.【解答】解:在中,∵ ,∴设为,为,为,则,解得:,则,,,由折叠的性质可得:,,,在中,,∴ ,∴ .故选.13. 【答案】【解析】结合关于轴、轴对称的点的坐标的特点:关于轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点关于轴的对称点的坐标是;关于轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点关于轴的对称点的坐标是.求解即可.【解答】解:∵点和点关于轴对称,∴ ,,∴ .故答案为:.14. 【答案】【解析】根据垂直平分线的性质计算.的周长.【解答】解:∵ 的垂直平分线交于,为垂足∴ ,,∵ 的周长为,∴∴ 的周长.故答案为:.15. 【答案】或【解析】添加条件可证明,然后再根据,可得,再利用定理证明即可,或利用定理证明.【解答】解:添加,理由如下:∵ ,∴ ,∵ ,∴ ,在和中,,∴ .故答案是:.当添加时,利用即可证得.故答案是:或.16. 【答案】【解析】根据三角形内角和定理求出,再根据角平分线上的点到角的两边的距离相等判断出点是角平分线的交点,再根据角平分线的定义求出的度数,然后在中,利用三角形内角和定理列式进行计算即可得解.【解答】解:如图,∵ ,∴ ,∵点到三边的距离相等,∴点是角平分线的交点,∴,在中,.故答案为:.17. 【答案】或【解析】利用完全平方公式的结构特征判断即可得到的值.【解答】解:∵ 是一个完全平方式,∴ ,故的值为或,故答案为:或18. 【答案】,; .【解析】归纳总结得到一般性规律,写出即可;; 原式变形后,利用得出的规律计算即可得到结果.【解答】解:解:;;.19. 【答案】,,【解析】先连接、,于,,是梯形易证四边等腰梯形,从有,而、分是四边中点,用角形中定理有且且,可证四边形是菱形,再利,易求,可是含有角的直角三形,再利股定理求,即求边形的周长.【解答】解:连接、,如图所示,∴ 边形是平四边形,,∴,又∵ ,∴ 形,∴ ,∵ ,形,∴ ,∴ ,∵、、分别是四边中点,同理有,且,,∴ ,,∴四边是腰梯形,∴四边形的周长.20. 【答案】解:原式当时,原式.【解析】对先去括号,再合并同类项,化简后将代入化简后的式子,即可求得值.其中利用完全平方公式去括号,利用平方差公式去括号.【解答】解:原式当时,原式.21. 【答案】解:;;;;.【解析】首先提取公因式,进而利用完全平方公式分解因式得出答案;; 直接利用平方差公式分解因式,进而利用完全平方公式分解因式得出答案;; 首先提取公因式,进而利用平方差公式分解因式得出答案.【解答】解:;;;;.22. 【答案】证明:∵ 是中点,∴ ,∵ ,∴ ,即,在与中,,,∴ .【解析】根据全等三角形的判定和性质即可得到结论.【解答】证明:∵ 是中点,∴ ,∵ ,∴ ,即,在与中,,,∴ .23. 【答案】①证明:连结,∵ 在的中垂线上∴∵ ,平分∴在和中,,∴ ,∴ ;②解:由可得,,∴ ,∴ 的周长,.【解析】①连接,根据垂直平分线性质可得,可证,可得;②根据得出解答即可.【解答】①证明:连结,∵ 在的中垂线上∴∵ ,平分∴在和中,,∴ ,∴ ;②解:由可得,,∴ ,∴ 的周长,.24. 【答案】;; 证明:延长至点,使,连接、,如图②所示:同得:,∴ ,∵ ,,∴ ,在中,由三角形的三边关系得:,∴ ;; 解:;理由如下:延长至点,使,连接,如图所示:∵ ,,∴ ,在和中,,∴ ,∴ ,,∵ ,,∴ ,∴ ,在和中,,∴ ,∴ ,∵ ,∴ .【解析】延长至,使,由证明,得出,在中,由三角形的三边关系求出的取值范围,即可得出的取值范围;; 延长至点,使,连接、,同得,得出,由线段垂直平分线的性质得出,在中,由三角形的三边关系得出即可得出结论;; 延长至点,使,连接,证出,由证明,得出,,证出,再由证明,得出,即可得出结论.【解答】解:延长至,使,连接,如图①所示:∵ 是边上的中线,∴ ,在和中,,∴ ,∴ ,在中,由三角形的三边关系得:,∴ ,即,∴ ;; 证明:延长至点,使,连接、,如图②所示:同得:,∴ ,∵ ,,∴ ,在中,由三角形的三边关系得:,∴ ;; 解:;理由如下:延长至点,使,连接,如图所示:∵ ,,∴ ,在和中,,∴ ,∴ ,,∵ ,,∴ ,∴ ,在和中,,∴ ,∴ ,∵ ,∴ .。
2018-2019(含答案)八年级(上)期中数学试卷.................................................................................................................................................................2018.10.22一、选择题(每题3分,共18分)1.下列各式中互为有理化因式的是()A.a+b和a−bB.−x−1和x−1C.5−2和−5+2D.x a+y b和x a+y b2.下列各式中,在实数范围内不能分解因式的是()A.x2+4x+4B.x2−4x−4C.x2+x+1D.x2−x−13.已知a=7−5,b=5−3,c=3−7,则a、b、c三个数的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>a>b4.已知一个两位数等于它个位上的数的平方,并且十位上的数字比个位上的数字小3,则这个两位数为()A.25B.25或36C.36D.−25或−365.关于x的方程(a−6)x2−8x+6=0有实数根,则整数a的最大值是()A.6B.7C.8D.96.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是()A.y=50−2x(0<x<50)B.y=50−2x(0<x<25)(50−2x)(0<x<50)C.y=12(50−x)(0<x<25)D.y=12二、填空题:(每题2分,共24分)7.如果(x+2)2=−x−2,则x的取值范围是________.8.已知20n是整数,则满足条件的最小正整数n为________.9.已知m=n−1−1−n+3,则m n+1=________.a−1是同类二次根式,则a=________,b=________.10.若最简根式4a−1和3b+511.关于x的一元二次方程(a−1)x2+x+(a2−1)=0的一个根是0,则a的值是________.12.已知(x2+y2)2+2(x2+y2)=15,则x2+y2=________.13.如果关于x的方程(a−1)x2−2x−1=0有两个不相等的实数根,那么a的取值范围是________.14.在实数范围内因式分解:2x2−8xy+5y2=________.15.某件商品原价100元,经过两次降价后,售价为64元,设平均每次降价的百分率为x,依题意可列方程________.16.已知点P(a, b)在第三象限,则直线y=(a+b)x经过第________象限,y随x的增大而________.17.反比例函数y=kx的图象经过点P(a, b),且a、b是一元二次方程x2−5x+4=0的两根,k的值是________,点P的坐标为________.18.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=________.三、简答题(每题4分,共28分)19.计算:12−(3+1)2+434÷513.20.计算:xy2−1x8x3y+1y18xy3(x>0, y>0)21.解方程:(x+5)2−2(x+5)=8.22.解方程:2x2−5x+1=0(用配方法)23.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?24.已知y=y1−y2,y1与x成反比例,y2与(x−2)成正比例,并且当x=3时,y=5,当x=1时,y=−1;求y与x之间的函数关系式.25.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长________千米;(2)小强下坡的速度为________千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是________分钟.四、综合题:(每题6分,共30分)26.已知关于x的方程x2−(2k+1)x+4k−2=0(1)求证:不论k取什么实数值,这个方程总有实数根;(2)若等腰△ABC的一边长为a=4,另两边的长b、c恰好是这个方程的两个根,求△ABC 的周长.27.如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m.设AD的长为xm,DC的长为ym.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.28.如图,在△ABC中,∠C=90∘,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某点时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.29.如图,正方形OAPB、ADFE的顶点A、D、B在坐标轴上,点E在AP上,点P、F在函数y=k的图x象上,已知正方形OAPB的面积为9.(1)求k的值和直线OP的解析式;(2)求正方形ADFE的边长.30.如图,在四边形ABCD中,AB=BC=1,∠ABC=90∘,且AB // CD,将一把三角尺的直角顶点P放在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,探究:(1)如图,当点Q在边CD上时,线段PQ与BP有怎样的数量关系?并证明你的猜想.(2)当点Q在线段DC延长线上时,在备用图中画出符合要求的示意图,并判断(1)中的结论是否仍成立?(3)点P在线段AC上运动时,△PCQ是否可能为等腰三角形?若可能,求此时AP的值;若不可能,请说明理由.答案1. 【答案】B【解析】根据有理化因式的定义进行解答即可.【解答】解:A、∵⋅=(a+b)(a−b),∴两根式不互为有理化因式,故本选项错误;B、∵(−x−1)⋅x−1=1−x,∴两根式互为有理化因式,故本选项正确;C、∵(5−2)•(−5+2)=210−7,∴两根式不互为有理化因式,故本选项错误;D、∵(x a+y b)•(x a+y b)=(x a+y b)2,∴两根式不互为有理化因式,故本选项错误.故选B.2. 【答案】C【解析】先令二次三项式为0,若有实数根则能因式分解,否则不能.【解答】解:A、x2+4x+4=0有实数根,故本选项能在实数范围内因式分解;B、x2−4x−4=0有实数根,故本选项能在实数范围内因式分解;C、x2+x+1=0没有实数根,故本选项不能在实数范围内因式分解;D、x2−x−1=0有实数根,故本选项能在实数范围内因式分解;故选C.3. 【答案】B【解析】首先求出a,b,c的倒数,进而比较它们的大小,进而得出a、b、c三个数的大小关系.【解答】解:∵a=7−5,b=5−3,c=3−7,∴1 a =7−5=7+52,1 b =5−3=5+32,1 c =3−7=3+72,∵7>3,∴1 a >1b,∵3>5,∴1 a <1c,∴1 c >1a>1b,∴b>a>c.故选:B.4. 【答案】B【解析】设十位上的数字为x,则个位上的数字为(x+3),根据该两位数等于它个位上的数的平方,即可得出关于x的一元二次方程,解之即可得出x的值,进而即可得出该两位数.【解答】解:设十位上的数字为x,则个位上的数字为(x+3),根据题意得:10x+x+3=(x+3)2,整理得:x2−5x+6=0,解得:x=2或x=3,∴x+3=5或x+3=6,∴这个两位数为25或36.故选B.5. 【答案】C【解析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a−6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【解答】解:当a−6=0,即a=6时,方程是−8x+6=0,解得x=68=34;当a−6≠0,即a≠6时,△=(−8)2−4(a−6)×6=208−24a≥0,解上式,得a≤263≈8.6,取最大整数,即a=8.故选C.6. 【答案】D【解析】根据等腰三角形的腰长=(周长-底边长)×12,及底边长x>0,腰长>0得到.【解答】解:依题意有y=12(50−x).∵x>0,50−x>0,且x<2y,即x<2×12(50−x),得到0<x<25.故选D7. 【答案】x≤−2【解析】根据二次根式的性质,可得答案.【解答】解:由(x+2)2=(−x−2)2=−x−2,得x+2≤0,解得x≤−2,故答案为:x≤−2.8. 【答案】5【解析】因为20n是整数,且20n=4×5n=25n,则5n是完全平方数,满足条件的最小正整数n为5.【解答】解:∵20n=4×5n=25n,且20n是整数;∴25n是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为:5.9. 【答案】9【解析】根据二次根式中的被开方数必须是非负数列出不等式,求出n的值,得到m的值,代入代数式根据乘方法则计算即可.【解答】解:由题意得,n−1≥0,1−n≥0,解得,n=1,∴m=3,则m n+1=9,故答案为:9.10. 【答案】3,2【解析】根据最简二次根式与同类二次根式的定义列方程组求解.【解答】解:由题意,得a−1=24a−1=3b+5,解得a=3 b=2,故答案为:3,2.11. 【答案】−1【解析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a −1≠0.【解答】解:∵关于x 的一元二次方程(a −1)x 2+x +(a 2−1)=0的一个根是0, ∴x =0满足该方程,且a −1≠0.∴a 2−1=0,且a ≠1.解得a =−1.故答案是:−1.12. 【答案】3【解析】首先设x 2+y 2=z ,然后将原方程转化为关于z 的一元二次方程,解该方程即可解决问题.【解答】解:设x 2+y 2=z ,(z ≥0)则原方程变为:z 2+2z −15=0,解得:z =3或−5(舍去).故答案为:3.13. 【答案】a >12且a ≠1【解析】根据方程有两个不相等的实数根利用根的判别式结合二次项系数非零即可得出关于a 的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x 的方程(a −1)x 2− 2x −1=0有两个不相等的实数根,∴ a −1≠0△=(− 2)2+4(a −1)>0, 解得:a >12且a ≠1.故答案为:a >12且a ≠1.14. 【答案】( 2x −2 2y + 3y )( 2x −2 2y − 3y )【解析】首先把5y 2变为8y 2−3y 2,然后把前三项组合提公因式2,再利用完全平方分解,然后再次利用平方差分解因式即可.【解答】解:原式=2x 2−8xy +8y 2−3y 2,=2(x −2y )2−3y 2,=[ 2(x −2y )+ 3y ][ 2(x −2y )− 3y ],=( 2x −2 2y + 3y )( 2x −2 2y − 3y ),故答案为:( 2x −2 2y + 3y )( 2x −2 2y − 3y ).15. 【答案】100(1−x )2=64【解析】设平均每次降价的百分率为x ,根据某件商品原价100元,经过两次降价后,售价为64元,可列方程求解.【解答】解:设平均每次降价的百分率为x ,100(1−x )2=64.故答案为:100(1−x )2=64.16. 【答案】二、四,减小【解析】先根据第三象限点的坐标特征得到a <0,b <0,然后根据正比例函数与系数的关系判断直线y =(a +b )x 经过的象限.【解答】解:因为点P (a , b )在第三象限,所以a <0,b <0,可得a+b<0,所以直线y=(a+b)x经过第二、四象限,y随x的增大而减小;故答案为:二、四;减小17. 【答案】4,(1, 4)或(4, 1)的图象经过点P(a, b),把点P的坐标代入解析式,得到关【解析】先根据反比例函数y=kx于a、b、k的等式ab=k;又因为a、b是一元二次方程x2−5x+4=0的两根,得到a+b=5,ab=4,根据以上关系式求出a、b的值即可.得,ab=k,【解答】解:把点P(a, b)代入y=kx因为a、b是一元二次方程x2−5x+4=0的两根,根据根与系数的关系得:a+b=5,ab=4,解得a=1,b=4或a=4,b=1,所以k=4,点P的坐标是(1, 4)或(4, 1).故答案为4,(1, 4)或(4, 1).18. 【答案】6【解析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4的系数k,由此即可求出S1+S2.x上的点,分别经过A、B两点向x轴、y轴作垂线段,【解答】解:∵点A、B是双曲线y=4x则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4−1×2=6.故答案为6.19. 【答案】解:原式=23−(3+23+1)+23×343=23−(4+23)+5=−【解析】根据二次根式的运算性质即可求出答案.【解答】解:原式=2−(3+2+1)+2×343=23−(4+23)+5=−20. 【答案】解:原式=2xy−22xy+32xy2xy.=322【解析】根据二次根式性质与化简,可得同类二次根式,根据合并同类二次根式,可得答案.【解答】解:原式=2xy−22xy+32xy2=322xy.21. 【答案】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.【解析】将x+5看做整体因式分解法求解可得.【解答】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.22. 【答案】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.【解析】将常数项移到右边后把二次项系数化为1,再两边配上一次项系数一半的平方求解可得.【解答】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.23. 【答案】修建的道路宽为1米.【解析】设路宽为x,则道路面积为30x+20x−x2,所以所需耕地面积551=20×30−(30x+20x−x2),解方程即可.【解答】解:设修建的路宽为x米.则列方程为20×30−(30x+20x−x2)=551,解得x1=49(舍去),x2=1.24. 【答案】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.【解析】根据题意设出反比例函数与正比例函数的解析式,代入y=y1−y2,再把当x=3时,y=5,当x=1时,y=−1代入关于y的关系式,求出未知数的值,即可求出y与x之间的函数关系式.【解答】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.25. 【答案】2; 0.5; 14【解析】(1)根据题意和函数图象可以得到下坡路的长度;; (2)根据函数图象中的数据可以求的小强下坡的速度;; (3)根据题意可以求得小强上坡的速度,进而求得小强返回时需要的时间.【解答】解:(1)由题意和图象可得,小强去学校时下坡路为:3−1=2(千米),; (2)小强下坡的速度为:2÷(10−6)=0.5千米/分钟,; (3)小强上坡时的速度为:1÷6=16千米/分钟,故小强回家骑车走这段路的时间是:21+10.5=14(分钟),26. 【答案】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.【解析】(1)根据方程的系数结合根的判别式即可得出△=(2k−3)2≥0,由此可得出:不论k取什么实数值,这个方程总有实数根;; (2)当a为底时,由根的判别式△=(2k−3)2= 0可求出k值,再根据根与系数的关系可得出b+c=4,由b+c=a可知此种情况不符合题意;当a为腰时,将x=4代入原方程求出k值,再根据根与系数的关系可得出b+c=6,套用三角形的周长公式即可求出结论.【解答】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.27. 【答案】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.【解析】(1)根据面积为60m2,可得出y与x之间的函数关系式;; (2)由(1)的关系式,结合x、y都是正整数,可得出x的可能值,再由三边材料总长不超过26m,DC的长<12,可得出x、y的值,继而得出可行的方案.【解答】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.28. 【答案】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.【解析】(1)设x秒钟后,可使△PCQ的面积为8平方厘米,用x表示出△PCQ的边长,根据面积是8可列方程求解.; (2)假设y秒时,△PCQ的面积等于△ABC的面积的一半,列出方程看看解的情况,可知是否有解.【解答】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.29. 【答案】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.【解析】(1)利用正方形的性质得到P点坐标为(3, 3),再把P点坐标代入y=kx即可得到k的值;然后利用待定系数法求直线OP的解析式;; (2)设正方形ADFE的边长为a,利用正方形的性质易表示F点的坐标为(a+3, a),然后把F(a+3, a)代入y=9x,再解关于a的一元二次方程即可得到正方形ADFE的边长.【解答】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.30. 【答案】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.【解析】(1)可通过构建全等三角形来证PB=PQ,过点P作PF⊥BC于点F,PE⊥CD于点E,由于△PEC是等腰直角三角形,因此PE=EC,可得出四边形PECF是正方形,由此可得出PE=PF,根据同角的余角相等可得出∠FPB=∠QPE,这两个三角形中又有一组直角,因此构成了全等三角形判定条件中ASA的条件.根据全等三角形即可得出PB=PQ;; (2)根据题意画出图形,同(1)过点P作PF⊥BC于点F,PE⊥CD于点E可得出四边形PFCE是正方形,故PE=PF.由ASA定理得出△BPF≅△QPE,根据全等三角形的性质即可得出结论;; (3)延长BP交DC于G,可得出等腰△PCQ中,PC=QC,故可得出∠1=∠2,由直角三角形的性质得出∠5=∠3,在正方形ABCD中根据平行线的性质即可得出结论.【解答】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.。
2018-2019(含答案)八年级(上)期中数学试卷 (12).................................................................................................................................................................2018.10.22一、选择题(本大题共14小题,每小题3分,共42分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A. B. C. D.2.等腰三角形一腰上的高与另一腰的夹角为30∘,则顶角的度数为()A.60∘B.120∘C.60∘或150∘D.60∘或120∘3.将一副直角三角板如图放置,使含30∘角的三角板的直角边和含45∘角的三角板的一条直角边在同一条直线上,则∠1的度数为()A.75∘B.65∘C.45∘D.30∘4.已知三角形的两边长是2cm,3cm,则该三角形的周长l的取值范围是()A.1<l<5B.1<l<6C.5<l<9D.6<l<105.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;AB长为半径作弧,两弧交于点C.若点C的坐标为再分别以点A、B为圆心,以大于12(m−1, 2n),则m与n的关系为()A.m+2n=1B.m−2n=1C.2n−m=1D.n−2m=16.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44∘,则∠P的度数为()A.44∘B.66∘C.88∘D.92∘7.如图,在△ABC中,AB=AC,∠A=40∘,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70∘B.80∘C.40∘D.30∘8.如图,AB // CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.29.一个多边形的外角和是内角和的2,这个多边形的边数为()5A.5B.6C.7D.810.如图,在△ABC中,∠A=40∘,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=()A.110∘B.100∘C.90∘D.80∘11.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.412.如图所示,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F,则∠DFC的度数为()A.60∘B.45∘C.40∘D.30∘13.如图的七边形ABCDEFG中,AB、DE的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220∘,则∠BOD的度数为何?()A.40B.45C.50D.6014.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF // AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(本大题共5小题,每小题3分,共15分)15.如图,直线a // b,∠1=50∘,∠2=30∘,则∠3=________.16.点P(1, 2)关于直线x=−1对称的点的坐标是________.17.如图,△ACB≅△A1CB1,∠BCB1=40∘,则∠ACA1的度数为________度.18.如图是标准跷跷板的示意图.横板AB的中点过支撑点O,且绕点O只能上下转动.如果∠OCA=90∘,∠CAO=25∘,则小孩玩耍时,跷跷板可以转动的最大角度为________.19.在平面直角坐标系中,点A(2, 0),B(0, 4),作△BOC,使△BOC与△ABO全等,则点C 坐标为________.(点C不与点A重合)三、解答题(本大题共7小题,共63分)20.如图,E、A、C三点共线,AB // CD,∠B=∠E,AC=CD,求证:BC=ED.21.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60∘,∠BCE=40∘,求∠ADB的度数.22.如图,在平面直角坐标系中,A(−3, 2),B(−4, −3),C(−1, −1).如图,在平面直角坐标系中,A(−3, 2),B(−4, −3),C(−1, −1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点△A1,B1,C1的坐标(直接写答案):A1________;B1________;C1________;(3)△A1B1C1的面积为________;(4)在y轴上画出点P,使PB+PC最小.23.如图,在Rt△ABC中,在斜边AB和直角边AC上分别取一点D,E,使DE=DA,延长DE交BC的延长线于点F.△DFB是等腰三角形吗?请说明你的理由.24.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90∘,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≅△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.25.如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)求证:AE // BC;(2)如图(2),将(1)中的动点D运动到边BA的延长线上,仍作等边△EDC,请问是否仍有AE // BC?证明你的猜想.26.已知,△ABC是等腰直角三角形,BC=AB,A点在x轴负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(−3, 0),点B的坐标是(0, 1),求点C的坐标;(2)如图2,过点C作CD⊥y轴于D,求证OA=CD+OD;(3)如图3,若x轴恰好平分∠BAC,BC与x轴交于点E,过点C作CF⊥x轴于F,问CF与AE有怎样的数量关系?并说明理由.答案1. 【答案】B【解析】结合轴对称图形的概念进行求解即可.【解答】解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意.故选B.2. 【答案】D【解析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60∘;当高在三角形外部时(如图2),顶角是120∘.故选D.3. 【答案】A【解析】先根据同旁内角互补,两直线平行得出AC // DF,再根据两直线平行内错角相等得出∠2=∠A=45∘,然后根据三角形内角与外角的关系可得∠1的度数.【解答】解:∵∠ACB=∠DFE=90∘,∴∠ACB+∠DFE=180∘,∴AC // DF,∴∠2=∠A=45∘,∴∠1=∠2+∠D=45∘+30∘=75∘.故选A.4. 【答案】D【解析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.即可求解.【解答】解:第三边的取值范围是大于1而小于5.又∵另外两边之和是5,∴周长的取值范围是大于6而小于10.故选D.5. 【答案】BAB长为半径作弧,两弧交于点【解析】根据OA=OB;再分别以点A、B为圆心,以大于12C,得出C点在∠BOA的角平分线上,进而得出C点横纵坐标相等,进而得出答案.AB长为半径作弧,两弧交于点C,【解答】解:∵OA=OB;分别以点A、B为圆心,以大于12∴C点在∠BOA的角平分线上,∴C点到横纵坐标轴距离相等,进而得出,m−1=2n,即m−2n=1.故选:B.6. 【答案】D【解析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≅△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=44∘,根据三角形内角和定理计算即可.【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,AM=BK∠A=∠B,AK=BN∴△AMK≅△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44∘,∴∠P=180∘−∠A−∠B=92∘,故选:D.7. 【答案】D【解析】由等腰△ABC中,AB=AC,∠A=40∘,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【解答】解:∵等腰△ABC中,AB=AC,∠A=40∘,=70∘,∴∠ABC=∠C=180∘−∠A2∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40∘,∴∠CBE=∠ABC−∠ABE=30∘.故选:D.8. 【答案】C【解析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB // CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选C.9. 【答案】C【解析】根据多边形的外角和为360∘及题意,求出这个多边形的内角和,即可确定出多边形的边数.【解答】解:∵一个多边形的外角和是内角和的25,且外角和为360∘,∴这个多边形的内角和为900∘,即(n−2)⋅180∘=900∘,解得:n=7,则这个多边形的边数是7,故选C.10. 【答案】A【解析】由D点是∠ABC和∠ACB角平分线的交点可推出∠DBC+∠DCB=70∘,再利用三角形内角和定理即可求出∠BDC的度数.【解答】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180∘−40∘=140∘,∴∠DBC+∠DCB=70∘,∴∠BDC=180∘−70∘=110∘,故选A.11. 【答案】C【解析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=12BC⋅EF=12×5×2=5,故选C.12. 【答案】A【解析】因为△ABC为等边三角形,所以∠BAC=∠ABC=∠BCA=60∘,AB=BC=AC,根据SAS易证△ABD≅△CAE,则∠BAD=∠ACE,再根据三角形内角和定理求得∠DFC的度数.【解答】解:∵△ABC为等边三角形∴∠BAC=∠ABC=∠BCA=60∘∴AB=BC=AC在△ABD和△CAE中BD=AE,∠ABD=∠CAE,AB=AC∴△ABD≅△CAE∴∠BAD=∠ACE又∵∠BAD+∠DAC=∠BAC=60∘∴∠ACE+∠DAC=60∘∵∠ACE+∠DAC+∠AFC=180∘∴∠AFC=120∘∵∠AFC+∠DFC=180∘∴∠DFC=60∘.故选A.13. 【答案】A【解析】延长BC交OD与点M,根据多边形的外角和为360∘可得出∠OBC+∠MCD+∠CDM=140∘,再根据四边形的内角和为360∘即可得出结论.【解答】解:延长BC交OD与点M,如图所示.∵多边形的外角和为360∘,∴∠OBC+∠MCD+∠CDM=360∘−220∘=140∘.∵四边形的内角和为360∘,∴∠BOD+∠OBC+180∘+∠MCD+∠CDM=360∘,∴∠BOD=40∘.故选A.14. 【答案】A【解析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≅△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF // AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,∠C=∠CBFCD=BD,∠EDC=∠BDF∴△CDE≅△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.15. 【答案】20∘【解析】首先由平行线的性质可求得∠4的度数,然后再根据三角形的外角的性质即可求得∠3的度数.【解答】解:如图:∵a // b,∴∠4=∠1=50∘.由三角形的外角的性质可知:∠4=∠2+∠3,∴∠3=∠4−∠2=50∘−30∘=20∘.故答案为:20∘.16. 【答案】(−3, 2)【解析】点P(1, 2)与关于直线x=−1对称的点纵坐标不变,两点到x=−1的距离相等,据此可得其横坐标.【解答】解:点P(1, 2)关于直线x=−1对称的点的坐标是(−3, 2).故答案为:(−3, 2).17. 【答案】40【解析】直接利用全等三角形性质得出∠B1CA1=∠BAC,进而得出答案.【解答】解:∵△ACB≅△A1CB1,∴∠B1CA1=∠BAC,∴∠B1CA1−∠BCA1=∠BAC−∠BCA1,∴∠BCB1=∠ACA1=40∘,故答案为:40.18. 【答案】50∘【解析】已知如图所示:欲求∠A′OA的度数,根据三角形的外角等于与它不相邻的两个内角和,可知∠A′OA=∠OAC+∠OB′C,又OA=OB′,根据等边对等角,可知∠OAC=∠OB′C=25∘.【解答】解:∵OA=OB′,∠OCA=90∘,∴∠OAC=∠OB′C=25∘,∴∠A′OA=∠OAC+∠OB′C=2∠OAC=50∘.答案为50∘.19. 【答案】(2, 4)或(−2, 0)或(−2, 4)【解析】根据全等三角形的判定和已知点的坐标画出图形,即可得出答案.【解答】解:如图所示:有三个点符合,∵点A(2, 0),B(0, 4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(−2, 0),C2(−2, 4),C3(2, 4).故答案为:(2, 4)或(−2, 0)或(−2, 4).20. 【答案】证明:∵AB // CD,∴∠BAC=∠ECD,在△ABC和△CED中∠BAC=∠ECD ∠B=∠EAC=CD,∴△ACB∽△CED(AAS),∴BC=ED.【解析】首先根据平行线的性质可得∠BAC=∠ECD,再利用AAS定理证明△ACB∽△CED,然后再根据全等三角形对应边相等可得结论.【解答】证明:∵AB // CD,∴∠BAC=∠ECD,在△ABC和△CED中∠BAC=∠ECD ∠B=∠EAC=CD,∴△ACB∽△CED(AAS),∴BC=ED.21. 【答案】解:∵AD是△ABC的角平分线,∠BAC=60∘,∴∠DAC=∠BAD=30∘,∵CE是△ABC的高,∠BCE=40∘,∴∠B=50∘,∴∠ADB=180∘−∠B−∠BAD=180∘−30∘−50∘=100∘.【解析】根据AD是△ABC的角平分线,∠BAC=60∘,得出∠BAD=30∘,再利用CE是△ABC的高,∠BCE=40∘,得出∠B的度数,进而得出∠ADB的度数.【解答】解:∵AD是△ABC的角平分线,∠BAC=60∘,∴∠DAC=∠BAD=30∘,∵CE是△ABC的高,∠BCE=40∘,∴∠B=50∘,∴∠ADB=180∘−∠B−∠BAD=180∘−30∘−50∘=100∘.22. 【答案】(3, 2),(4, −3),(1, −1),6.5求出即,【解析】根据总数=频数频率科普物的阅读,增加活动次数来激发学生学习趣.【解答】解:∵45÷0.5300,∴这次机调查了300名学/空//格/(分)∴估计读艺术类书籍的生全校有3.(分建:填科普类频数(1分填艺术类频率并补画条形图(1,文学术同)建议强科普书的阅读,学校举行科识讲座来促进这项作(只合,出发点积即可).(8)23. 【答案】证明:△DFB是等腰三角形.理由是:∵DE=DA,∴∠A=∠AED,∵∠AED=∠CEF,∵∠A=∠CEF,∵∠ACB=∠ECF=90∘,∴∠A+∠B=∠CEF+∠F,∴∠B=∠F,∴DB=DF,∴△DFB是等腰三角形.【解析】根据等腰三角形的性质,得出∠A=∠AED,根据对顶角相等得出∠AED=∠CEF,由直角三角形的两个锐角互余,得出∠B=∠F,则DB=DF,即可证明△DFB是等腰三角形.【解答】证明:△DFB是等腰三角形.理由是:∵DE=DA,∴∠A=∠AED,∵∠AED=∠CEF,∵∠A=∠CEF,∵∠ACB=∠ECF=90∘,∴∠A+∠B=∠CEF+∠F,∴∠B=∠F,∴DB=DF,∴△DFB是等腰三角形.24. 【答案】(1)证明:∵∠BAC=∠DAE=90∘∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≅△CAE(SAS).; (2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≅△CAE,∴∠ADB=∠E.∵∠DAE=90∘,∴∠E+∠ADE=90∘.∴∠ADB+∠ADE=90∘.即∠BDE=90∘.∴BD、CE特殊位置关系为BD⊥CE.【解析】要证(1)△BAD≅△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90∘很易证得.; (2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90∘,需证∠ADB+∠ADE=90∘可由直角三角形提供.【解答】(1)证明:∵∠BAC=∠DAE=90∘∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≅△CAE(SAS).; (2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≅△CAE,∴∠ADB=∠E.∵∠DAE=90∘,∴∠E+∠ADE=90∘.∴∠ADB+∠ADE=90∘.即∠BDE=90∘.∴BD、CE特殊位置关系为BD⊥CE.25. 【答案】解:(1)证明:∵∠ACB=60∘,∠DCE=60∘,∴∠BCD=60∘−∠ACD,∠ACE=60∘−∠ACD,∴∠BCD=∠ACE,在△DBC和△EAC中,∵ BC=AC∠BCD=∠ACE DC=EC,∴△DBC≅△EAC(SAS),∴∠EAC=∠B=60∘.又∵∠ACB=60∘∴∠EAC=∠ACB∴AE // BC.; (2)结论:AE // BC,理由:∵△ABC、△EDC为等边三角形∴BC=AC,DC=CE,∠BCA=∠DCE=60∘∠BCA+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△DBC和△EAC中,∵ BC=AC∠BCD=∠ACE DC=EC,∴△DBC≅△EAC(SAS),∴∠EAC=∠B=60∘,又∵∠ACB=60∘∴∠EAC=∠ACB∴AE // BC.【解析】(1)证明△ACE≅△BCD推出∠ACB=∠EAC即可证.; (2)证明△DBC≅△EAC可推出∠EAC=∠ACB,由此可证.【解答】解:(1)证明:∵∠ACB=60∘,∠DCE=60∘,∴∠BCD=60∘−∠ACD,∠ACE=60∘−∠ACD,∴∠BCD=∠ACE,在△DBC和△EAC中,∵ BC=AC∠BCD=∠ACE DC=EC,∴△DBC≅△EAC(SAS),∴∠EAC=∠B=60∘.又∵∠ACB=60∘∴∠EAC=∠ACB∴AE // BC.; (2)结论:AE // BC,理由:∵△ABC、△EDC为等边三角形∴BC=AC,DC=CE,∠BCA=∠DCE=60∘∠BCA+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△DBC和△EAC中,∵ BC=AC∠BCD=∠ACE DC=EC,∴△DBC≅△EAC(SAS),∴∠EAC=∠B=60∘,又∵∠ACB=60∘∴∠EAC=∠ACB∴AE // BC.26. 【答案】解:(1)如图1,过点C作CH⊥y轴于H,∵A(−3, 0),B(0, 1),∴OA=3,OB=1,∵△ABC是等腰直角三角形,∴AB=CB,∠ABC=90∘,∴∠ABO+∠CBH=90∘,∵∠ABO+∠BAO=90∘,∴∠BAO=∠CBH,在△AOB和△BHC中,∠AOB=∠BHC=90∘∠BAO=∠CBHAB=CB,∴△AOB≅△BHC,∴CH=OB=1,BH=OA=3,∴OH=OB+BH=4,∴C(−1, 4);; (2)∵△ABC是等腰直角三角形,∴AB=CB,∠ABC=90∘,∴∠ABO+∠CBD=90∘,∵∠ABO+∠BAO=90∘,∴∠BAO=∠CBD,在△AOB和△BDC中,∠AOB=∠BHC=90∘∠BAO=∠CBHAB=CB,∴△AOB≅△BDC,∴CD=OB,BD=OA,∵BD=OB+OD=CD+OD,∴OA=CD+OD;; (3)CF=12AE,理由:如图3,延长CF,AB相交于点D,∴∠CBD=180∘−∠ABC=90∘,∵CF⊥x轴,∴∠BCD+∠D=90∘,∵∠DAF+∠D=90∘,∴∠BCD=∠DAF,在△ABE和△CBD中,∠ABE=∠CBD ∠BAE=∠BCD AB=CB,∴△ABE≅△CBD,∴AE=CD,∵x轴平分∠BAC,CF⊥x轴,∴AC=AD,∵CF⊥x轴,∴CF=DF,∴CF=12CD=12AE.【解析】(1)先求出OA=3,OB=1,再判断出AB=CB,∠BAO=∠CBH,进而得出△AOB≅△BHC,即可得出结论;; (2)同(1)的方法即可得出结论;; (3)先判断出∠CBD=90∘,再判断出∠BCD=∠DAF,进而判断出△ABE≅△CBD,得出AE=CD,最后判断出DF=CF即可得出结论、【解答】解:(1)如图1,过点C作CH⊥y轴于H,∵A(−3, 0),B(0, 1),∴OA=3,OB=1,∵△ABC是等腰直角三角形,∴AB=CB,∠ABC=90∘,∴∠ABO+∠CBH=90∘,∵∠ABO+∠BAO=90∘,∴∠BAO=∠CBH,在△AOB和△BHC中,∠AOB=∠BHC=90∘∠BAO=∠CBHAB=CB,∴△AOB≅△BHC,∴CH=OB=1,BH=OA=3,∴OH=OB+BH=4,∴C(−1, 4);; (2)∵△ABC是等腰直角三角形,∴AB=CB,∠ABC=90∘,∴∠ABO+∠CBD=90∘,∵∠ABO+∠BAO=90∘,∴∠BAO=∠CBD,在△AOB和△BDC中,∠AOB=∠BHC=90∘∠BAO=∠CBHAB=CB,∴△AOB≅△BDC,∴CD=OB,BD=OA,∵BD=OB+OD=CD+OD,∴OA=CD+OD;; (3)CF=12AE,理由:如图3,延长CF,AB相交于点D,∴∠CBD=180∘−∠ABC=90∘,∵CF⊥x轴,∴∠BCD+∠D=90∘,∵∠DAF+∠D=90∘,∴∠BCD=∠DAF,在△ABE和△CBD中,∠ABE=∠CBD ∠BAE=∠BCD AB=CB,∴△ABE≅△CBD,∴AE=CD,∵x轴平分∠BAC,CF⊥x轴,∴AC=AD,∵CF⊥x轴,∴CF=DF,∴CF=12CD=12AE.。
2018-2019(含答案)八年级(上)期中数学试卷 (9).................................................................................................................................................................2018.10.22一、选择题(将正确答案序号填入下表相应的空格内,每小题3分,共20分)1.下列标志中,可以看作是轴对称图形的是()A. B.C. D.2.在一个三角形的外角中,钝角至少有()A.个B.个C.个D.个3.已知等腰三角形中,腰,底,则这个三角形的周长为()A. B. C. D.4.将的三个顶点坐标的横坐标都乘以,并保持纵坐标不变,则所得图形与原图形的关系是()A.关于轴对称B.关于轴对称C.关于原点对称D.将原图形沿轴的负方向平移了个单位5.如果一个多边形的内角和是,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形6.如图所示,三角形纸片中,有一个角为,剪去这个角后,得到一个四边形,则的度数为()A. B. C. D.7.如图,在中,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,,作直线,交于点,连接.若的周长为,,则的周长为()A. B. C. D.8.下面四个图形中,线段是的高的图是()A. B.C. D.9.如图所示,,,,结论:① ;② ;③ ;④ .其中正确的有()A.个B.个C.个D.个10.已知:点、是的边上的两个点,且,的度数是()A. B. C. D.二、填空题(每小题2分,共20分)11.如图所示,图中的的值是________.12.如图,点在的平分线上,于,于,若,则________.13.如图是由射线,,,,组成的平面图形,则________.14.如图,在中,点是上一点,,,则________度.15.如图,已知中,,点、在上,要使,则只需添加一个适当的条件是________.(只填一个即可)16.如图,中,,,平分,平分,经过点,与、相交于点、,且,则的周长等于________.17.如图,,,若为,,则________.18.如图,在平面直角坐标系中,点在第一象限,点在轴上,若以,,为顶点的三角形是等腰三角形,则满足条件的点共有________个.三、解答题(8分)19.如图,五边形的内角都相等,且,,求的值.四、作图解答题(8分)20.如图,已知,,.为上一点,且到,两点的距离相等.用直尺和圆规,作出点的位置(不写作法,保留作图痕迹);连结,若,求的度数.五、解答题(8分)21.如图,在平面直角坐标系中的位置如图所示.画出关于轴对称的,并写出各顶点坐标;将向左平移个单位,作出平移后的,并写出的坐标.六、解答题(8分)22.如图,,,,求证:.七、解答题(8分)23.如图,等边三角形中,是的中点,为延长线上一点,且,,垂足为.求证:是的中点.八、解答题(8分)24.如图,过平分线上一点作交于点,是线段的中点,请过点画直线分别交射线、于点、,探究线段、、之间的数量关系,并证明你的结论.答案1. 【答案】C【解析】根据轴对称图形的概念,可得答案.【解答】解:、是中心对称图形,故错误;、是中心对称图形,故正确;、是轴对称图形,故正确;、是中心对称图形,故错误;故选:.2. 【答案】C【解析】因为三角形的内角和为,所以至少有两个锐角,因为外角和相邻的内角互补,所以外角中至少有两个钝角.【解答】解:一个三角形的三个内角中,至少有两个锐角,三个外角中至少有两个钝角.故选.3. 【答案】A【解析】由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解.【解答】解:.故这个三角形的周长为.故选:.4. 【答案】B【解析】熟悉:平面直角坐标系中任意一点,分别关于轴的对称点的坐标是,关于轴的对称点的坐标是.【解答】解:根据对称的性质,得三个顶点坐标的横坐标都乘以,并保持纵坐标不变,就是横坐标变成相反数.即所得到的点与原来的点关于轴对称.故选.5. 【答案】C【解析】边形的内角和可以表示成,设这个正多边形的边数是,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是,则,解得:.则这个正多边形的边数是.故选:.6. 【答案】C【解析】三角形纸片中,剪去其中一个的角后变成四边形,则根据多边形的内角和等于即可求得的度数.【解答】解:∵ ,∴ .∵四边形的内角和等于,∴ .故选.7. 【答案】C【解析】首先根据题意可得是的垂直平分线,即可得,又由的周长为,求得的长,则可求得的周长.【解答】解:∵在中,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,,作直线,交于点,连接.∴ 是的垂直平分线,∴ ,∵ 的周长为,∴ ,∵ ,∴ 的周长为:.故选.8. 【答案】D【解析】根据高的画法知,过点作边上的高,垂足为,其中线段是的高.【解答】解:线段是的高的图是.故选.9. 【答案】C【解析】根据已知的条件,可由判定,进而可根据全等三角形得出的结论来判断各选项是否正确.【解答】解:∵,∴ ;∴ ,∴ ,即;(故③正确)又∵ ,,∴ ;∴ ;(故①正确)由知:,;又∵ ,∴ ;(故④正确)由于条件不足,无法证得② ;故正确的结论有:①③④;故选.10. 【答案】B【解析】根据等边三角形的性质,得,再根据等腰三角形的性质和三角形的外角的性质求得,从而求解.【解答】解:∵ ,∴ ,,.又∵ ,,∴ .∴ .故的度数是.故选:.11. 【答案】【解析】根据四边形内角和等于列出方程求解即可.【解答】解:依题意有:,解得.故答案为:.12. 【答案】【解析】由点在的平分线上,丄于,丄于,根据角平分线上的点到角的两边的距离相等得到.【解答】解:∵点在的平分线上,丄于,丄于,∴ ,而,∴ .故答案为:.13. 【答案】【解析】首先根据图示,可得,,,,,然后根据三角形的内角和定理,求出五边形的内角和是多少,再用减去五边形的内角和,求出等于多少即可.【解答】解:.故答案为:.14. 【答案】【解析】本题考查的是三角形内角和定理,三角形外角与外角性质以及等腰三角形的性质.由可得,易求解.【解答】解:∵ ,,∴ ,由三角形外角与外角性质可得,又∵ ,∴,∴ .15. 【答案】【解析】此题是一道开放型的题目,答案不唯一,如,根据推出即可;也可以等.【解答】解:,理由是:∵ ,∴ ,在和中,,∴ ,故答案为:.16. 【答案】【解析】根据平分,平分,且,可得出,,所以三角形的周长是.【解答】解:∵ 平分,平分,∴ ,,∵ ,∴ ,,∴ ,,∴ ,,∵ ,,∴ 的周长.故答案为:.17. 【答案】【解析】首先证明为等边三角形,然后依据证明全等,从而可得到,然后依据等腰三角形三线合一的性质可得到,从而可求得的长,故此可得到的长.【解答】解:在和中,∴ .∴ .又∵ ,∴ .∴ .∵ ,,∴ 为等边三角形.∴ .故答案为:.18. 【答案】或【解析】分为三种情况:① ,② ,③ ,分别画出即可.【解答】解:以为圆心,以为半径画弧交轴于点和,此时三角形是等腰三角形,即个;以为圆心,以为半径画弧交轴于点 ″(除外),此时三角形是等腰三角形,即个;作的垂直平分线交轴于一点,则,此时三角形是等腰三角形,即个;,当与轴正半轴夹角等于的时候,图中的,和会重合,是一个点,加上原来的负半轴的点,总共个点,故答案为或.19. 【答案】解:因为五边形的内角和是,则每个内角为,∴ ,又∵ ,,由三角形内角和定理可知,,∴ .【解析】由五边形的内角都相等,先求出五边形的每个内角度数,再求出,从而求出度.【解答】解:因为五边形的内角和是,则每个内角为,∴ ,又∵ ,,由三角形内角和定理可知,,∴ .20. 【答案】解:如图所示:点即为所求;; 在中,,∴ ,又∵ ,∴ ,∴ .【解析】利用线段垂直平分线的作法得出点坐标即可;; 利用线段垂直平分线的性质得出,,进而求出即可.【解答】解:如图所示:点即为所求;; 在中,,∴ ,又∵ ,∴ ,∴ .21. 【答案】解:如图,即为所求,,,;; 如图,即为所求,,.【解析】作出各点关于轴的对称点,再顺次连接,并写出各点坐标即可;; 根据图形平移的性质作出平移后的,并写出的坐标.【解答】解:如图,即为所求,,,;; 如图,即为所求,,.22. 【答案】证明:∵ ,∴ ,即,在和中∴ ,∴ .【解析】由条件证明即可.【解答】证明:∵ ,∴ ,即,在和中∴ ,∴ .23. 【答案】证明:连接,∵等边三角形中,是的中点,∴ ,∵ ,∴,∴ ,又∵ ,垂足为,∴ 是的中点.【解析】要证是的中点,根据题意可知,证明为等腰三角形,利用等腰三角形的高和中线向重合即可得证.【解答】证明:连接,∵等边三角形中,是的中点,∴ ,∵ ,∴,∴ ,又∵ ,垂足为,∴ 是的中点.24. 【答案】解:线段、、之间的数量关系是:.证明:∵ 是的平分线,∴ ,又∵ ,∴ ,∴ ,∴ ,∵ 是线段的中点,∴ ,∵ ,∴,∴ ,又∵ ,∴ .【解析】首先根据是的平分线,,判断出,所以;然后根据是线段的中点,,推得,即可判断出,据此解答即可.【解答】解:线段、、之间的数量关系是:.证明:∵ 是的平分线,∴ ,又∵ ,∴ ,∴ ,∴ ,∵ 是线段的中点,∴ ,∵ ,∴,∴ ,又∵ ,∴ .。
四川省巴中市八年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·和平月考) 下列图案中,有且只有三条对称轴的是()A .B .C .D .2. (2分) (2017八上·台州期中) 已知三角形两边长分别为3和9,则该三角形第三边的长可能是()A . 6B . 11C . 12D . 133. (2分) (2019八上·临洮期末) 三角形三条高的交点一定在()A . 三角形的内部B . 三角形的外部C . 三角形的内部或外部D . 三角形的内部、外部或顶点4. (2分) (2019八上·蓟州期中) 如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A . 40°B . 35°C . 55°D . 20°5. (2分)已知一个多边形的内角和为900°,则这个多边形的边数是()A . 6B . 7C . 8D . 96. (2分)(2019·九龙坡模拟) 如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处。
已知折痕AE=10 ,且CE:CF=4:3,那么该矩形的周长为()A . 48B . 64C . 92D . 967. (2分) (2017八上·济源期中) 如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A . ∠B=∠E,BC=EFB . BC=EF,AC=DFC . ∠A=∠D,∠B=∠ED . ∠A=∠D,BC=EF8. (2分) (2019九下·温州竞赛) 如图;在△ABC中,∠CAB=Rt∠,以△ABC的各边为边作三个正方形,点E落在FH上,点J落在ED的延长线上,若图中两块阴影部分面积的差是30,则AB的长是()A .B .C . 8D .9. (2分) (2019八上·长春期中) 如图,三角形ABC中,AB=AC ,∠A=30°,DE垂直平分AC ,则∠BCD 的度数为()A . 80°B . 75°C . 65°D . 45°10. (2分)(2019·吴兴模拟) 等腰直角三角形ABC和等腰直角三角形ADE中,,,,其中固定,绕点A顺时针旋转一周,在旋转过程中,若直线CE 与直线BD交点为P,则面积的最小值为()A .B . 4C .D . 4.5二、填空题 (共4题;共4分)11. (1分) (2019八上·天台月考) 已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=60° ,AB=16cm,则∠C′=________ °,A′B′=________cm.12. (1分) (2020七上·平江期末) 一个角的余角比这个角的补角的一半少,则这个角的度数是________.13. (1分) (2020八上·汝南月考) 如图,在 ABC中,∠ACB=90°,AE平分∠BAC,DE⊥AB于D,如果AC=3cm,BC=4cm,AB=5cm,那么 EBD的周长为________.14. (1分)如图,∠AOC和∠DOB都是直角,如果∠DOC=28°,那么∠AOB=________.三、解答题 (共9题;共62分)15. (5分) (2019七下·织金期中) 如图,∠l=∠2,DE⊥BC,AB⊥BC,那么∠A=∠3吗?说明理由.16. (5分) (2016八上·临河期中) 如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E,且BD>CE.求证:BD=EC+ED.17. (6分) (2020八上·无锡月考) 如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′、CC′,则四边形AA′C′C的面积为________.18. (5分)(2018·云南模拟) 如图,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,求证:△CDA≌△CEB.19. (5分) (2017七下·江都月考) 一个多边形,除一个内角外,其余各内角之和等于2012°,求这个内角的度数及多边形的边数.20. (5分) (2017八上·武汉期中) 如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,连接EF,EF与AD相交于点G.求证:AD是EF的垂直平分线.21. (11分) (2019八上·江苏期中)(1)观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.求证:△AEC≌△CDB;(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=6,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.(3)拓展提升:如图3,等边△EBC中,EC=BC=4cm,点O在BC上,且OC=3cm,动点P从点E沿射线EC以2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P 运动的时间ts.22. (10分) (2019八上·泗辖期中) 如图,在△ABC中,AB=3,AC=5,AD是BC边上的中线,且AD=2,延长AD到点E ,使DE=AD ,连接CE .(1)求证:△AEC是直角三角形.(2)求BC边的长.23. (10分) (2016九上·红桥期中) 在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y 轴、x轴的正半轴上,点O在原点,现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).(1)旋转过程中,当MN和AC平行时,求正方形OABC旋转的角度;(2)试证明旋转过程中,△MNO的边MN上的高为定值;(3)折△MBN的周长为p,在旋转过程中,p值是否发生变化?若发生变化,说明理由;若不发生变化,请给予证明,并求出p的值.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共4题;共4分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题 (共9题;共62分)答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。
四川省巴中市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共11分)1. (1分) (2018九上·韶关期末) 下列图形中既是中心对称图形又是轴对称图形的是()。
A .B .C .D .2. (1分) (2018八上·潘集期中) 一个三角形的三边长分别为a,b,c,则a,b,c的值不可能是()A . 3,4,5B . 5,7,7C . 10,6,4.5D . 4,5,93. (1分) (2019八上·鄞州期中) 下列命题是真命题的是A . 三角形的三条高线相交于三角形内一点B . 等腰三角形的中线与高线重合C . 三边长为,,的三角形为直角三角形D . 到线段两端距离相等的点在这条线段的垂直平分线上4. (1分) (2018八上·南充期中) 给出下列说法:(1)等边三角形是等腰三角形;(2)三角形按边的相等关系分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形按角的大小分类可分为锐角三角形、直角三角形和钝角三角形.其中,正确的有()个.A . 1B . 2C . 3D . 05. (1分)如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD的平分线FP相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=()度.A . 70°B . 65°C . 60°D . 55°6. (1分) (2018七下·惠来开学考) 如图,AD是△ABC的高,AD=BD,DE=DC,∠BAC=75°,则∠ABE的度数是()A . 10°B . 15°C . 30°D . 45°7. (1分) (2019七下·北京期中) 如图①,一张四边形纸片ABCD ,∠A=50°,∠C=150°.若将其按照图②所示方式折叠后,恰好MD′∥AB ,ND′∥BC ,则∠D的度数为().A . 70°B . 75°C . 80°D . 85°8. (1分)如图,在矩形ABCD中,DE⊥AC ,∠ADE=∠CDE ,那么∠BDC等于().A . 60°B . 45°C . 30°D . 22.5°9. (1分)等腰三角形的顶角为120°,腰长为6,则它底边上的高等于()A . 3B . 8C . 9D . 710. (1分) (2020八上·张店期末) 如图,已知AB=AC,∠A=36°,AB的垂直平分线MD交AC于点D,AB于M,以下结论:①△BCD是等腰三角形;②射线BD是△ACB的角平分线;③△BCD的周长C△BCD=AC+BC;④△ADM≌BCD.正确有()A . ①②③B . ①②C . ①③D . ③④11. (1分)如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A . 2B . 2C .D . 3二、填空题 (共6题;共6分)12. (1分)若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=________.13. (1分) (2019九下·常德期中) 如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为________.14. (1分) (2019八下·江城期中) 三角形的三边长分别为3,4,5,则这个三角形的面积是________.15. (1分) (2016八上·怀柔期末) 在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD 的面积之比是________.16. (1分) (2018八上·前郭期中) 现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有________种.17. (1分)下列图形中的全等图形共有________ 对.三、解答题 (共4题;共7分)18. (2分) (2018八上·江阴期中) 如图,∠1=∠2,∠A=∠B,AE=BE,点D在边AC上,AE与BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠2=40°,求∠C的度数.19. (1分) (2016八上·望江期中) 如图,A,D,F,B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:EF∥CD.20. (2分) (2017九上·汉阳期中) 如图,将函数y=x2﹣2x(x≥0)的图象沿y轴翻折得到一个新的图象,前后两个图象其实就是函数y=x2﹣2|x|的图象.(1)观察思考函数图象与x轴有________个交点,所以对应的方程x2﹣2|x|=0有________个实数根;方程x2﹣2|x|=2有________个实数根;关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是________;(2)拓展探究①如图2,将直线y=x+1向下平移b个单位,与y=x2﹣2|x|的图象有三个交点,求b的值;②如图3,将直线y=kx(k>0)绕着原点旋转,与y=x2﹣2|x|的图象交于A、B两点(A左B右),直线x=1上有一点P,在直线y=kx(k>0)旋转的过程中,是否存在某一时刻,△PAB是一个以AB为斜边的等腰直角三角形(点P、A、B按顺时针方向排列).若存在,请求出k值;若不存在,请说明理由.21. (2分)(2018·洛阳模拟) 在等腰直角三角形ABC中,∠ACB=90°,AC=BC,D是AB边上的中点,Rt△EFG 的直角顶点E在AB边上移动.(1)如图1,若点D与点E重合且EG⊥AC、DF⊥BC,分别交AC、BC于点M、N,易证EM=EN;如图2,若点D与点E重合,将△EFG绕点D旋转,则线段EM与EN的长度还相等吗?若相等请给出证明,不相等请说明理由;(2)将图1中的Rt△EGF绕点D顺时针旋转角度α(0∘<α<45∘). 如图2,在旋转过程中,当∠MDC=15∘时,连接MN,若AC=BC=2,请求出线段MN的长;(3)图3, 旋转后,若Rt△EGF的顶点E在线段AB上移动(不与点D、B重合),当AB=3AE时,线段EM与EN 的数量关系是________;当AB=m·AE时,线段EM与EN的数量关系是________.参考答案一、单选题 (共11题;共11分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、二、填空题 (共6题;共6分)12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共4题;共7分)18-1、18-2、19-1、20-1、20-2、21-1、21-2、21-3、。
2018-2019学年度八年级上学期期中考试 数学试题第1卷(选择题 共42分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后。
再选涂其它答案,不能答在试卷上。
3.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共14小题.每小题3分,共42分)1.若一个正多边形一个外角是60°,则该正多边形的内角和是 A .360° B . 540° C . 720° D .900° 2. 若点A (1,1)m n +-与点B (-3,2)关于y 轴对称,则m n +的值是A .-5B .-3C .3D . 13. 已知三角形三个内角∠A 、∠B 、∠C ,满足关系式∠B+∠C=2∠A ,则此三角形 A. 一定有一个内角为45° B. 一定有一个内角为60° C. 一定是直角三角形 D. 一定是钝角三角形4. 如图,已知∠ABC=∠DCB,添加以下条件不能判定∆ABC ≌∆DCB 的是A .∠A=∠DB .∠ACB=∠DBC C .AC=DBD .AB=DC第4题 第5题第6题5.观察图中尺规作图痕迹,下列说法错误的是A.OE是∠AOB的平分线 B.OC=ODC.点C、D到OE的距离不相等 D、∠AOE=∠BOE6.如图,在Rt∆ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S∆ABD=15,则CD的长为A.3 B.4 C.5 D.67. 将一副直角三角板按如图所示位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45° B.60° C.75° D.85°第7题第8题第9题8.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC②△ACE≌△BDE③点E在∠O的平分线上其中正确的结论是A. 只有①B. 只有②C. 只有①②D. 有①②③9.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则等于∠ACE=A.15° B.30° C.45 D.60°10.将一个n边形变成n+1边形,内角和将A.减少180∘B.增加90∘C.增加180∘D.增加360∘11.如图,△ABC中,∠A=36∘,AB=AC,BD平分∠ABC,下列结论错误的是A. ∠C=2∠AB. BD=BCC. △ABD是等腰三角形D. 点D为线段AC的中点第11题第12题第13题12.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是A. AB=ADB. AC平分∠BCDC. AB=BDD. △BEC≌△DEC13.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F分别为垂足,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③AD平分∠EDF;④AD垂直平分EF.其中正确结论有()A.1个B.2个C.3个D.4个14.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A. 30°B. 35°C. 45°D. 60°第14题第17题第18题二、填空题(本题共4小题,每小题5分,共20分)15.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.16.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是___17.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是______.18. 在△ABC 中,AB=AC,CD=CB,若∠ACD=42∘,则∠BAC=______∘.19. 含角30°的直角三角板与直线1l ,2l 的位置关系如图所示,已知12l l ,∠1=60°,以下三个结论中正确的是____(只填序号)。
2018-2019(含答案)八年级(上)期中数学试卷 (10).................................................................................................................................................................2018.10.22一、选择题:本大题共12题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下面各组线段中,能组成三角形的是()A.5,11,6B.8,8,16C.10,5,4D.6,9,143.若一个多边形的内角和为1080∘,则这个多边形的边数为()A.6B.7C.8D.94.等腰三角形的一个内角是50∘,则这个三角形的底角的大小是()A.65∘或50∘B.80∘或40∘C.65∘或80∘D.50∘或80∘5.如图,在△ABC中,BC边上的高为()A.BEB.AEC.BFD.CF6.在△ABC中,∠B的平分线与∠C的平分线相交于O,且∠BOC=130∘,则∠A=()A.50∘B.60∘C.80∘D.100∘7.已知:如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,则图中共有全等三角形()A.5对B.4对C.3对D.2对8.和点P(2, −5)关于x轴对称的点是()A.(−2, −5)B.(2, −5)C.(2, 5)D.(−2, 5)9.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙10.如图,∠A =15∘,AB =BC =CD =DE =EF ,则∠DEF 等于( )A.90∘B.75∘C.70∘D.60∘11.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180∘形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为( )A.80∘B.100∘C.60∘D.45∘12.已知AB =AC =BD ,则∠1与∠2的关系是( )A.∠1=2∠2B.2∠1+∠2=180∘C.∠1+3∠2=180∘D.3∠1−∠2=180∘二、填空题:本大题共5个小题,共20分,只要求填写最后结果,每小题填对得4分.13.等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为________.14.点P 到△ABC 三边的距离相等,则点P 是________的交点.15.一辆汽车车牌在水中的倒影为如图,该车牌的牌照号码是________.16.如图在中,AB =AC ,∠A =40∘,AB 的垂直平分线MN 交AC 于D ,则∠DBC =________度.17.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为________.三、解答题18.如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点.(保留作图痕迹)19.如图,在平面直角坐标系中,A(1, 2),B(3, 1),C(−2, −1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)写出A1,B1,C1的坐标(直接写出答案),A1________;B1________;C1________.(3)△A1B1C1的面积为________.20.如图,△ABC≅△ADE,且∠CAD=10∘,∠B=∠D=25∘,∠EAB=120∘,求∠DFB和∠DGB的度数.21.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.22.已知:如图所示,在△ABC中,AB=AC,E在CA延长线上,AE=AF,AD是高,试判断EF与BC的位置关系,并说明理由.23.如图,在△ABC中,∠ACB=90∘,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≅△CEB.(2)AD=5cm,DE=3cm,求BE的长度.24.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF 的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.答案1. 【答案】C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.2. 【答案】D【解析】根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【解答】解:A、∵5+6<11,∴不能组成三角形,故A选项错误;B、∵8+8=16,∴不能组成三角形,故B选项错误;C、∵5+4<10,∴不能组成三角形,故C选项错误;D、∵6+9>14,∴能组成三角形,故D选项正确.故选:D.3. 【答案】C【解析】首先设这个多边形的边数为n,由n边形的内角和等于180∘(n−2),即可得方程180(n−2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n−2)=1080,解得:n=8.故选C.4. 【答案】A【解析】等腰三角形的两个底角相等,已知一个内角是50∘,则这个角可能是底角也可能是顶角.要分两种情况讨论.【解答】解:当50∘的角是底角时,三角形的底角就是50∘;当50∘的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65度.故选:A.5. 【答案】B【解析】根据三角形的高线的定义解答.【解答】解:根据高的定义,AE为△ABC中BC边上的高.故选B.6. 【答案】C【解析】在△BOC中由三角形的内角和可求得∠OBC+∠OCB=50∘,再由角平分线的定义可得∠ABC+∠ACB=2(∠OBC+∠OCB)=100∘,在△ABC中再利用三角形内角和定理可求得∠A.【解答】解:∵∠BOC=130∘,∴∠OBC+∠OCB=180∘−∠BOC=180∘−130∘=50∘,∵BO和CO分别平分∠ABC和∠ACB,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=100∘,∴∠A=180∘−(∠ABC+∠ACB)=180∘−100∘=80∘,故选C.7. 【答案】A【解析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等.此类题可以先把单独的两个全等三角形的对数找完,再找由两个三角形组合的全等的大三角形的对数,最后找由三个小三角形组合的全等的大三角形的对数.【解答】解:单独的两个全等三角形的对数是3,分别是:△BDE≅△CDF、△DGE≅△DGF、△AGE≅△AGF;由两个三角形组合的全等的大三角形的对数是1,是:△AED≅△AFD;由三个小三角形组合的全等的大三角形的对数是1,是:△ADB≅△ADC;所以共5对,故选A.8. 【答案】C【解析】点P(m, n)关于x轴对称点的坐标P′(m, −n),然后将题目已经点的坐标代入即可求得解.【解答】解:根据轴对称的性质,得点P(2, −5)关于x轴对称的点的坐标为(2, 5).故选:C.9. 【答案】B【解析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.10. 【答案】D【解析】根据已知条件,利用等腰三角形的性质及三角形的内角和外角之间的关系进行计算.【解答】解:∵AB=BC=CD=DE=EF,∠A=15∘,∴∠BCA=∠A=15∘,∴∠CBD=∠BDC=∠BCA+∠A=15∘+15∘=30∘,∴∠BCD=180∘−(∠CBD+∠BDC)=180∘−60∘=120∘,∴∠ECD=∠CED=180∘−∠BCD−∠BCA=180∘−120∘−15∘=45∘,∴∠CDE=180∘−(∠ECD+∠CED)=180∘−90∘=90∘,∴∠EDF=∠EFD=180∘−∠CDE−∠BDC=180∘−90∘−30∘=60∘,∴∠DEF=180∘−(∠EDF+∠EFC)=180∘−120∘=60∘.故选D.11. 【答案】A【解析】先根据三角形的内角和定理易计算出∠1=140∘,∠2=25∘,∠3=15∘,根据折叠的性质得到∠1=∠BAE=140∘,∠E=∠3=15∘,∠ACD=∠E=15∘,可计算出∠EAC,然后根据∠α+∠E=∠EAC+∠ACD,即可得到∠α=∠EAC.【解答】解:设∠3=3x,则∠1=28x,∠2=5x,∵∠1+∠2+∠3=180∘,∴28x+5x+3x=180∘,解得x=5∘,∴∠1=140∘,∠2=25∘,∠3=15∘,∵△ABE是△ABC沿着AB边翻折180∘形成的,∴∠1=∠BAE=140∘,∠E=∠3=15∘,∴∠EAC=360∘−∠BAE−∠BAC=360∘−140∘−140∘=80∘,又∵△ADC是△ABC沿着AC边翻折180∘形成的,∴∠ACD=∠E=15∘,而∠α+∠E=∠EAC+∠ACD,∴∠α=∠EAC=80∘.故选A.12. 【答案】D【解析】根据等腰三角形的性质和三角形内角和定理可得∠1和∠C之间的关系,再根据三角形外角的性质可得∠1和∠2之间的关系.【解答】解:∵AB=AC=BD,∴∠B=∠C=180−2∠1,∴∠1−∠2=180−2∠1,∴3∠1−∠2=180.故选D.13. 【答案】8cm【解析】设腰长为2x,得出方程(2x+x)−(5+x)=3或(5+x)−(2x+x)=3,求出x后根据三角形三边关系进行验证即可.【解答】解:设腰长为2x,一腰的中线为y,则(2x+x)−(5+x)=3或(5+x)−(2x+x)=3,解得:x=4,x=1,∴2x=8或2,①三角形ABC三边长为8、8、5,符合三角形三边关系定理;②三角形ABC三边是2、2、5,2+2<5,不符合三角形三边关系定理;故答案为:8cm.14. 【答案】角平分线的交点【解析】根据角平分线上的点到角的两边距离相等解答.【解答】解:∵点P到△ABC三边的距离相等,∴点P是角平分线的交点.故答案为:角平分线的交点.15. 【答案】M17936【解析】在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面成轴对称图形.【解答】解:根据镜面对称的性质,题中所显示的图片所显示的数字与M17936成轴对称,该车牌的牌照号码是M17936.故答案为M17936.16. 【答案】30【解析】由AB=AC,∠A=40∘,即可推出∠C=∠ABC=70∘,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40∘,根据图形即可求出结果.【解答】解:∵AB=AC,∠A=40∘,∴∠C=∠ABC=70∘,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40∘,∴∠DBC=30∘.故答案为30∘.17. 【答案】15【解析】P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.【解答】解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.故答案为:1518. 【答案】解:作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置.【解析】根据两点间线段最短可知作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置.【解答】解:作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置.19. 【答案】; (−1, 2),(−3, 1),(2, −1); 4.5【解析】(1)根据网格结构找出点A、B、C的对应点A1、B1、C1的位置,然后顺次连接即可;; (2)根据平面直角坐标系写出各点的坐标;; (3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【解答】解:(1)△A1B1C1如图所示;; (2)△A1(−1, 2),B1(−3, 1),C1(2, −1);; (3)△A1B1C1的面积=5×3−12×1×2−12×2×5−12×3×3,=15−1−5−4.5,=15−10.5,=4.5.20. 【答案】解:∵△ABC≅△ADE,∴∠DAE=∠BAC=12(∠EAB−∠CAD)=12(120∘−10∘)=55∘.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10∘+55∘+25∘=90∘∠DGB=∠DFB−∠D=90∘−25∘=65∘.综上所述:∠DFB=90∘,∠DGB=65∘.【解析】由△ABC≅△ADE,可得∠DAE=∠BAC=12(∠EAB−∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B,因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形内角和定理可得∠DGB=∠DFB−∠D,即可得∠DGB的度数.【解答】解:∵△ABC≅△ADE,∴∠DAE=∠BAC=12(∠EAB−∠CAD)=12(120∘−10∘)=55∘.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10∘+55∘+25∘=90∘∠DGB=∠DFB−∠D=90∘−25∘=65∘.综上所述:∠DFB=90∘,∠DGB=65∘.21. 【答案】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90∘.∠BAE=∠DAC=90∘+∠CAE,在△BAE和△DAC中AB=AC∠BAE=∠DACAE=AD∴△BAE≅△CAD(SAS).; (2)由(1)得△BAE≅△CAD.∴∠DCA=∠B=45∘.∵∠BCA=45∘,∴∠BCD=∠BCA+∠DCA=90∘,∴DC⊥BE.【解析】①可以找出△BAE≅△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC= 90∘+∠CAE.②由①可得出∠DCA=∠ABC=45∘,则∠BCD=90∘,所以DC⊥BE.; ①可以找出△BAE≅△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC=90∘+∠CAE.②由①可得出∠DCA=∠ABC=45∘,则∠BCD=90∘,所以DC⊥BE.【解答】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90∘.∠BAE=∠DAC=90∘+∠CAE,在△BAE和△DAC中AB=AC∠BAE=∠DACAE=AD∴△BAE≅△CAD(SAS).; (2)由(1)得△BAE≅△CAD.∴∠DCA=∠B=45∘.∵∠BCA=45∘,∴∠BCD=∠BCA+∠DCA=90∘,∴DC⊥BE.22. 【答案】解:垂直.理由:∵在△ABC中,AB=AC,AD是高,∴∠BAD=∠CAD,∵AE=AF,∴∠E=∠EFA,∵∠BAC=∠E+∠EFA=2∠EFA,∴∠EFA=∠BAD,∴EF // AD,∵AD⊥BC,∴EF⊥BC.故EF与BC的位置关系为:垂直.【解析】根据等腰三角形三线合一的性质可得到∠BAD=∠CAD,再根据三角形外角的性质可推出∠EFA=∠BAD,再根据内错角相等两直线平行得到EF // AD,已知AD⊥BC,则EF与BC的关系为垂直.【解答】解:垂直.理由:∵在△ABC中,AB=AC,AD是高,∴∠BAD=∠CAD,∵AE=AF,∴∠E=∠EFA,∵∠BAC=∠E+∠EFA=2∠EFA,∴∠EFA=∠BAD,∴EF // AD,∵AD⊥BC,∴EF⊥BC.故EF与BC的位置关系为:垂直.23. 【答案】(1)证明:如图,∵AD⊥CE,∠ACB=90∘,∴∠ADC=∠ACB=90∘,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,∠ADC=∠CEB∠CAD=∠BCE,AC=BC∴△ADC≅△CEB(AAS);; (2)由(1)知,△ADC≅△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE−DE,∴BE=AD−DE=5−3=2(cm),即BE的长度是2cm.【解析】(1)根据全等三角形的判定定理AAS推知:△ADC≅△CEB;; (2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD−DE.【解答】(1)证明:如图,∵AD⊥CE,∠ACB=90∘,∴∠ADC=∠ACB=90∘,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,∠ADC=∠CEB∠CAD=∠BCE,AC=BC∴△ADC≅△CEB(AAS);; (2)由(1)知,△ADC≅△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE−DE,∴BE=AD−DE=5−3=2(cm),即BE的长度是2cm.24. 【答案】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90∘,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中AB=CG∠ABD=∠ACG,BD=CA∴△ABD≅△GCA(SAS),∴AD=GA(全等三角形的对应边相等);; (2)位置关系是AD⊥GA,理由为:∵△ABD≅△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90∘,∴AD⊥GA.【解析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得到一对角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形BHF与三角形CHE相似,由相似三角形的对应角相等得到一对角相等,再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,; (2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90∘,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90∘,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中AB=CG∠ABD=∠ACG,BD=CA∴△ABD≅△GCA(SAS),∴AD=GA(全等三角形的对应边相等);; (2)位置关系是AD⊥GA,理由为:∵△ABD≅△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90∘,∴AD⊥GA.。
四川省巴中市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2018八上·江干期末) 下列长度的三条线段能组成三角形的是()A . 1cm,2cm,3cmB . 2cm,3cm,5.5cmC . 5cm,8cm,12cmD . 4cm,5cm,9cm2. (2分)如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A . 6B . 5C . 4D . 33. (2分) (2020八上·东台期末) 如图,已知AE=CF,BE=DF,要证△ABE≌△CDF,还需添加的一个条件是()A . ∠BAC=∠ACDB . ∠ABE=∠CDFC . ∠DAC=∠BCAD . ∠AEB=∠CFD4. (2分)如图,AB∥CD,AD和BC相交于点O,∠A=20° ,∠COD=100°,则∠C的度数是()A . 80°B . 70°C . 60°D . 50°5. (2分)(2017·岱岳模拟) 如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N,则tan∠ANE=()A .B .C .D .6. (2分)在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使△ABC≌△A′B′C′一定成立的是()A . AC=A′C′B . BC=B′C′C . ∠B=∠B′D . ∠C=∠C′7. (2分)等腰三角形一个为50°,则其余两角度数是()A . 50°,80°B . 65°,65°C . 50°,80°或65°,65°D . 无法确定8. (2分) (2017八下·江都期中) 如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE .其中正确结论有()个.A . 4B . 3C . 2D . 1二、填空题 (共7题;共15分)9. (1分) (2019八上·江津期末) 如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1 ,P2 ,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为________.10. (1分) (2019八上·江津期末) 一个多边形的每一个外角都等于36°,则该多边形的内角和等于________.11. (1分)如图,已知OP平分∠AOB,PC⊥OB,PD⊥OA,PC=4,OD=7,则△DOP的面积=________ .12. (1分) (2019八上·湛江期中) 如图,点P是∠AOB平分线OC上一点,PE⊥OA,PF⊥OB,垂足分别是E 和F,若PE=3,则PE=________。