2018年秋人教版九年级数学上册《24.4弧长和扇形面积》同步练习含答案
- 格式:doc
- 大小:173.52 KB
- 文档页数:7
人教版九年级数学24.4 弧长和扇形面积同步训练一、选择题(本大题共10道小题)1. 若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.πB.2πC.3πD.6π2. 如图,在边长为4的正方形ABCD中,以点B为圆心,AB长为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8-πB.16-2πC.8-2πD.8-π3. 如图,在边长为4的正方形ABCD中,以点B为圆心,AB长为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8-π B.16-2πC.8-2π D.8-1 2π4. 2018·宁夏用一个半径为30,圆心角为120°的扇形纸片围成一个圆锥(接缝处忽略不计),则这个圆锥的底面圆半径是()A.10 B.20 C.10π D.20π5. 如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60 cm,则这块扇形铁皮的半径是()A .40 cmB .50 cmC .60 cmD .80 cm6. (2019•温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为A .B .C .D .7. 如图,在△AOC 中,OA =3 cm ,OC =1 cm ,将△AOC 绕点O 顺时针旋转90°后得到△BOD ,则AC 边在旋转过程中所扫过的图形的面积为( )A.π2 cm2 B .2π cm2C.17π8 cm2D.19π8 cm28. 如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E.B ,E 是半圆弧的三等分点,BE ︵的长为2π3,则图中阴影部分的面积为( )图A.π9 B.3π9C.3 32-3π2D.3 32-2π39. 如图在扇形OAB 中,∠AOB =150°,AC =AO =6,D 为AC 的中点,当弦AC沿AB ︵运动时,点D 所经过的路径长为( )图A .3π B.3πC.32 3πD .4π10. 2017·衢州运用图变化的方法研究下列问题:如图AB 是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB =10,CD =6,EF =8,则图阴影部分的面积是( )图A.252π B .10π C .24+4πD .24+5π二、填空题(本大题共7道小题)11. 如图所示,在△ABC 中,AB =BC =2,∠ABC =90°,则图中阴影部分的面积是________.12. 如图,把一个圆锥沿母线OA 剪开,展开后得到扇形OAC .已知圆锥的高h 为12 cm ,OA =13 cm ,则扇形OAC 中AC ︵的长是________ cm.(结果保留π)13.若一个圆锥的底面圆半径为3cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是________cm .14. 如图,已知扇形OAB 的圆心角为60°,扇形的面积为6π,则该扇形的弧长为________.15. (2019•贺州)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是__________度.16. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.17.如图在边长为3的正方形ABCD 中,以点A 为圆心,2为半径作圆弧EF ,以点D 为圆心,3为半径作圆弧AC.若图阴影部分的面积分别为S 1,S 2,则S 1-S 2=________.三、解答题(本大题共4道小题)18.如图,在△ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =C D ,过点D 作⊙O 的切线交边AC 于点F. (1)求证:DF ⊥AC ;(2)若⊙O 的半径为5,∠CDF =30°,求BD ︵的长.(结果保留π)19.如图,AB为⊙O的直径,C,D是半圆O的三等分点,过点C作AD延长线的垂线CE,垂足为E.(1)求证:CE是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.20. 如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°,(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.21. (2019•辽阳)如图,是⊙的直径,点和点是⊙上的两点,连接,,,过点作射线交的延长线于点,使.(1)求证:是⊙的切线;(2)若,求阴影部分的面积.人教版九年级数学24.4 弧长和扇形面积同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C[解析]扇形的圆心角为90°,它的半径为6,即n=90°,r=6,根据弧长公式l=,得l==3π.故选C.2. 【答案】C[解析]在边长为4的正方形ABCD中,BD是对角线,∴AD=AB=4,∠BAD=90°,∠ABE=45°,∴S△ABD=·AD·AB=8,S扇形ABE==2π,∴S阴影=S△ABD-S扇形ABE=8-2π.故选C.3. 【答案】C[解析] 在边长为4的正方形ABCD中,BD是对角线,∴AD=AB=4,∠BAD=90°,∠ABE=45°,∴S△ABD=12AD·AB=8,S扇形BAE=45·π·42360=2π,∴S阴影=S△ABD-S扇形BAE=8-2π.故选C.4. 【答案】A5. 【答案】A[解析] ∵圆锥的底面圆直径为60 cm,∴圆锥的底面圆周长为60πcm,∴扇形的弧长为60π cm.设扇形的半径为r,则270πr180=60π,解得r=40 cm.6. 【答案】C【解析】该扇形的弧长=.故选C .7. 【答案】B[解析] 如图,AC 边在旋转过程中所扫过的图形的面积即阴影部分的面积.S 阴影=S △OCA +S 扇形OAB -S 扇形OCD -S △ODB.由旋转知△OCA ≌△ODB ,∴S △OCA =S △ODB ,∴S 阴影=S 扇形OAB -S 扇形OCD =90π×32360-90π×12360=2π(cm2).故选B.8. 【答案】D9. 【答案】C[解析] 如图∵D 为AC 的中点,AC =AO =6,∴OD ⊥AC ,∴AD =12AC =12AO , ∴∠AOD =30°,OD =3 3. 作BF =AC ,E 为BF 的中点. 同理可得∠BOE =30°, ∴∠DOE =150°-60°=90°,∴点D 所经过的路径长为nπR 180=90π×3 3180=3 32π.10. 【答案】A[解析] 如图作直径CG ,连接OD ,OE ,OF ,DG .∵CG 是⊙O 的直径,∴∠CDG =90°,则DG =CG2-CD2=8.又∵EF =8,∴DG =EF ,∴DG ︵=EF ︵, ∴S 扇形ODG =S 扇形OEF .∵AB ∥CD ∥EF ,∴S △OCD =S △ACD ,S △OEF =S △AEF ,∴S 阴影=S 扇形OCD +S 扇形OEF =S 扇形OCD +S 扇形ODG =S 半圆=12π×52=252π.二、填空题(本大题共7道小题)11. 【答案】π-2[解析] ∵在△ABC 中,AB =BC =2,∠ABC =90°,∴△ABC 是等腰直角三角形,∴S 阴影=S 半圆AB +S 半圆BC -S △ABC =12π×(22)2+12π×(22)2-12×2×2 =π-2.12. 【答案】10π[解析] 由勾股定理,得圆锥的底面圆半径为132-122=5(cm),∴扇形的弧长=圆锥的底面圆周长=2π×5=10π(cm).13. 【答案】 9【解析】由n =360r l 得120=360×3l ,解得l =9.14. 【答案】2π[解析] 设扇形的半径是R ,则60·π·R2360=6π,解得R =6(负值已舍去).设扇形的弧长是l ,则12lR =6π,即3l =6π, 解得l =2π.故答案为2π.15. 【答案】90【解析】设圆锥的母线为a ,根据勾股定理得,a=4, 设圆锥的侧面展开图的圆心角度数为,根据题意得,解得,即圆锥的侧面展开图的圆心角度数为.故答案为:90.16. 【答案】2π-4[解析] 如图所示,由题意,得阴影部分的面积=2(S 扇形OAB-S △OAB)=2(90π×22360-12×2×2)=2π-4. 故答案为2π-4.17. 【答案】13π4-9 [解析] ∵S 正方形ABCD =3×3=9,S 扇形DAC =9π4,S 扇形AEF =π,∴S 1-S 2=S 扇形AEF -(S 正方形ABCD -S 扇形DAC )=π-⎝ ⎛⎭⎪⎫9-9π4=13π4-9.三、解答题(本大题共4道小题)18. 【答案】(1)证明:如解图,连接OD ,(1分) ∵DF 是⊙O 的切线,D 为切点,解图∴OD ⊥DF , ∴∠ODF =90°,(2分) ∵BD =CD ,OA =OB ,∴OD 是△ABC 的中位线,(3分) ∴OD ∥AC ,∴∠CFD =∠ODF =90°, ∴DF ⊥AC.(4分)(2)解:∵∠CDF =30°, 由(1)得∠ODF =90°, ∴∠ODB =180°-∠CDF -∠ODF =60°, ∵OB =OD ,∴△OBD 是等边三角形,(7分) ∴∠BOD =60°,∴lBD ︵=nπR 180=60π×5180=53π.(8分)19. 【答案】解:(1)证明:连接OC . ∵C ,D 为半圆O 的三等分点,∴AD ︵=CD ︵=BC ︵, ∴∠DAC =∠BAC . ∵OA =OC , ∴∠BAC =∠ACO , ∴∠DAC =∠ACO , ∴OC ∥AD . ∵CE ⊥AD ,∴CE ⊥OC ,∴CE 为⊙O 的切线. (2)连接OD . ∵AD ︵=CD ︵=BC ︵,∴∠AOD =∠COD =∠BOC =13×180°=60°. 又∵OC =OD ,∴△COD 为等边三角形, ∴∠CDO =60°=∠AOD , ∴CD ∥AB , ∴S △ACD =S △COD ,∴图中阴影部分的面积=S 扇形COD =60×π×22360=2π3.20. 【答案】解:(1)证明:如图,连接OA.∵AD =AB ,∠D =30°, ∴∠B =∠D =30°, ∴∠DAB =120°. ∵BC 是⊙O 的直径, ∴∠BAC =90°, ∴∠DAC =30°,∴∠BCA =60°.∵AO =CO ,∴△ACO 是等边三角形,∴∠CAO =60°,∴∠DAO =∠CAO +∠DAC =90°,即AD ⊥AO.又∵AO 是⊙O 的半径,∴直线AD 是⊙O 的切线.(2)由(1)知Rt △ADO 中,AO =2,∠D =30°,∴OD =2AO =4,∴AD =2 3,∴SRt △ADO =12×2 3×2=2 3.∵△ACO 是等边三角形,∴∠AOD =60°,∴S 扇形OAC =60π×22360=2π3,∴S 阴影=SRt △ADO -S 扇形OAC =2 3-2π3. 21. 【答案】 (1)如图,连接,过作于,∴, ∴, ∵, ∴, ∵, ∴,∵,∴,∴,∵,∴,∴,∴是⊙的切线.(2)∵,∴,∵,∴,∵,,∴,∵,∴,,∴是等边三角形,∴,,∴,∴,在中,,∴,∴阴影部分的面积.。
2017-2018学年度第一学期人教版九年级数学上册_24.4_弧长和扇形面积_同步检测【有答案】2017-2018学年度第一学期人教版九年级数学上册24.4 弧长和扇形面积同步检测考试总分: 100 分考试时间: 90分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.在半径为的圆中,的圆心角所对的弧长为.A. B. C. D.2.圆柱底面直径为,高为,则圆柱的侧面积为A. B. C. D.3.如图,将绕点按顺时针旋转得到,已知,,则线段扫过的图形的面积为()A. B. C. D.4.一个扇形的弧长是,面积是,则此扇形的圆心角的度数是()A. B. C. D.5.圆锥的高线为,底面直径为,则这个圆锥的表面积为()A. B. C. D.6.如图,是直角扇形,以、为直径在扇形中作圆,与分别表示两个阴影部分的面积,那么、的大小关系是()A. B. C. D.无法确定7.一个圆锥和一个圆柱的底面半径相等,且它们的高都等于它们的底面半径,那么它们的侧面积之比为()A. B. C. D.8.将直径为的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A. B. C. D.9.圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径的比是()A. B. C. D.10.如图所示,一只封闭的圆柱形水桶内盛了半桶水(桶的厚度忽略不计),圆柱形水桶的底面直径与母线长相等,现将该水桶水平放置后如图所示,设图、图中水所形成的几何体的表面积分别为、,则与的大小关系是()1 / 8A. B.C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.已知在中,半径,,则劣弧的弧长为________.12.已知一扇形弧长为,直径为,则它的圆心角是________.13.已知的斜边,以直线为轴旋转一周得到一个表面积为的圆锥,则这个圆锥的高等于________.14.扇形的圆心角度数,面积,则扇形的弧长为________.15.如果圆柱的侧面展开图是长和宽分别为和的矩形,则圆柱的底面半径为________.16.将一个圆心角为,半径为的扇形纸片制成一个圆锥形纸筒,则圆锥的底面半径是________.17.一条弧的长度为,所对的圆心角为,则这条弧的半径为________.18.如果一个圆柱的底面半径为米,它的高为米,那么这个圆柱的全面积为________平方米.(结果保留)19.弯制管道时,先按中心线计划“展直长度”,再下料,如图所示可算得管道的展直长度约为________.,单位为,精确到20.如图,四边形是一个矩形,的半径是,,.则图中阴影部分的面积约为________.三、解答题(共 5 小题,每小题 8 分,共 40 分)21.如图,正的边长为,将线段绕点顺时针旋转至,形成扇形;将线段绕点顺时针旋转至,形成扇形;将线段绕点顺时针旋转至,形成扇形;将线段绕点顺时针旋转至,形成扇形,….设为扇形的弧长 … ,为扇形的面积.2017-2018学年度第一学期人教版九年级数学上册_24.4_弧长和扇形面积_同步检测【有答案】求.22.如图,线段与相切于点,连接、,交于点,已知,,求:的半径.图中阴影部分的面积.23.如图,为的直径,于点,交于点,于点.试说明;当,时,求中劣弧的长.3 / 824.如图,是的内接三角形,是的直径,,,请解答下列问题:的度数;设、相交于,、的延长线相交于,求、的度数;若,求图中阴影部分的面积.25.已知如图,在中,,的角平分线交边于,用尺规在边上作点,并以点为圆心作,使它过,两点(不写作法,保留作图痕迹),并判断直线与的位置关系(不需要说明理由).若中的与边的另一个交点为,,.求线段、与劣弧所围成的图形的面积.(结果保留根号和)2017-2018学年度第一学期人教版九年级数学上册_24.4_弧长和扇形面积_同步检测【有答案】答案1.A2.A3.D4.B5.C6.A7.D8.A9.A10.B11.12.13.14.15.或16.17.18.19.20.21.由知,;,,,….22.解:连结,如图,∵线段与相切于点,∴ ,∵ ,∴,在中,,,∴ ,∴,5 / 8即的半径为;在中,,,∴,∴阴扇形.23.证明:∵ 为的直径,∴∵ ,∴ ,∴又∵ ,∴ .解:连接,则,∴ ,∴∵ ,∴在中,,∴∴ 弧的长为.24.的度数是. ∵ ,∴ ,∴ ,∴ ,∵ ,答:,.连接,过作于,2017-2018学年度第一学期人教版九年级数学上册_24.4_弧长和扇形面积_同步检测【有答案】7 / 8∵ , ,∴ ,由勾股定理得: , 由垂径定理得: ,∵ ,∴阴影部分的面积是 扇形, 答:图中阴影部分的面积是 . 25.解: 如图:连接 ,∵ ,∴ ,∵ 的角平分线 交 边于 ,∴ ,∴ ,∴ ,∵ ,∴ ,∴ ,即直线 与 的切线,∴直线 与 的位置关系为相切;设 的半径为 ,则 ,又∵ ,在中,,即,解得,,∴ ,,∴扇形,.∴线段、与劣弧所围成的图形面积为:扇形。
第24章 24.4《弧长和扇形面积》同步练习及答案(2)第1题. 一条弧所对的圆心角是90o,半径是R ,则这条弧的长是 .答案:12R π 第2题. 若»AB 的长为所对的圆的直径长,则»AB 所对的圆周角的度数为 .答案:180πo第3题. 如图,AB 是半圆O 的直径,以O 为圆心,OE 为半径的半圆交AB 于E ,F 两点,弦AC 是小半圆的切线,D 为切点,若4OA =,2OE =,则图中阴影部分的面积为 .答案:43π+第4题. 如果一条弧长等于l ,它的半径等于R ,这条弧所对的圆心角增加1o,则它的弧长增加( ) A.lnB.180R π C.180lRπ D.360l答案:B第5题. 在半径为3的O e 中,弦3AB =,则»AB 的长为( )A.π2B.πC.32π D.2π答案:B第6题. 扇形的周长为16,圆心角为360πo,则扇形的面积是()A.16 B.32 C.64 D.16π答案:A第7题. 如图,扇形OAB 的圆心角为90o,且半径为R ,分别以OA ,OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么P 和Q 的大小关系是( ) A.P Q =B.P Q >C.P Q <D.无法确定答案:A第8题. 如图,矩形ABCD 中,1AB =,BC =,以BC 的中点E 为圆心的¼MPN与AD 相切,则图中的阴影部分的面积为( )A.23π B.34πD.π3答案:D第9题. 如图所示,正方形ABCD 是以金属丝围成的,其边长1AB =,把此正方形的金属丝重新围成扇形的ADC ,使AD AD =,DC DC =不变,问正方形面积与扇形面积谁大?大多少?由计算得出结果. 答案:1S =正方形,121122ADC S lR 1==⨯⨯=扇形,∴面积没有变化.第10题. 如图,O e 的半径为1,C 为O e 上一点,以C 为圆心,以1为半径作弧与O e 相交于A ,B 两点,则图中阴影部分的面积为.答案:2π3第11题. 如图,△ABC 中,105A ∠=o ,45B ∠=o,AB =AD BC ⊥,D 为垂足,以A为圆心,以AD 为半径画弧»EF,则图中阴影部分的面积为( )MC A DA.76πB.76-π+2C.56πD.56-π+2答案:B第12题. 如图,半径为r 的1O e 与半径为3r 的2O e 外切于P 点,AB 是两圆的外公切线,切点分别为A ,B ,求AB 和»PA,»PB 所围成的阴影部分的面积.答案:连结2O B ,1O A ,过1O 作12O H O B ⊥,垂足为H ,则得矩形1ABHO , 1BH O A r ∴==,1AB O H =.在Rt △21O HO 中,2232O H O B BH r r r =-=-=,122134O O O P O P r r r =+=+=,1O H ==,2211221cos 42O H r HO O O O r ∠===,2160HO O ∴∠=o ,1120AO P ∠=o .21212111()(3)22ABO O S O A O B O H r r =+=+=g 梯形,26033606BO P O B r r S 222π()π(3)π===2g 2扇形,122120AO P O A S r π()π==3603扇形、,212122223ABO O BO P AO P S S S S r r ππ=--=--=23阴影梯形扇形扇形.第13题. 圆周角是90o,占整个周角的90360,因此它所对的弧长是圆周长的 . 答案:14第14题. 圆心角是45o,占整个周角的 ,因此它所对的弧长是圆周长的 . 答案:45360,18第15题. 圆心角是1o,占整个周角的 ,因此它所对的弧长是圆周长的 .C D B EAF答案:1360,1360第16题. 扇形的圆心角为210o,弧长是28π,求扇形的面积.答案:336π第17题. 一个扇形的半径等于一个圆的半径的2倍,且面积相等.求这个扇形的圆心角.答案:90o第18题. 一服装厂里有大量形状为等腰直角三角形的边角布料(如图),现找出其中的一种,测得90C ∠=o ,4AC BC ==.今要从这种三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在ABC △的边上,且扇形的弧与ABC △的其他边相切,请设计出所有可能符合题意的方案示意图,并求出扇形的半径(只要求画出图形,并直接写出扇形半径).答案:第19题.90o,半径为R A.2R πB.3R πC.4R πD.6R答案:A第20题. 已知一条弧长为l ,它所对圆心角的度数为n o,则这条弦所在圆的半径为( ).A.180n lπ B.180ln πC.360ln πD.180lnπ答案:B第21题. 半径为6cm 的圆中,60o的圆周角所对的弧的弧长为 .答案:4cm π第22题. 半径为9cm 的圆中,长为12cm π的一条弧所对的圆心角的度数为 .答案:240o第23题. 已知圆的面积为281cm π,若其圆周上一段弧长为3cm π,则这段弧所对的圆心角的度42r =24r =1r =数为 .答案:60o第24题. 若扇形的圆心角为120o,弧长为6cm π,则这个扇形的面积为 .答案:227cm π第25题. 弯制管道时,先按中心线计算其“展直长度”,再下料.根据如图所示的图形可算得管道的展直长度为 .(单位:mm ,精确到1mm )答案:389mm第26题. 如图,在Rt △ABC 中,90C ∠=o,60A ∠=o,3cm AC =,将△ABC 绕点B 旋转至△A BC ''的位置,且使点A ,B ,C '三点在同一直线上,则点A 经过的最短路线长是cm . 答案:53π第27题. 一块等边三角形的木板,边长为1,若将木板沿水平线翻滚(如图),则点B 从开始至结束走过的路径长度为( ). A.3π2B.4π3C.4D.322+π答案:B第28题. 如图,扇形AOB 的圆心角为60o,半径为6cm ,C ,D 是»AB 的三等分点,则图中阴影部分的面积和是 .A ' C ' B C A BC答案:22cm π第29题. 如图,已知在扇形AOB 中,若45AOB ∠=o,4cm AD =,3cm CD =π,则图中阴影部分的面积是 .答案:214cm π第30题. 如图4,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为 .答案:14.2π.图4。
24.4 弧长和扇形面积同步练习卷一.选择题(共10小题).1.若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3πB.4πC.5πD.6π2.已知圆锥的底面半径为6cm,母线长为10cm,则这个圆锥的全面积是()A.60πcm2B.96πcm2C.132πcm2D.168πcm23.如图,用一个半径为6cm的定滑轮拉动重物上升,滑轮旋转了120°,假设绳索粗细不计,且与滑轮之间没有滑动,则重物上升了()A.πcm B.2πcm C.3πcm D.4πcm4.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2cm,绕AC所在直线旋转一周,所形成的圆锥侧面积是()A.16πcm2B.8πcm2C.4πcm2D.2πcm25.如图,点A、B、C、D都在边长为1的网格格点上,以A为圆心,AE为半径画弧,弧EF经过格点D,则扇形AEF的面积是()A.B.C.πD.6.如图,从一块半径为20cm的圆形铁皮上剪出一个圆心角是60°的扇形ABC,则此扇形围成的圆锥的侧面积为()A.200πcm2B.100πcm2C.100πcm2D.50πcm27.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为3m,那么花圃的面积为()A.6πm2B.3πm2C.2πm2D.πm28.如图,长方形ABCD中,AB=3BC,且AB=9cm,以点A为圆心,AD为半径作圆交BA 的延长线于点M,则阴影部分的面积等于()A.(π+9)cm2B.(π+18)cm2C.(π+9)cm2D.(π+18)cm2二.填空题9.弧长等于半径的圆弧所对的圆心角是度.10.一个周长确定的扇形,要使它的面积最大,扇形的圆心角应为度.11.已知扇形的弧长为6π,它的圆心角为120°,则该扇形的半径为.12.已知圆弧所在圆的半径为6,所对圆心角为60°,则这条弧的长为.13.扇形的半径为6cm,弧长为10cm,则扇形面积是.14.已知一个圆锥形零件的母线长为13cm,底面半径为5cm,则这个圆锥形的零件的侧面积为cm2.(结果用π表示).15.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为18cm,BD 的长为9cm,则纸面部分BDEC的面积为cm2.16.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C作OA的平行线分别交两弧点D、E,则阴影部分的面积为.三.解答题17.计算下图中扇形AOB的面积(保留π)18.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,求该圆锥的高h的长.19.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,求扇形OAB的弧长,周长和面积.(结果保留根号及π).20.如图,在半径为6cm的⊙O中,圆心O到弦AB的距离OE为3cm.(1)求弦AB的长;(2)求劣弧的长.21.在扇形OAB中,C是弧AB上一点,延长AC到D,且∠BCD=75°.(1)求∠AOB的度数;(2)扇形OAB是某圆锥的侧面展开图,若OA=12,求该圆锥的底面半径.22.如图所示,现有一圆心角为90°、半径为80cm的扇形铁片,用它恰好围成一个圆锥形的量筒;如果用其它铁片再做一个圆形盖子把量筒底面密封.(接缝都忽略不计).求:(1)该圆锥盖子的半径为多少cm?(2)制作这个密封量筒,共用铁片多少cm2.(注意:结果保留π)参考答案一.选择题1.解:∵扇形的半径为6,圆心角为120°,∴此扇形的弧长==4π.故选:B.2.解:根据题意,这个圆锥的全面积=×2π×6×10+π×62=60π+36π=96π(cm2).故选:B.3.解:根据题意,重物的高度为=4π(cm).故选:D.4.解:∵∠ACB=90°,∠BAC=30°,BC=2cm∴AB=4,则圆锥的底面周长=4π,旋转体的侧面积=×4π×4=8π,故选:B.5.解:由题意,扇形的半径AD==,∠EAF=45°,∴扇形AEF的面积==.故选:A.6.解:作OD⊥AB于D,如图,则AD=BD,∵∠OAD=∠BAC=30°,∴OD=OA=10,AD=OD=10,∴AB=2AD=20,∴扇形围成的圆锥的侧面积==200π(cm2).故选:A.7.解:∵扇形花圃的圆心角∠AOB=120°,半径OA为3cm,∴花圃的面积为=3π,故选:B.8.解:阴影部分的面积=扇形MAD的面积+矩形ABCD的面积﹣△CMB的面积=+3×9﹣×3×12=(π+9)cm2,故选:C.二.填空题9.解:设圆的半径为r,弧长等于半径的圆弧水对的圆心角是n°,根据题意得r=,即得n=,即弧长等于半径的圆弧所对的圆心角是度.10.解:设扇形的半径为r,周长为C,圆心角为n°,面积为S,S=(C﹣2r)r=﹣r2+r=﹣(r﹣)2+,∴当r=C时,S取得最大值,∴C=4r,∴=4r﹣2r,解得,n=,故答案为:.11.解:设扇形的半径为r,6π=,解得,r =9,故答案为:9.12.解:l ==2π, 故答案为2π.13.解:根据题意得,S 扇形=lR ==30(cm 2). 故答案为30cm 2.14.解:圆锥的底面周长=2π×5=10π,圆锥形的零件的侧面积=×10π×13=65π,故答案为:65π.15.解:S =S 扇形BAC ﹣S 扇形DAE =﹣=π(cm 2). 故答案是:π16.解:连接OE ,如图,∵CE ∥OA ,∴∠BCE =90°,∵OE =4,OC =2,∴CE =OC =2,∴∠CEO =30°,∠BOE =60°,∴S阴影部分=S 扇形BOE ﹣S △OCE ﹣S 扇形BCD =﹣×2×2﹣=π﹣2.故答案为π﹣2三.解答题17.解:如图,因为∠ACO=60°,OC=OA=4cm,所以△ACO是等边三角形,所以∠AOC=60°,所以∠AOB=120°,=π(cm2)答:扇形AOB的面积是πcm2.18.解:如图,由题意得:2πr=,而r=2,∴AB=6,∴由勾股定理得:AO2=AB2﹣OB2,而AB=6,OB=2,∴AO=4.即该圆锥的高为4.19.解:由图形可知,∠AOB=90°,∴OA=OB==2,∴扇形OAB的面积==2π,弧AB的长是:=π∴周长=弧AB的长+2OA=π+4.综上所述,扇形OAB的弧长是π,周长是π+4,面积是2π.20.解:(1)∵OE⊥AB,∴E为AB的中点,即AE=BE,在Rt△AOE,OA=6cm,OE=3cm,根据勾股定理得:AE==3cm,则AB=2AE=6cm.(2)在直角△OAE中,OA=6cm,OE=3cm,则OA=2OE,所以∠OAE=30°,∴∠AOE=∠BOE=60°,∴∠AOB=120°,∴劣弧的长是:=4π(cm).21.解:(1)作出所对的圆周角∠APB,∵∠APB+∠ACB=180°,∠BCD+∠ACB=180°,∴∠APB=∠BCD=75°,∴∠AOB=2∠APB=150°;(2)设该圆锥的底面半径为r,根据题意得2πr=,解得r=5,∴该圆锥的底面半径为5.22.解:(1)圆锥的底面周长是:=40πcm .设圆锥底面圆的半径是r ,则 2πr =40π.解得:r =20cm ;(2)S =S 侧+S 底=×π×802+400π=2000π(cm 2). 答:共用铁片2000πcm 2.。
人教版数学九年级上册24.4《弧长和扇形的面积》一、选择题1、如图,扇形纸扇完全打开后,外侧两竹条夹角为,的长为,贴纸部分的长为,则贴纸部分的面积为()A. B.C. D.2、如图所示,⊙O是以坐标原点O为圆心,4为半径的圆,点P的坐标为(,),弦AB经过点P,则图中阴影部分面积的最小值等于()A.2π﹣4 B.4π﹣8 C. D.3、如图所示,在扇形BAD中,点C在上,且∠BDC=30°,AB=2,∠BAD=105°,过点C作CE⊥AD,则图中阴影部分的面积为()A.π﹣2 B.π﹣1 C.2π﹣2 D.2π+14、如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是()A. B. C. D.5、如图,在△ABC 中,AB=5,AC=3,BC=4,将△ABC 绕点A 逆时针旋转30°后得到△ADE ,点B 经过的路径为,则图中阴影部分的面积为( )A .πB .πC .πD .π6、如图,把直角△ABC 的斜边AC 放在定直线l 上,按顺时针的方向在直线l 上转动两次,使它转到△A 2B 2C 2的位置,设AB=,BC=1,则顶点A 运动到点A 2的位置时,点A 所经过的路线为 ( )sA 、( +)πB 、( +)π/C 、2πD 、π27、一圆锥的底面直径为4cm ,高为cm ,则此圆锥的侧面积为( )A .20πcm 2B .10πcm 2C .4πcm 2D .4πcm 28、圆锥底面圆的半径为3cm ,其侧面展开图是半圆,则圆锥母线长为( ) A .3cm B .6cm C .9cm D .12cm二、填空题9、半径为3,弧长为4的扇形面积为.10、.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.则半径为2的“等边扇形”的面积为 .11、如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则圆锥的母线长是.12、小丽在手工制作课上,想用扇形卡纸制作一个圣诞帽,卡纸的半径为30cm,面积为300πcm2,则这个圣诞帽的底面半径为cm.13、如图,AB⊥BC,AB=BC=2 cm,弧OA与弧OC关于点O成中心对称,则AB、BC、弧OC、弧OA所围成的面积是_______cm2.14、如图,在Rt△ABC中,∠C=90°,∠BAC=60°,将△ABC绕点A逆时针旋转60°后得到△ADE,若AC=1,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是___(结果保留π).15、如图,正方形ABCD的边长为1cm,以CD为直径在正方形内画半圆,再以C为圆心,1cm长为半径画弧BD,则图中阴影部分的面积为.16、如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为.17、如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为.18、如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.三、简答题19、如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=,求阴影部分的面积.20、如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.21、如图,AB是⊙O的直径,弦DE垂直平分半径OB,垂足为M,DE=4,连接AD,过E作AD平行线交AB延长线于点C.(1)求⊙O的半径;(2)求证:CE是⊙O的切线;(3)若弦DF与直径AB交于点N,当∠DNB=30°时,求图中阴影部分的面积.22、某班课题学习小组对无盖的纸杯进行制作与探究,所要制作的纸杯如图1所示,规格要求是:杯口直径AB=6cm,杯底直径CD=4cm,杯壁母线AC=BD=6cm.请你和他们一起解决下列问题:(1)小顾同学先画出了纸杯的侧面展开示意图(如图2,忽略拼接部分),得到图形是圆环的一部分.①图2中弧EF的长为cm,弧MN的长为cm;②要想准确画出纸杯侧面的设计图,需要确定弧MN所在圆的圆心O,如图3所示.小顾同学发现有=,请你帮她证明这一结论.③根据②中的结论,求弧MN所在圆的半径r及它所对的圆心角的度数n.(2)小顾同学计划利用正方形纸片一张,按如图甲所示的方式剪出这个纸杯的侧面,求正方形纸片的边长.参考答案一、选择题1、D2、D.3、A【考点】MO:扇形面积的计算.【分析】阴影部分的面积=S扇形ACD﹣S△ACE,根据面积公式计算即可.【解答】解:∵∠BDC=30°,∴∠BAC=60°,∵AC=AB,∴△ABC是等边三角形,∵∠BAD=105°,∴∠CAE=105°﹣60°=45°,∵CE⊥AD,AC=AB=2,∴AE=CE=2,∴S△ACE=2,S扇形ACD==π,∴阴影部分的面积为S扇形ACD﹣S△ACE=π﹣2,故选A.【点评】本题考查了三角形和扇形的面积公式及三角函数值,得到阴影部分的面积=S扇形ACD﹣S△ACE是解题的关键.4、A【考点】MO:扇形面积的计算;L5:平行四边形的性质.【分析】根据题意可以得到平行四边形底边AB上的高,由图可知图中阴影部分的面积是平行四边形的面积减去扇形的面积和△EBC的面积.【解答】解:作DF⊥AB于点F,∵AD=2,∠A=30°,∠DFA=90°,∴DF=1,∵AD=AE=2,AB=4,∴BE=2,∴阴影部分的面积是:4×1﹣=3﹣,故选A.5、A 【考点】MO :扇形面积的计算;KS :勾股定理的逆定理;R2:旋转的性质.【分析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED 的面积=△ABC 的面积,得到阴影部分的面积=扇形ADB 的面积,根据扇形面积公式计算即可. 【解答】解:∵AB=5,AC=3,BC=4, ∴△ABC 为直角三角形,由题意得,△AED 的面积=△ABC 的面积,由图形可知,阴影部分的面积=△AED 的面积+扇形ADB 的面积﹣△ABC 的面积,∴阴影部分的面积=扇形ADB 的面积==,故选:A .6、B7、B 【考点】MP :圆锥的计算.【分析】利用勾股定理易得圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:圆锥的底面直径为4cm ,高为cm ,则底面半径=2cm ,底面周长=4πcm ,由勾股定理得,母线长=5cm ,侧面面积=×4π×5=10πcm 2.故选B .8、B二、填空题9、 6 .【考点】扇形面积的计算.【分析】由扇形面积公式S=lR 进行计算.【解答】解:由题意得:S=×4×3=6.故答案是:6.10、;11、;12、10分析:由圆锥的几何特征,我们可得用半径为30cm,面积为300πcm2的扇形卡纸制作一个圣诞帽,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.解:设卡纸扇形的半径和弧长分别为R、l,圣诞帽底面半径为r,则由题意得R=30,由Rl=300π得l=20π;由2πr=l得r=10cm.故答案是:10.13、214、_解析:∵∠C=90°,∠BAC=60°,AC=1,∴AB=2,扇形BAD的面积为:=,在直角△ABC中,BC=AB·sin60°=2×=,AC=1,∴S△ABC=S△ADE=AC·BC=×1×=,扇形CAE的面积是:=,∵S△ADE=S△ABC,则阴影部分的面积是:S扇形DAB+S△ABC-S△ADE-S扇形ACE=-=15、cm2.【考点】扇形面积的计算;正方形的性质.【分析】根据题意有S阴影部分=S扇形BCD﹣S半圆CD,然后根据扇形的面积公式:S=和圆的面积公式分别计算扇形和半圆的面积即可.【解答】解:根据题意得,S阴影部分=S扇形BAD﹣S半圆BA,∵S扇形BCD=,S半圆CD=π()2=,∴S阴影部分=﹣=.故答案为:cm216、9 .【考点】扇形面积的计算.【分析】由正方形的边长为3,可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB=lr,计算即可.【解答】解:∵正方形的边长为3,∴弧BD的弧长=6,∴S扇形DAB=lr=×6×3=9.故答案为:9.【点评】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式S扇形DAB=lr.17、5π.【考点】MN:弧长的计算;PB:翻折变换(折叠问题).【分析】如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°﹣∠DOB=50°;然后由弧长公式弧长的公式l=来求的长.【解答】解:如图,连接OD.根据折叠的性质知,OB=DB.又∵OD=OB,∴OD=OB=DB,即△ODB是等边三角形,∴∠DOB=60°.∵∠AOB=110°,∴∠AOD=∠AOB﹣∠DOB=50°,∴的长为=5π.故答案是:5π.18、π﹣2 .【考点】MO:扇形面积的计算;KW:等腰直角三角形.【分析】空白处的面积等于△ABC的面积减去扇形BCD的面积的2倍,阴影部分的面积等于△ABC的面积减去空白处的面积即可得出答案.【解答】解:∵∠ACB=90°,AC=BC=2,∴S△ABC=×2×2=2,S扇形BCD==π,S空白=2×(2﹣π)=4﹣π,S阴影=S△ABC﹣S空白=2﹣4+π=π﹣2,故答案为π﹣2.三、简答题19、(1)证明:连接OC,如图,………1分∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂直平分BC,∴EC=EB,在△OCE和△OBE中,∴△OCE≌△OBE,∴∠OBE=∠OCE=90°,∴OB⊥BE,∴BE与⊙O相切;………5分(2)解:设⊙O的半径为r,则OD=r﹣1,在Rt△OBD中,BD=CD=BC=,∴(r﹣1)2+()2=r2,解得r=2,………7分∵BF=,∴∠BOD=60°,∴∠BOC=2∠BOD=120°,………8分在Rt△OBE中,BE=OB=2,∴阴影部分的面积=S四边形OBEC﹣S扇形BOC=2S△OBE﹣S扇形BOC=2××2×2﹣=4﹣π.………10分20、解:(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠B=∠D=60°.(2)∵AB是⊙O的直径,∴∠ACB=90°.又∠B=60°∴∠BAC=30°. ∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE.∴AE是⊙O的切线.(3)如图,连接OC,∵∠ABC=60°,∴∠AOC=120°.∴劣弧AC的长为=π.21、22、【考点】圆的综合题.【专题】综合题.【分析】(1)①直接根据圆的周长公式计算;②设它所对的圆心角的度数为n ,根据弧长公式得到的长=,的长=,然后把它们相比即可得到=;③由(2)中的结论得到得==,加上OF=ON+6,可求得ON=12,再利用弧长公式得到=4π,于是可求出n=60°;(2)如图4,连结EF ,OB ,它们相交于点P ,先证明△OEF 为等边三角形得到EF=OF=18,再证明Rt △AOE ≌Rt △COF 得到AE=CF ,则BE=BF ,于是可判断OB 垂直平分EF ,所以PF=EF=9,由勾股定理计算出OP==9,由△PFB 为等腰直角三角形和得到PB=PF=9,则OB=9+9,然后根据正方形的性质得OC=OB=.【解答】(1)解:①如图2,弧EF 的长为6πcm ,弧MN 的长为4πcm ;故答案为6π,4π;②证明:如图3,设它所对的圆心角的度数为n ,的长=,的长=,所以=;③由(2)得==,而OF=ON+6,解得ON=12,即r=12,因为=4π,解得n=60°;(2)解:如图4,连结EF,OB,它们相交于点P,∵四边形ABCD为正方形,∴OA=OC,∠OBC=45°,∵∠OEF=60°,OE=OF,∴△OEF为等边三角形,∴EF=OF=18,在Rt△AOE和Rt△COF中,,∴Rt△AOE≌Rt△COF,∴AE=CF,∴BE=BF,∴OB垂直平分EF,∴PF=EF=9,∴OP==9,∵△PFB为等腰直角三角形,∴PB=PF=9,∴OB=9+9,∴OC=OB=,即正方形纸片的边长为cm.【点评】本题考查了圆的综合题:熟练掌握圆的有关性质和正方形的性质;记住弧长公式;学会把几何题展开成平面图形的方法解决几何体的问题.。
人教版九年级数学上册《24.4弧长和扇形面积》同步测试题及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.在半径为1的⊙O 中,120°的圆心角所对的弧长是 () A .3π B .23π C .πD .32π 2.用一个圆心角为150°,半径为12的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( ) A .2.5B .5C .6D .103.将一半径为6的圆形纸片,沿着两条半径剪开形成两个扇形.若其中一个扇形的弧长为5π,则另一个扇形的圆心角度数是多少?( ) A .30B .60C .105D .2104.若圆锥的底面直径为6cm ,侧面展开图的面积为215πcm ,则圆锥的母线长为( ) A .5cm 2B .2cm 5C .3cmD .5cm5.如图,在⊙ABC 中,AB=AC=,BC=2,以A 为圆心作圆弧切BC 于点D ,且分别交边AB 、AC 于E 、F ,则扇形AEF 的面积是( )A .B .C .D .6.用一个圆心角为120°,半径为4的扇形,做一个圆锥的侧面,则这个圆锥的全面积(侧面与底面面积的和)为( ) A .563πB .643πC .569πD .649π二、填空题7.已知扇形的弧长为6π,它的圆心角为120,则该扇形的半径为 . 8.圆锥底面圆的半径2cm r =,母线长为6cm ,则圆锥全面积为 .9.如图,扇形OAB 的圆心角为30︒,半径为1,将它在水平直线上向右无滑动滚动到'''O A B 的位置时,则点O 到点'O 所经过的路径长为 .10.如图,O 的直径6AB =,圆内接ACD 中,AC=CD ,30CAD ∠=︒则阴影部分的面积为 .三、解答题11.(本小题满分10分)如图,已知扇形的半径为15cm ,⊙AOB=120°.(1)求扇形的面积;(2)用这扇形围成圆锥的侧面,求该圆锥的高和底面半径.12.如图,AB 是⊙O 的直径,BC 切⊙O 于点B ,OC 交⊙O 于点D 的半径为3 20C ∠=︒.(1)求A ∠的度数;(2)求AD 的长.(结果保留π)参考答案题号 1 2 3 4 5 6 答案BBDDB D1.【答案】B【分析】根据弧长公式可知弧长. 【详解】解: l =120121803ππ⨯=. 故选B . 2.【答案】B【分析】根据弧长公式先计算出扇形的弧长,再根据圆锥的底面周长等于这个扇形的弧长即可求解. 【详解】解:由题意知:扇形的弧长=1501210180ππ⨯= 设圆锥的底面半径为R ,圆锥的底面周长等于扇形的弧长 ⊙2πR =10π ∴R =5 故选:B .【点睛】本题考查了扇形的弧长公式及圆锥的展开图,属于基础题,熟练掌握扇形弧长的计算公式是解题的关键. 3.【答案】D【分析】根据题意可知两个扇形的弧长之和就是圆的周长,则可以求得另一个扇形的弧长,再根据弧长公式求解即可.【详解】解:由题意可求得圆的周长2612C ⨯==ππ 其中一个扇形的弧长15L =π,则另一个扇形的弧长21257L -==πππ 设另一个扇形的圆心角度数为n ︒ 根据弧长公式:180n rL =π,有: 67180n ⨯=ππ,解得210n = 故选:D .【点睛】本题考查弧长的计算,解题关键是理解题意,正确应用弧长公式进行计算.【分析】已知圆锥底面圆的半径可求出侧面展开图的弧长,根据侧面展开图的面积即可求解. 【详解】如图所示⊙圆锥的底面直径为6cm ⊙圆锥的底面半径为3cm⊙圆锥的底面圆周长是2π6πC r == ⊙侧面展开图的面积为215πcm⊙侧面展开图的面积116π15π22S l C l ==⨯=⊙圆锥的母线长为5l = 故选:D .【点睛】本题主要考查圆锥侧面展开图的面积,理解掌握面积公式的计算方法是解题的关键. 5.【答案】B【详解】试题分析:先判断出⊙ABC 是等腰直角三角形,从而连接AD ,可得出AD=1,直接代入扇形的面积公式进行运算即可. ⊙AB=AC=,BC=2⊙AB 2+AC 2=BC 2⊙⊙ABC 是等腰直角三角形 连接AD ,则AD=BC=1则S 扇形AEF =故选B .考点:1.扇形面积的计算;2.等腰直角三角形.【分析】先求出圆锥的侧面积和底面半径,再求圆锥的表面积,由此即可求出这个圆锥的表面积. 【详解】解:圆锥的侧面积=π×42×120?360?=163π圆锥的底面半径=2π×4×120?360?÷2π=43圆锥的底面积=π×(43)2=169π圆锥的表面积=侧面积+底面积=1616=39649πππ+. 故选:D .【点睛】本题考查圆锥的表面积,解题时要认真审题,掌握扇形面积、圆锥底面半径的计算方法是解题的关键. 7.【答案】9【分析】知道弧长,圆心角,直接代入弧长公式L=180n rπ即可求得扇形的半径. 【详解】解:⊙扇形的圆心角为120°,它所对应的弧长6π ⊙6π=120180rπ 解得:r=9. 故答案为9.【点睛】此题主要考查了扇形弧长的应用,要掌握弧长公式:L=180n rπ才能准确的解题. 8.【答案】216πcm【分析】圆锥的全面积是底面圆的面积与侧面扇形的面积,由此即可求解. 【详解】解:如图所示,圆锥底面圆的半径2cm r =,母线长为6cm⊙底面圆的周长为2π2π24πcm r =⨯=,底面圆的面积为222ππ24πcm r ==,侧面扇形的面积为214π612πcm 2⨯= ⊙圆锥的全面积为24π12π16πcm +=故答案为:216πcm .【点睛】本题主要考查立体几何图形的面积,掌握圆锥面积是底面圆面积与侧面扇形的面积之和是解题的关键. 9.【答案】76π【分析】点O 到点O ′所经过的路径长分三段,先以A 为圆心,1为半径,圆心角为90度的弧长,再平移了AB 弧的长,最后以B 为圆心,1为半径,圆心角为90度的弧长.根据弧长公式计算即可. 【详解】解:⊙扇形OAB 的圆心角为30°,半径为1 ⊙AB 弧长=301180π⨯⨯=6π⊙点O 到点O ′所经过的路径长=90172=18066πππ⨯⨯⨯+ 故答案为:76π. 【点睛】本题考查了弧长公式,旋转的性质和圆的性质,理解点O 到点O ′所经过的路径长分三段是解题的关键.10.【答案】9332π 【分析】连接OC 、OD ,交AD 与点K ,根据AC CD =,30CAD ∠=︒得到1230∠=∠=︒ AOC ∆ COD ∆为等边三角形,证明出四边形ACDO 为菱形,,进而求出阴影部分的面积. 【详解】解:连接OC 、OD ,交AD 与点K ,如图所示:⊙AC CD = 30CAD ∠=︒ ⊙1230∠=∠=︒⊙32260∠=∠=︒ 42160∠=∠=︒ ⊙AO OC OD ==⊙AOC ∆,COD ∆为等边三角形 ⊙OA OD OC AC CD ==== ⊙四边形ACDO 为菱形⊙CO AD ⊥ ⊙360∠=︒ ⊙530∠=︒⊙AB 为圆O 直径为6 ⊙3AO = ⊙1322OK AO == ∴22333()322AK =-= 23CO KO ==∴233AD AK ==⊙19322ACDO S AD CO =⋅=菱形312033360AOD S ππ=⨯⨯=扇形 ⊙9332S π=阴 【点睛】本题考查了求扇形阴影部分的面积,正确作出辅助线是解题的关键. 11.【答案】(1)150π平方厘米(2)r=10cm ;5cm 【分析】(1)根据扇形的面积公式S=2360n r π,代值计算即可(2)利用弧长公式可求得扇形的弧长,除以2π即为圆锥的底面半径,再利用勾股定理求得高即可.【详解】解:(1)⊙S=2360n r π ⊙S=224015360π⨯=150πcm 2(2)⊙弧长=24015180π⨯=20π ⊙2πr=20π,r=10cm⊙圆锥的高221510-55cm )【点睛】本题考查了扇形的面积公式以及圆锥有关计算,解本题的关键是掌握圆锥的侧面展开图的弧长等于圆锥的底面周长.12.【答案】(1) 35A ∠=︒;(2) 弧AD 的长为116π. 【分析】(1)由切线性质结合已知得70BOD ∠=︒,根据⊙OAD 是等腰三角形即可计算出⊙A =35°.(2)由(1)可知⊙AOC =110°,根据弧长公式即可计算. 【详解】解:(1)BC 是⊙O 的切线90B ∴∠=︒.又⊙⊙C =20°.902070BOC ∴∠=︒-︒=︒⊙OA =OD ⊙⊙A =⊙ADO1 352A BOC ∴∠=∠=︒(2)180AOC BOC ∠=︒-∠18070110AOC ∴∠=︒-︒=︒∴弧AD 的长为110111806ππ=. 【点睛】本题考查了切线的性质,等腰三角形的性质,弧长的计算等知识点,能求出⊙BOC 的度数是解此题的关键,注意:圆的切线垂直于过切点的半径.。
24.4 第1课时 弧长和扇形面积知识点 1 弧长公式及其应用1.在半径为R 的圆中,1°的圆心角所对的弧长l =________,n °的圆心角所对的弧长l =________.2.(1)2016·岳阳在半径为6 cm 的圆中,120°的圆心角所对的弧长为________cm. (2)有一条弧的长为2π cm ,半径为2 cm ,则这条弧所对的圆心角的度数是________; (3)一条长度为10π cm 的弧所对的圆心角为60°,则这条弧所在的圆的半径是________.3.若半径为5 cm 的一段弧的弧长等于半径为2 cm 的圆的周长,则这段弧所对的圆心角为( )A .18°B .36°C .72°D .144°4.2017·咸宁如图24-4-1,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD =∠BCD ,则BD ︵的长为( )图24-4-1A .π B.32πC .2πD .3π5.如图24-4-2所示,⊙O 的半径为6 cm ,直线AB 是⊙O 的切线,切点为B ,弦BC ∥AO .若∠A =30°,求劣弧BC ︵的长.图24-4-2知识点 2 扇形的面积公式及其应用6.2016·宜宾半径为6,圆心角为120°的扇形的面积是( ) A .3π B .6π C .9π D .12π7.2017·天门一个扇形的弧长是10π cm ,面积是60π cm 2,则此扇形的圆心角的度数是( )A .300°B .150°C .120°D .75°8.2017·泰州扇形的半径为3 cm ,弧长为2π cm ,则该扇形的面积为________cm 2. 9.(1)在半径为6 cm 的圆中,圆心角为60°的扇形的面积是________; (2)已知扇形的半径为2 cm ,面积为2π cm 2,则扇形的圆心角是________; (3)若扇形的弧长为10π cm ,面积为20π cm 2,则扇形的半径为________.10.2016·怀化已知扇形的半径为6 cm ,面积为10π cm 2,则该扇形的弧长等于________. 11.如图24-4-3,⊙O 的直径AB 垂直弦CD 于点E ,连接BC ,OC . (1)求证:∠BCD =12∠COB ;(2)若OC =10,∠BCD =15°,求阴影部分的面积.图24-4-312.2016·青岛如图24-4-4,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 的长为25 cm ,贴纸部分的宽BD 为15 cm ,若纸扇两面贴纸,则贴纸的面积为( )图24-4-4A .175π cm 2B .350π cm 2 C.8003π cm 2 D .150π cm 2 13.2016·山西如图24-4-5,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE ︵的长为( )图24-4-5A.π3B.π2C .πD .2π 14.2016·昆明如图24-4-6,AB 为⊙O 的直径,AB =6,AB 垂直于弦CD ,垂足为G ,EF 切⊙O 于点B ,∠A =30°,连接AD ,OC ,BC ,则下列结论不正确的是( )图24-4-6A .EF ∥CDB .△COB 是等边三角形C .CG =DG D.BC ︵的长为32π15.2017·舟山如图24-4-7,小明自制一块乒乓球拍,正面是半径为8 cm 的⊙O ,AB ︵=90°,弓形ACB (阴影部分)粘贴胶皮,则胶皮面积为________.图24-4-716.2016·福州如图24-4-8,正方形ABCD 内接于⊙O ,M 为AD ︵的中点,连接BM ,CM .(1)求证:BM =CM ;(2)当⊙O 的半径为2时,求BM ︵的长.图24-4-817.2017·枣庄如图24-4-9,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,与AC ,AB 分别交于点E ,F .(1)试判断直线BC 与⊙O 的位置关系,并说明理由; (2)若BD =2 3,BF =2,求阴影部分的面积(结果保留π).图24-4-918.如图24-4-10所示,已知AB为⊙O的直径,CD是弦,AB⊥CD于点E,OF⊥AC于点F,BE=OF.(1)求证:OF∥BC;(2)求证:△AFO≌△CEB;(3)若EB=5 cm,CD=10 3 cm,设OE=x cm,求x的值及阴影部分的面积.图24-4-10教师详解详析1.πR 180 n πR1802.(1)4π (2)180° (3)30 cm3.D [解析] 设这段弧所对的圆心角为n °,则有n180π·5=2π·2,解得n =144.4.C [解析] ∵∠BAD =12∠BOD =12∠BCD ,∠BAD +∠BCD =180°,∴∠BOD =120°. 又∵⊙O 的半径为3,∴BD ︵的长为120π·3180=2π.故选C.5.解:连接OB ,OC .∵AB 是⊙O 的切线,∴AB ⊥OB .∵∠A =30°,∴∠AOB =90°-∠A =60°. ∵BC ∥AO ,∴∠OBC =∠AOB =60°. ∵OB =OC ,∴△OBC 是等边三角形, ∴∠BOC =60°,∴劣弧BC ︵的长为60×π×6180=2π(cm).6.D [解析] S =120×π×62360=12π.7.B [解析] 根据S 扇形=12l 弧长r ,求得半径r =12 cm ,由弧长公式l =n πr 180,得10π=n π·12180,解得n =150.即此扇形的圆心角的度数是150°. 8.3π [解析] 根据扇形面积公式,得S =12lr =12×2π×3=3π(cm 2).9.(1)6π cm 2 (2)180° (3)4 cm10.10π3 cm [解析] 设扇形的弧长为l cm.∵扇形的半径为6 cm ,面积为10π cm 2,∴12l ×6=10π,解得l =10π3. 11.解:(1)证明:∵AB ⊥CD ,∴CB ︵=BD ︵. 如图,连接BD ,则∠BCD =∠BDC .∵∠COB =2∠BDC (圆周角定理), ∴∠COB =2∠BCD ,即∠BCD =12∠COB .(2)∵∠BCD =15°,∴∠COB =30°, ∴∠AOC =150°. 又∵OC =10,∴S 阴影=150π×102360=1253π.12.B [解析] ∵AB =25,BD =15,∴AD =10,∴S 贴纸=2×(120·π×252360-120·π×102360)=350π(cm 2).13.C [解析] 如图,连接OE ,OF .∵∠1=∠C =60°,OA =OF ,∴∠2=60°.∵CD 与⊙O 相切,∴∠4=90°,∴∠3=90°,∴∠EOF =180°-∠2-∠3=180°-60°-90°=30°.∵r =12÷2=6,∴FE ︵的长=n πr 180=30·π·6180=π.14.D [解析] ∵AB 为⊙O 的直径,EF 切⊙O 于点B ,∴AB ⊥EF .又∵AB ⊥CD ,∴EF ∥CD ,故A 正确; ∵AB ⊥CD ,∴BC ︵=BD ︵, ∴∠COB =2∠A =60°. 又∵OC =OB ,∴△COB 是等边三角形,故B 正确; ∵AB ⊥CD ,∴CG =DG .故C 正确;BC ︵的长为60×π×3180=π,故D 不正确.故选D.15.(48π+32)cm 2 [解析] 连接AO ,OB ,作OD ⊥AB 于点D .因为AB ︵=90°,所以∠AOB =90°,所以胶皮面积S =S 扇形ACB +S △OAB =34×π×82+12×8×8=(48π+32)cm 2.16.解:(1)证明:∵四边形ABCD 是正方形, ∴AB =CD ,∴AB ︵=CD ︵. ∵M 为AD ︵的中点,∴AM ︵=DM ︵, ∴AB ︵+AM ︵=CD ︵+DM ︵,即BM ︵=CM ︵, ∴BM =CM .(2)∵⊙O 的半径为2, ∴⊙O 的周长为4π. ∵AM ︵=DM ︵=12AD ︵=12AB ︵,∴BM ︵=AB ︵+AM ︵=32AB ︵,∴BM ︵的长=32×14×4π=32π.17.解:(1)BC 与⊙O 相切. 理由:连接OD .∵AD 是∠BAC 的平分线, ∴∠BAD =∠CAD . 又∵OD =OA , ∴∠OAD =∠ODA , ∴∠CAD =∠ODA , ∴OD ∥AC ,∴∠ODB =∠C =90°,即OD ⊥BC . 又∵BC 过半径OD 的外端点D , ∴BC 与⊙O 相切.(2)设OF =OD =x ,则OB =OF +BF =x +2,根据勾股定理,得OB 2=OD 2+BD 2,即(x +2)2=x 2+(2 3)2, 解得x =2,即OD =OF =2, ∴OB =2+2=4.∵在Rt △ODB 中,OD =12OB ,∴∠B =30°,∴∠DOB =60°, ∴S 扇形DOF =60π×22360=2π3,则阴影部分的面积为S △ODB -S 扇形DOF =12×2×2 3-23π=2 3-23π.18.解:(1)证明:∵AB 为⊙O 的直径, ∴∠ACB =90°.又∵OF ⊥AC 于点F ,∴∠AFO =90°, ∴∠ACB =∠AFO , ∴OF ∥BC .(2)证明:由(1)知∠CAB +∠ABC =90°.由AB ⊥CD 于点E ,可得 ∠CEB =90°,∴∠ABC +∠BCE =90°,∴∠CAB =∠BCE . 又∵∠AFO =∠CEB =90°,OF =BE , ∴△AFO ≌△CEB .(3)∵AB 为⊙O 的直径,CD 是弦,AB ⊥CD 于点E ,∴∠OEC =90°,CE =12CD =12×103=5 3(cm).在Rt △OCE 中,OE =x cm ,OB =OC =(5+x )cm , 由勾股定理,得OC 2=CE 2+OE 2, 即(5+x )2=()5 32+x 2,解得x =5,∴OE =5 cm ,OC =10 cm.在Rt △OCE 中,OC =2OE ,故∠OCE =30°, ∴∠COE =60°.由圆的轴对称性可知阴影部分的面积 S 阴影=2(S 扇形BOC -S △OCE ) =2×⎝⎛⎭⎫60π×102360-12×5 3×5=⎝⎛⎭⎫100π3-25 3cm 2.第2课时 圆锥的侧面积和全面积知识点 圆锥的侧面积以及全面积1.若设圆锥的母线长为4,底面圆的半径为2,那么圆锥的侧面展开图(扇形)的弧长是________,圆锥的侧面积S 侧=________,圆锥的全面积S 全=________.2.2016·宁波如图24-4-11,圆锥的底面圆半径r 为6 cm ,高h 为8 cm ,则圆锥的侧面积为( )图24-4-11A .30π cm 2B .48π cm 2C .60π cm 2D .80π cm 23.已知圆锥底面圆的半径为3,母线长为5,则它的全面积为( ) A .9π B .15π C .24π D .39π4.2016·贺州已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为( )A.2 B.4 C.6 D.85.2017·宿迁若将半径为12 cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.2 cm B.3 cm C.4 cm D.6 cm6.有一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝处忽略不计),若圆锥的底面圆的直径是80 cm,则这块扇形铁皮的半径是()A.24 cm B.48 cmC.96 cm D.192 cm7.2017·泰安工人师傅用一张半径为24 cm,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为________.8.2017·自贡圆锥的底面圆周长为6πcm,高为4 cm,则该圆锥的全面积是________,侧面展开扇形的圆心角是________.9.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角是________°.10.如图24-4-12,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2 cm,扇形的圆心角θ=120°,求该圆锥的高h的长.图24-4-1211.如果圆锥的底面圆的周长是20π,侧面展开后所得的扇形的圆心角为120°,求该圆锥的侧面积和全面积.12.2017·齐齐哈尔一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是()A.120°B.180°C.240°D.300°13.如图24-4-13所示,圆锥的底面圆半径为5,母线长为20,一只蜘蛛从底面圆周上一点A出发沿圆锥的侧面爬行一周后回到点A的最短路程是()图24-4-13A.8B.10 2C.15 2 D.20 214.2016·十堰如图24-4-14,从一张腰长为60 cm,顶角为120°的等腰三角形铁皮OAB中剪下一个最大的扇形OCD,用此扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()图24-4-14A.10 cm B.15 cmC.10 3 cm D.20 2 cm15.如图24-4-15,将半径为3 cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()图24-4-15A .2 2 cm B. 2 cm C.10 cm D.32cm16.如图24-4-16,从一块直径是8 m 的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,则圆锥的高是( )图24-4-16A .4 2 mB .5 m C.30 m D .2 15 m17.2017·南充如图24-4-17,在Rt △ABC 中,AC =5 cm ,BC =12 cm ,∠ACB =90°,把Rt △ABC 绕BC 所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( )图24-4-17A .60π cm 2B .65π cm 2C .120π cm 2D .130π cm 218.2017·苏州如图24-4-18,AB 是⊙Ο的直径,AC 是弦,AC =3,∠BOC =2∠AOC .若用扇形AOC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是________.图24-4-1819.如图24-4-19,Rt△ABC中,∠ACB=90°,AC=BC=2 2,若把Rt△ABC绕边AB所在的直线旋转一周,则所得几何体的表面积为________.(结果保留π)图24-4-1920.已知扇形的圆心角为120°,面积为300πcm2.(1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面(轴截面是指以底面圆的直径为底,圆锥的高为高的三角形)的面积为多少?21.如图24-4-20所示,一个圆锥的高为3 3 cm ,侧面展开图是半圆. 求:(1)圆锥的母线长与底面圆的半径之比; (2)∠BAC 的度数;(3)圆锥的侧面积(结果保留π).图24-4-20教师详解详析1.4π 8π 12π2.C [解析] 因为圆锥的母线长为62+82=10(cm),圆锥的底面圆周长为2×π×6=12π(cm),所以圆锥的侧面积为12×10×12π=60π(cm 2).3.C [解析] 圆锥底面圆的周长是2×3π=6π,所以侧面积是12×6π×5=15π.又因为圆锥底面积是π×32=9π,所以它的全面积是15π+9π=24π.故选C.4.D [解析] 设圆锥的底面圆半径为r .已知圆锥的侧面展开图的半径为12, 又∵它的侧面展开图的圆心角是120°,∴弧长=120π×12180=8π,即圆锥底面圆的周长是8π,∴8π=2πr ,解得r =4,∴底面圆的直径为8.5.D [解析] 根据圆锥底面圆周长=扇形弧长,得12π=2πr ,所以r =6(cm). 6.B [解析] ∵用扇形铁皮围成圆锥后,扇形的弧长与圆锥的底面圆的周长相等,∴弧长l =80π.又l =πr 180·300,∴r =180l 300π=180×80π300π=48(cm).故选B. 7.2 119 cm [解析] 由题意可得圆锥的母线长为24 cm ,设圆锥的底面圆的半径为r cm ,则2πr =150π×24180,解得r =10,所以圆锥的高为242-102=2 119(cm).8.24π cm 2 216° [解析] ∵圆锥的底面圆周长为6π cm ,∴底面圆半径为r =6π÷2π=3(cm),根据勾股定理,得圆锥的母线R =r 2+h 2=32+42=5(cm),侧面展开扇形的弧长l =2πr =6π cm ,∴侧面展开扇形的面积S 侧=12lR =12×6π×5=15π(cm 2),圆锥底面积S =πr 2=9π(cm 2),∴该圆锥的全面积S 全=15π+9π=24π(cm 2);设侧面展开扇形的圆心角为n °,则n πR 180=l ,即n π×5180=6π,解得n =216,∴侧面展开扇形的圆心角为216°.9.180 [解析] 设母线长为R ,底面圆半径为r ,则底面圆周长=2πr ,底面积=πr 2,侧面积=12·2πr ·R =πrR .∵侧面积是底面积的2倍,∴2πr 2=πrR ,∴R =2r .设侧面展开图的圆心角为n °,则n πR180=2πr =πR ,∴n =180. 10.解:由题意,得2πr =120π·l180,而r =2 cm ,∴l =6 cm ,∴由勾股定理,得h =l 2-r 2=62-22=4 2(cm), 即该圆锥的高h 的长为4 2 cm.11.[全品导学号:82642186]解:设圆锥底面圆的半径为r ,母线长为l ,则有2πr =20π,120πl 180=20π,解得r =10,l =30.∴该圆锥的侧面积为12×20π·30=300π,圆锥的全面积为300π+π·102=400π.12.A [解析] 设圆锥侧面展开图的扇形的圆心角的度数为n °,底面圆半径为r ,由题意得3πr 2=πrl ,∴l =3r .又∵3πr 2=n 360πl 2=n360π(3r )2,∴n =120.故圆锥侧面展开图的扇形的圆心角是120°.13 D [解析] 圆锥的侧面展开扇形的弧长为2π×5=10π.设扇形的圆心角为n °,根据弧长公式得10π=n π·20180,解得n =90.所以蜘蛛从点A 出发沿圆锥的侧面爬行一周后回到点A 的最短路程为202+202=20 2.故选D.14.D [解析] 过点O 作OE ⊥AB 于点E .∵OA =OB =60 cm ,∠AOB =120°, ∴∠A =∠B =30°,∴OE =12OA =30 cm ,∴CD ︵的长=120×π×30180=20π.设圆锥的底面圆的半径为r cm ,则2πr =20π,解得r =10,∴圆锥的高=302-102=20 2(cm).15.A [解析] 如图,过点O 作OC ⊥AB ,垂足为D ,交⊙O 于点C .由折叠的性质可知,OD =12OC =12OA =32 cm ,由此可得,在Rt △AOD 中,∠OAD =30°.同理可得∠OBD=30°.在△AOB 中,由三角形内角和定理,得∠AOB =180°-∠OAD -∠OBD =120°,∴AB ︵的长为120π×3180=2π(cm).设围成的圆锥的底面圆的半径为r cm ,则2πr =2π,∴r =1,∴圆锥的高为32-12=2 2(cm).故选A.16.C [解析] 依题意,线段BC 是圆的直径.利用勾股定理可得AB =4 2 m , ∴lBC ︵=90π·AB 180=2 2π(m),∴圆锥的底面圆的半径=2 2π÷2π=2(m).又圆锥的母线长为4 2 m ,∴圆锥的高为(4 2)2-(2)2=30(m).故选C.17.B [解析] 由勾股定理,得AB =BC 2+AC 2=122+52=13(cm).由题意知得到的这个几何体是圆锥,圆锥的底面圆半径AC =5 cm ,母线AB =13 cm ,所以圆锥的侧面积=πAC ·AB =π×5×13=65π(cm 2).故选B.18.12 [解析] 根据“圆锥的侧面展开图的弧长等于底面圆的周长”求解.∵∠BOC =2∠AOC ,∠BOC +∠AOC =180°,∴∠AOC =60°,∴OA =3.设围成的圆锥的底面圆的半径是r ,则60π×3180=2πr ,解得r =12.19.8 2π [解析] 过点C 作CD ⊥AB 于点D .在Rt △ABC 中,∠ACB =90°,AC =BC ,利用勾股定理可得AB =2AC =4,CD =2.以CD 为半径的圆的周长是4π,故绕直线AB 旋转一周所得几何体的表面积是2×12×4π×2 2=8 2π. 20.[解析] (1)由S 扇形=n πR 2360求出R ,再代入l =n πR 180求弧长. (2)若将此扇形卷成一个圆锥,扇形的弧长就是圆锥底面圆的周长,就可求得底面圆的半径,其轴截面是一个以底面直径为底,圆锥母线为腰的等腰三角形.解:(1)设扇形的半径为R cm.由题意,得300π=120πR 2360, 解得R =30,∴弧长l =120×π×30180=20π(cm). 因此,扇形的弧长为20π cm.(2)如图所示.∵20π=2πr ,∴r =10.又∵R =30,∴AD =900-100=20 2(cm),∴S 轴截面=12BC ·AD =12×20×202=200 2(cm 2). 因此,这个圆锥的轴截面的面积为200 2 cm 2.21.解:(1)设此圆锥的底面圆的半径为r cm ,母线长AC =l cm.∵2πr =πl ,∴l r=2. 即圆锥的母线长与底面圆的半径之比为2∶1.(2)∵l r=2,∴圆锥的高与母线的夹角为30°,则∠BAC =60°.(3)由图可知l 2=OA 2+r 2,OA =3 3 cm , ∴(2r )2=(3 3)2+r 2,即4r 2=27+r 2,解得r =3.∴l =2r =6.∴圆锥的侧面积为πl 22=18π cm 2.。
人教版数学九年级上册24.4弧长和扇形面积同步练习一.选择题(共5小题)1.如图,一段公路的转弯处是一段圆弧(),则的展直长度为()A.3πB.6πC.9πD.12π2.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A.B.C.D.3.如图,AB为半圆O的直径,C为AO的中点,CD⊥AB交半圆于点D,以C为圆心,CD为半径画弧交AB于E点,若AB=4,则图中阴影部分的面积是()A.B.C.D.4.圆锥的底面直径是80cm,母线长90cm,则它的侧面积是()A.360πcm2 B.720πcm2C.1800πcm2D.3600πcm25.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是()A.10cm2B.10πcm2C.20cm2D.20πcm2二.填空题(共4小题)7.如图,⊙O半径是1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是.8.如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)9.用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是cm.10.如图,两圆半径均为1,且图中两块阴影部分的面积相等,那OO1的长度是.三.解答题(共4小题)11.如图所示,将直角△ABC向下旋转90°,已知BC=5厘米,AB=4厘米,AC=3厘米,求△ABC扫过的面积.12.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB;(2)以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.13.如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆柱,中间是一个圆柱(如图,单位:mm).电镀时,如果每平方米用锌0.11kg,要电镀1000个这样的锚标浮筒需要用多少锌?(精确到1kg)14.已知如图,在直角坐标系xOy中,点A,点B坐标分别为(﹣1,0),(0,),连结AB,OD由△AOB绕O点顺时针旋转60°而得.(1)求点C的坐标;(2)△AOB绕点O顺时针旋转60°所扫过的面积;(3)线段AB绕点O顺时针旋转60°所扫过的面积.参考答案一.选择题 1.B . 2.C . 3.A . 4.D . 5.D . 二.填空题7.=π.8.12π. 9.50.10..三.解答题 11.解:∵将此三角形绕点A 顺时针旋转90°到直角△AB′C′的位置, ∴∠BAB′=90°,∴直角△ABC 扫过的面积是:S 扇形BAB′+S △ACB′=+×3×4=+6.12.(1)证明:∵四边形ABCD 是矩形, ∴∠B=∠C=90°,AB=DC ,BC=AD ,AD ∥BC , ∴∠EAD=∠AFB , ∵DE ⊥AF , ∴∠AED=90°,在△ADE 和△FAB 中,,∴△ADE ≌△FAB (AAS ),∴DE=AB;(2)连接DF,如图所示:在△DCF和△ABF中,,∴△DCF≌△ABF(SAS),∴DF=AF,∵AF=AD,∴DF=AF=AD,∴△ADF是等边三角形,∴∠DAE=60°,∵DE⊥AF,∴∠AED=90°,∴∠ADE=30°,∵△ADE≌△FAB,∴AE=BF=1,∴DE=AE=,∴的长=.13.解:由图形可知圆锥的底面圆的半径为0.4m,圆锥的高为0.3m,则圆锥的母线长为:=0.5m.∴圆锥的侧面积S1=π×0.4×0.5=0.2π(m2),∵圆柱的高为0.8m.圆柱的侧面积S2=2π×0.4×0.8=0.64π(m2),∴浮筒的表面积=2S1+S2=1.04π(m2),∵每平方米用锌0.11kg,∴一个浮筒需用锌:1.04π×0.11kg,∴1000个这样的锚标浮筒需用锌:1000×1.04π×0.11=11.44π≈359(kg).答:1000个这样的锚标浮筒需用锌359kg.14.解:(1)如图1,过C作CE⊥OA于E,∵点A,点B坐标分别为(﹣1,0),(0,),∴OA=1,OB=,∵△AOB绕点O顺时针旋转60°得到△COD,∴∠AOC=∠BOD=60°,AO=OC=1,∴OE=OC=,CE=OC=,∴C(﹣,);(2)△AOB绕点O顺时针旋转60°所扫过的面积=++×=π+;(3)如图2,线段AB绕点O顺时针旋转60°所扫过的面积═(﹣1×)+(﹣)+(﹣)=π﹣.。
弧长和扇形面积第1课时 弧长和扇形面积 [见B 本P48]1.若扇形的半径为6,圆心角为120°,则此扇形的弧长是( B )A .3πB .4πC .5πD .6π2.按图24-4-1(1)的方法把圆锥的侧面展开,得到图24-4-1(2)所示的扇形,其半径OA =3,120°,则AB ︵的长为( B )(1) 图24-4-1A .πB .2πC .3πD .4π3.如果一个扇形的半径是1,弧长是π3,那么此扇形的圆心角的大小为( C ) A .30° B .45° C .60° D .90°4.[2012·兰州]如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为( C )A .πB .1C .2 D.23π 【解析】 设扇形的半径为r ,弧长为l ,根据扇形的面积公式得S =12lr =12r 2=2. 5.钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是( A ) A.12π B.14π C.18π D .π 【解析】 从9点到9点30分分针扫过的扇形的圆心角是180°,则分针在钟面上扫过的面积是:180π×12360=12π. 6.如图24-4-2,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC ,若∠ABC =120°,OC =3,则BC ︵的长为( B )3π D .5π第6【解析】 如图,连接OB ,∵AB 与⊙O 相切于点B ,∴∠ABO =90°.∵∠ABC =120°,∴∠OBC =30°.∵OB =OC ,∴∠OCB =30°,∴∠BOC =120°,∴BC ︵的长为n πr 180=120π×3180=2π. 7.如图24-4-3,水平地面上有一面积为30π cm 2的扇形OAB ,半径OA =6 cm ,且OA 与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB 与地面垂直为止,则O 点移动的距离为( C )图24-4-3A .20 cmB .24 cmC .10π cmD .30π cm 【解析】 点O 移动的距离就是扇形的弧长,设扇形弧长为l ,根据题意可得12l ×6=30π,解得l =10π cm.8.在半径为6 cm 的圆中,60°的圆心角所对的弧长等于__2π__cm(结果保留π).【解析】 弧长为60π×6180=2π(cm). 9.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为__3π__(结果保留π).【解析】 由题意得n =120°,R =3,故S 扇形=n πR 2360=120π×32360=3π.图24-4-4 10.如图24-4-4,AB 切⊙O 于点B ,OA =2,∠OAB =30°,弦BC ∥OA ,劣弧BC ︵的弧长为__π3__.(结果保留π)11.如图24-4-5,在3×3的方格中(共有9个小格),每个小方格都是边长为1的正方形,O ,B ,C 是格点,则扇形OBC 的面积等于__54π__(结果保留π).12. 如图24-4-6,在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°.(1)画出旋转后的△AB ′C ′;(2)求线段AC 在旋转过程中所扫过的扇形的面积.图24-4-6解:(1)如图;(2)线段AC 在旋转过程中所扫过的扇形的面积=S 扇形ACC ′=90π·22360=π. 13.如图24-4-7,一根5 m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊),那么小羊A 在草地上的最大活动区域面积是( D )图24-4-7A.1712π m 2B.176π m 2 C.254π m 2 D.7712π m 2 14.如图24-4-8,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中弧CD ,弧DE ,弧EF 的圆心依次是A ,B ,C ,如果AB =1,那么曲线CDEF 的长是__4π__.图24-4-815.如图24-4-9,在矩形ABCD 中,AB =2DA ,以点A 为圆心,AB 为半径的圆弧交DC 于点E ,交AD 的延长线于点F ,设DA =2.(1)求线段EC 的长;(2)求图中阴影部分的面积.图24-4-9解:(1)∵在矩形ABCD 中,AB =2DA ,∴AE =2AD ,且∠ADE =90°.又DA =2,∴AE =AB =4,∴DE =AE 2-AD 2=16-4=23,∴EC =DC -DE =4-2 3.(2)S 阴影=S 扇形AEF -S △ADE =60°×π×42360°-12×2×23=83π-2 3. 16.如图24-4-10,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠AOC =60°,OC =2.(1)求OE 和CD 的长;【解析】 ∵∠CAD ,∠DBE ,∠ECF 是等边三角形的外角,∴∠CAD =∠DBE =∠ECF =120°,又∵AC =1,∴BD =2,CE =3,∴弧CD 的长=13×2π×1, 弧DE 的长=13×2π×2,弧EF 的长=13×2π×3, ∴曲线CDEF 的长=13×2π×1+13×2π×2+13×2π×3=4π. 解:(1)在△OCE 中,∵∠CEO =90°,∠EOC =60°,∴∠OCE =30°.∵OC =2,∴OE =12OC =1, ∴CE =OC 2-OE 2= 3.∵OA ⊥CD ,∴CE =DE ,∴CD =2CE =2 3.(2)∵S △ABC =12AB ·CE =12×4×3=23, ∴S 阴影=S 半圆-S △ABC =12π×22-23=2π-2 3. 17.如图24-4-11,AB 是⊙O 的直径,C 是半圆O 上的一点,AC 平分∠DAB ,AD ⊥CD ,垂足为D ,AD 交⊙O 于E ,连接CE .(1)判断CD 与⊙O 的位置关系,并证明你的结论;(2)若E 是AC ︵的中点,⊙O 的半径为1,求图中阴影部分的面积.图24-4-11解:(1)CD 与圆O 相切,理由为:∵AC 为∠DAB 的平分线,∴∠DAC =∠BAC ,∵OA =OC ,∴∠OAC =∠OCA ,∴∠DAC =∠OCA ,∴OC ∥AD ,∵AD ⊥CD ,∴OC ⊥CD ,∴CD 与圆O 相切;(2)连接EB ,由AB 为直径,得到∠AEB =90°,∴EB ∥CD ,F 为EB 的中点,∴OF 为△ABE 的中位线,∴OF =12AE =12,即CF =DE =12, 在Rt △OBF 中,根据勾股定理得:EF =FB =DC =32, 则S 阴影=S △DEC =12×12×32=38.。
24.4 弧长和扇形面积知识点1.在半径为R 的圆中,1°的圆心角所对的弧长是____________,n °的圆心角所对的弧长是______________.2.在半径为R 的圆中,1°的圆心角所对的扇形面积是____________,n °的圆心角所对的扇形面积S 扇形=______________.3.半径为R ,弧长为l 的扇形面积S 扇形=________.一、选择题1.(2013•潜江)如果一个扇形的弧长是34π,半径是6,那么此扇形的圆心角为( ) A .︒40B .︒45C .︒60D .︒802.(2013•南通) 如图,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为( ) A .4π cmB .3π cmC .2π cmD .π cm3.(2013•宁夏)如图,以等腰直角△ABC 两锐角顶点A 、B 为圆心作等圆,⊙A 与⊙B 恰好外切,若AC=2,那么图中两 个扇形(即阴影部分)的面积之和为( )A.4π B.2π C.22π D.2π 4.(2013•资阳)钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是 ( )A .12πB .14π C. 18πD .π 5.(2013•荆州)如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB 'C ',点B 经过的路径为弧BB ',若角∠BAC =60°,AC =1,则图中阴影部分的面积是 ( )A .2πB . 3πC . 4πD . π6.(2013•恩施州)如图所示,在直角坐标系中放置 一个边长为1的正方形ABCD ,将正方形ABCD 沿 x 轴的正方向无滑动的在x 轴上滚动,当点A 离开 原点后第一次落在x 轴上时,点A 运动的路径线与第2题ABCDO第3题C ′B ′C B A第5题第6题x 轴围成的面积为( ) A.122π+B. 12π+ C.1π+ D. 12π+7.(2013•德州)如图,扇形AOB 的半径为1,∠AOB =90°,以AB 为直径画半圆.则图中阴影部分的面积为( )A .14π B .π12-C .12D .1142π+8.(2013•襄阳)如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E ,B 、E 是半圆弧的 三等分点,弧BE 的长为π,则图中阴影部分的面积为 ( ) A.9π B.39πC.33322π- D.33223π-二、填空题9.(2013•茂名)如图是李大妈跳舞用的扇子,这个扇形 AOB 的圆心角120O ∠=,半径OA=3,则弧.AB ..的长 度为 (结果保留π).10.(2013•遂宁)如图,△ABC 的三个顶点都在5×5 的网格(每个小正方形的边长均为1个单位长度)的 格点上,将△ABC 绕点B 逆时针旋转到△A ′BC ′的位 置,且点A ′、C ′仍落在格点上,则图中阴影部分的面积 约是___________.(π≈3.14,结果精确到0.1)11.(2013•玉林)如图,实线部分是半径为15m 的两条等弧 组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心, 则游泳池的周长是 _______ m .OAB 第7题第8题第10题第11题12.(2013•眉山)如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E。
人教版数学九年级上册24.4弧长和扇形面积同步练习
一.选择题(共5小题)
1.如图,一段公路的转弯处是一段圆弧(
),则的
展直长度为( )
A .3π
B .6π
C .9π
D .12π
2.如图,△ABC 中,D 为BC 的中点,以D 为圆心,BD
长为半径画一弧交AC 于E 点,若∠A=60°,∠B=100°,
BC=4,则扇形BDE 的面积为何?( )
A .
B .
C .
D . 3.如图,AB 为半圆O 的直径,C 为AO 的中点,CD ⊥AB
交半圆于点D ,以C 为圆心,
CD 为半径画弧交AB 于E 点,若AB=4,则图中阴影部分的面积是( )
A .
B .
C .
D . 4.圆锥的底面直径是80cm ,母线长90cm ,则它的侧面积是( ) A .360πcm 2 B .720πcm 2 C .1800πcm 2 D .3600πcm 2
5.如果圆柱的母线长为5cm ,底面半径为2cm ,那么这个圆柱的侧面积是( )
A .10cm 2
B .10πcm 2
C .20cm 2
D .20πcm 2
二.填空题(共4小题)
7.如图,⊙O 半径是1,A 、B 、C 是圆周上的三点,∠BAC=36°,则劣弧BC 的长是 .
8.如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面
展开图(扇形)的弧长为cm.(结果用π表示)
9.用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是cm.
10.如图,两圆半径均为1,且图中两块阴影部分的面积
相等,那OO1的长度是.
三.解答题(共4小题)
11.如图所示,将直角△ABC向下旋转90°,已知BC=5厘米,
AB=4厘米,AC=3厘米,求△ABC扫过的面积.
12.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂
足为点E.
(1)求证:DE=AB;
(2)以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,
试求的长.
13.如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆柱,中间是一个圆柱(如图,单位:mm).电镀时,如果每平方米用锌0.11kg,要电镀1000个这样的锚标浮筒需要用多少锌?(精确到1kg)
14.已知如图,在直角坐标系xOy中,点A,点B
坐标分别为(﹣1,0),(0,),连结AB,OD
由△AOB绕O点顺时针旋转60°而得.
(1)求点C的坐标;
(2)△AOB绕点O顺时针旋转60°所扫过的面积;
(3)线段AB绕点O顺时针旋转60°所扫过的面积.
参考答案
一.选择题
1.B .
2.C .
3.A .
4.D .
5.D .
二.填空题
7.=π.
8.12π.
9.50.
10.. 三.解答题
11.
解:∵将此三角形绕点A 顺时针旋转90°到直角△AB′C′的位置,
∴∠BAB′=90°,
∴直角△ABC 扫过的面积是:S 扇形BAB′+S △ACB′=+×3×4=+6.
12.
(1)证明:∵四边形ABCD 是矩形,
∴∠B=∠C=90°,AB=DC ,BC=AD ,AD ∥BC ,
∴∠EAD=∠AFB ,
∵DE ⊥AF ,
∴∠AED=90°,
在△ADE 和△FAB 中,,
∴△ADE≌△FAB(AAS),
∴DE=AB;
(2)连接DF,如图所示:
在△DCF和△ABF中,,
∴△DCF≌△ABF(SAS),
∴DF=AF,
∵AF=AD,
∴DF=AF=AD,
∴△ADF是等边三角形,
∴∠DAE=60°,
∵DE⊥AF,
∴∠AED=90°,
∴∠ADE=30°,
∵△ADE≌△FAB,
∴AE=BF=1,
∴DE=AE=,
∴的长=.
13.
解:由图形可知圆锥的底面圆的半径为0.4m,圆锥的高为0.3m,
则圆锥的母线长为:=0.5m.∴圆锥的侧面积S1=π×0.4×0.5=0.2π(m2),∵圆柱的高为0.8m.
圆柱的侧面积S2=2π×0.4×0.8=0.64π(m2),
∴浮筒的表面积=2S1+S2=1.04π(m2),
∵每平方米用锌0.11kg,
∴一个浮筒需用锌:1.04π×0.11kg,
∴1000个这样的锚标浮筒需用锌:1000×1.04π×0.11=11.44π≈359(kg).答:1000个这样的锚标浮筒需用锌359kg.
14.
解:(1)如图1,过C作CE⊥OA于E,
∵点A,点B坐标分别为(﹣1,0),(0,),
∴OA=1,OB=,
∵△AOB绕点O顺时针旋转60°得到△COD,
∴∠AOC=∠BOD=60°,AO=OC=1,
∴OE=OC=,CE=OC=,
∴C(﹣,);
(2)△AOB绕点O顺时针旋转60°所扫过的面积=++×
=π+;
(3)如图2,线段AB绕点O顺时针旋转60°所扫过的面积═(﹣1×
)+(﹣)+(﹣)
=π﹣.。