代数式的恒等变形
- 格式:doc
- 大小:174.00 KB
- 文档页数:5
教学·信息 课程教育研究 Course Education Ressearch 2015年9月 下旬刊174· ·著名教育家裴斯泰洛奇说过:“教学最大的挑战是她的不可预知性。
”语文课堂教学是师生、生生、生本之间相互对话、相互碰撞的动态过程,课堂随时会出现一些非预设性的新情况、新动态。
这就是所谓的“不可预知性”,通常也叫做节外生枝。
教师该如何运用教学的节外生枝,使其也能绽放出春天的光彩,我谈两个看法。
一、节外生枝,巧在引导有位教师教学苏教版五年级下册的《埃及的金字塔》第二自然段,形成下面的对话:师:读了这段话,谁来说说金字塔有什么作用?生:金字塔是拿来看的!(全班同学哄堂大笑,该同学满脸通红)师:这位同学已经跳出课文,融入了自己的理解,他把今天金字塔的作用用一个“看”字进行了高度的概括。
这个“看”字可不一般呀,同学们请想一想,你能给“看”换个词吗?生(纷纷举手):欣赏、研究、考察、勘探、瞻仰。
师:说得好!下面请同学们认真的默读第3、4、5、自然段,想一想,不同身份的人站在金字塔前,他们是怎么“看”的?《课标》指出:“阅读是学生的个性化行为。
”学生对文本的阅读感悟,是依据自己的阅读经验和情感而产生自然而真实的反应,有时会出现教师不可预料的阅读感悟。
上述教学,由于学生的生活经验和对文本的感悟不同,其认识确实偏离了课文内容。
但执教老师却没有简单地否定,而是充分尊重学生的个性化理解,顺学而导,由“看”引出“欣赏、研究、考察、勘探、瞻仰”等意思,让学生带着问题与文本进行一番深层次的对话,再次交流自己的体会和感悟。
看似离谱的回答,在老师巧妙地引导下,竟化腐朽为神奇。
学生的思维火花被点燃了,“欣赏金字塔、研究金字塔、勘探金字塔……”,对金字塔的崇敬之情、热爱之情油然而生,课堂呈现百花齐放、百家争鸣的局面,也加深了学生对文本的理解和感悟。
这样的引导,既呵护了学生,化解课堂教学的尴尬,又引发学生深入阅读探究,发表见解,从而获得真知求知。
代数式恒等变形法则归纳引言代数式是代数学中的基础概念之一,它用字母和常数通过运算符号相连而成。
在数学中,我们常常需要对代数式进行变形,以达到简化、分解、合并或者推导等目的。
代数式的变形是数学问题解决过程中重要的一环,它不仅能提高计算效率,还能揭示代数运算的本质。
在代数式的变形中,恒等变形法则是重要的基础工具,本文将对代数式的恒等变形法则进行归纳总结。
一、基本变形法则1. 加法法则:•加法结合律:a+(b+c)=(a+b)+c•加法交换律:a+b=b+a•加法零元:a+0=a #### 2. 乘法法则:•乘法结合律:$a \\cdot (b \\cdot c) = (a \\cdot b) \\cdot c$•乘法交换律:$a \\cdot b = b \\cdot a$•乘法零元:$a \\cdot 0 = 0$•乘法单位元:$a \\cdot 1 = a$二、分配律1. 左分配律:对于任意的a,b,c,有$a \\cdot (b + c) = a \\cdot b + a \\cdot c$ #### 2. 右分配律:对于任意的a,b,c,有$(a + b) \\cdot c = a \\cdot c + b \\cdot c$三、幂运算法则1. 幂运算与乘法运算:•幂运算与乘法运算的交换律:$(a \\cdot b)^n = a^n \\cdot b^n$•幂运算与乘法运算的结合律:$(a^n)^m = a^{n \\cdot m}$ #### 2.幂运算的乘方法则:•幂运算的乘方法则1:$a^n \\cdot a^m = a^{n + m}$•幂运算的乘方法则2:$(a^n)^m = a^{n \\cdot m}$•幂运算的乘方法则3:$(a \\cdot b)^n = a^n \\cdot b^n$四、指数运算法则1. 指数运算与乘法运算:•指数运算与乘法运算的交换律:$(a \\cdot b)^n = a^n \\cdot b^n$•指数运算与乘法运算的结合律:$(a^n)^m = a^{n \\cdot m}$ #### 2.指数运算的指数法则:•指数运算的指数法则1:$a^n^m = a^{n \\cdot m}$•指数运算的指数法则2:$(a^n)^m = a^{n \\cdot m}$•指数运算的指数法则3:$(a^m)^n = a^{m \\cdot n}$五、因式分解法则1. 公因式提取法则:•公因式提取法则1:ax+ay=a(x+y)•公因式提取法则2:$a \\cdot b + a \\cdot c = a \\cdot (b + c)$ ####2. 公式分解法则:•差的平方公式:a2−b2=(a+b)(a−b)•平方差公式:a2−b2=(a−b)(a+b)•完全平方公式:a2+2ab+b2=(a+b)2•完全平方公式:a2−2ab+b2=(a−b)2六、合并同类项法则合并同类项法则:将含有相同字母指数的项合并为一个项•合并同类项法则1:ax+bx=(a+b)x•合并同类项法则2:ax2+bx2=(a+b)x2•合并同类项法则3:ax n+bx n=(a+b)x n结论恒等变形法则在代数式的变形中起着重要的作用。
代数式恒等变形A 卷1、若3265122-+-+=+--x bx a M x x x ,a 、b 是常数,则( ) A 、M 是一个二次多项式 B 、M 是一个一次多项式 C 、6=++b a M D 、10=-+M b a 答案:C解答:由已知等式得:()()6522656512222+---+++-+=+--x x b M x b a M Mx x x x ∴()()b M x b a M Mx x 226522--+++-+= ∴⎪⎩⎪⎨⎧-=--=++-=1236051b a M b a M M ,解得:⎪⎩⎪⎨⎧=-==831b a M 提示:利用待定系数法解决问题。
2、(2002年重庆市初中竞赛题)若012192=+-x x ,则=+441xx ( ) A 、411 B 、16121 C 、1689 D 、427答案:C 解答:∵0≠x ∴2191=+x x ,411122=+xx ∴168921122244=-⎪⎭⎫ ⎝⎛+=+x x x x提示:本题的关键是利用211222-⎪⎭⎫⎝⎛+=+x x x x 进行化简。
3、(2001年全国初中数学竞赛)若143=-x x ,则552128234+--+x x x x 的值是( ) A 、2 B 、4 C 、6 D 、8 答案:D解答:∵143=-x x∴()()8523252434255212833234=+-+=+--+-=+--+x x x x x x x x x x x x提示:本题利用添项与拆项进行分解整体代入,本题也可以利用已知逐步降次解决问题。
4、(全国竞赛题)如果52332412---=----+cc b a b a ,则c b a ++的值是( ) A 、6 B 、8 C 、20 D 、24 答案:C解答:∵52332412---=----+cc b a b a ∴()[]()[]()[]053293632142421121=+--+----+---++---c c b b a a∴()()()033212211222=-----+--c b a∴011=--a ,022=--b ,033=--c ∴2=a ,6=b ,12=c ∴20=++c b a提示:本题利用添项构造完全平方式解决问题。
代数式的恒等变形一、常值代换求值法——“1”的妙用例1 、 已知ab=1,求221111ba +++的值 [解] 把ab=1代入,得221111b a +++ =22b ab aba ab ab +++ =b a a b a b +++=1例2 、已知xyzt=1,求下面代数式的值:分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理练习:1111,1=++++++++=c ca cb bc b a ab a abc 证明:若二、配方法例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b a a b +之值。
[解] ∵a2b2+a2+b2-4ab+1=(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2则有(ab-1)2+(a-b)2=0∴⎩⎨⎧==-.1,0ab b a解得⎩⎨⎧==;1,1b a ⎩⎨⎧-=-=.1,1b a当a=1,b=1时,b aa b +=1+1=2 当a=-1,b=-1时,b a a b +=1+1=2 例1 设a 、b 、c 、d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数的平方和,其形式是______.解mn=(a2+b2)(c2+d2)=a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2=(ac-bd)2+(ad+bc)2,所以,mn 的形式为(ac+bd)2+(ad-bc)2或(ac-bd )2+(ad+bc)2.例 2 设x 、y 、z 为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2.求的值.解 将条件化简成2x2+2y2+2z2-2xy-2x2-2yz=0 ∴ (x-y)2+(x-z)2+(y-z)2=0 ∴ x=y=z,∴原式=1.练习:,0146422222=+---++x cx bx ax c b a 已知求证:3:2:1::=c b a三、因式分解法例6 已知a4+b4+c4+d4=4abcd ,且a ,b ,c ,d 都是正数,求证:a=b=c=d . 证 由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0, 所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以 a2-b2=c2-d2=ab-cd=0,所以 (a+b)(a-b)=(c+d)(c-d)=0.又因为a ,b ,c ,d 都为正数,所以a+b≠0,c+d≠0,所以 a =b ,c=d . 所以ab-cd=a2-c2=(a+c)(a-c)=0, 所以a =c .故a=b =c=d 成立.例4 已知|a|+|b|=|ab|+1, 求a+b 之值 [解] ∵|a|+|b|=|ab|+1∴|a|·|b|-|a|-|b|+1=0 (|a|-1)(|b|-1)=0 |a|=1 |b|=1 ∴a=±1或b=±1. 则当a=1,b=1时,a+b=2 当a=1,b=-1时,a+b=0 当a=-1,b=1时,a+b=0当a=-1,b=-1时,a+b=-2[评注] 运用该法一般有两种途径求值,一是将已知条件变形为一边为0,另一边能分解成几个因式的积的形式,运用“若A ·B=0,则A=0或B=0”的思想来解决问题。
第8讲整式恒等变形模块一恒等变形→降幂迭代与换元基础夯实题型一降幂迭代法与大除法【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________.【练1】(1990年第一届希望杯初二第一试)已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.题型二 整体代入消元法【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值.【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值.题型三 换元法强化挑战【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2.【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求()()()()()()222111111yz zx xy x y z ++++++的值.模块二 恒等变形→因式分解与不定方程题型一 因式分解基础夯实【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________.(2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________.【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x 2012=__________.(2)已知15x 2-47xy +28y 2=0,求x y的值.强化挑战【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c .【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .(2)已知△ABC 三边a 、b 、c ,满足条件a 2c -a 2b +ab 2-b 2c +c 2b -ac 2=0,试判断△ABC 的形状,并说明理由.题型二 不定方程【例6】(1)方程xy -2x -2y +7=0的整数解(x ≤y )为___________.(2)已知a >b >c ≥0,求适合等式abc +ab +ac +bc +a +b +c =2011的整数a ,b ,c 的值.【练6】(1)长方形的周长为16cm ,它的两边长x ,y 均为整数,且满足x -y -x 2+2xy -y 2+2=0,求它的面积.(2)矩形的周长28cm ,两边长为x cm 、y cm ,且x 3+x 2y -xy 2-y 3=0,求矩形的面积.【例7】(2000年联赛)实数x ,y 满足x ≥y ≥1和2x 2-xy -5x +y +4=0,则x +y =_______.【练7】当x 变化时,分式22365112x x x x ++++的最小值是________.模块三 恒等变形→配方法【例8】已知x 2+2xy +2y 2+4y +4=0,求x ,y .【练8】已知x 2-6xy +10y 2-4y +4=0,求x ,y .【例9】已知x2+2xy+2y2+4x+8=0,求x,y.【练9】已知x2-6xy+10y2+2x-8y+2=0,求x,y.【例10】已知实数a、b、c满足a-b+c=7,ab+bc+b+c2+16=0.则ba的值等于____.【练10】已知a-b=4,ab+c2+4=0,则a+b=________.模块四恒等变形→乘法公式知识点睛【常见乘法公式】1、二元二次:(1)(a+b)(a-b)=__________.(2)(a-b)2=__________.2、三元二次:(3)(a+b+c)2=_________.(4)a2+b2+c2+ab+bc+ca=_______.3、二元三次:(5)(a+b)3=______________.(6)a3+b3=______________.4、三元三次:(7)(a+1)(b+1)(c+1)=abc+ab+bc+ca+a+b+c+1(8)(a+b)(b+c)(c+a)=a2b+b2c+c2a+ab2+bc2+ca2+2abc(9)(a+b+c)(ab+bc+ca)=a2b+b2c+c2a+ab2+bc2+ca2+3abc(10)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)5、三元四次:(11)(a+b+c)(a+b-c)(b+c-a)(c+a-b)=-a4-b4-c4+2a2b2+2b2c2+2c2a26、二元n次:(12)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)(13)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2+…-ab n-2+b n-1)(n为奇数)7、n元二次:(14)(a1+a2+…+a n)2=a12+a22+…+a n2+2a1a2+2a1a3+…+2a1a n+2a2a3+2a2a4+…+2a n-1a n.(15)a12+…+a n2+a1a2+…+a1a n+a2a3+…+a2a n+…+a n-1a n=1[(a1+a2)2+…+(a n-1+a n)2]强化挑战【例11】已知实数a、b、x、y满足a+b=x+y=3,ax+by=4,求(a2+b2)xy+ab(x2+y2)的值.【练11】(第6届希望杯初一)已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406,试求1995(x+y)+6xy-172(a+b)的值.【例12】若a+b+c=0,a3+b3+c3=0,求证:a2011+b2011+c2011=0.【练12】若a+b-c=3,a2+b2+c2=3,那么a2012+b2012+c2012=___________.【例13】(2009年北京市初二数学竞赛)设a+b+c=0,a2+b2+c2=1.(1)求ab+bc+ca的值;(2)求a4+b4+c4的值.【练13】若a+b+c=1,a2+b2+c2=2,a3+b3+c3=83,(1)求abc的值;(2)求a4+b4+c4的值.巅峰突破【例14】若x+y=a+b,且x2+y2=a2+b2,求证:x2014+y2014=a2014+b2014.【练14】已知a+b=c+d,a3+b3=c3+d3,求证:a2013+b2013=c2013+d2013.【拓14】已知a+b=c+d,a5+b5=c5+d5,求证:a2013+b2013=c2013+d2013.第8讲课后作业【习l】已知x2+x-1=0,求x8-7x4+11的值.【习2】已知a+b+c=1,b2+c2-4ac+6c+1=0,求abc的值.【习3】若m=20062+20062×20072+20072,则m( )A.是完全平方数,还是奇数B.是完全平方数,还是偶数C.不是完全平方数,但是奇数D.不是完全平方数,但是偶数【习4】正整数a、b、c是等腰三角形三边的长,并且a+bc+b+ca=24,则这样的三角形有( ) A.1个B.2个C.3个D.4个【习5】已知a、b、c是一个三角形的三边,则a4+b4+c4-2a2b2-2b2c2-2c22a2的值( ) A.恒正B.恒负C.可正可负D.非负【习6】如果a+2b+3c=12,且a2+b2+c2=ab+bc+ca,求a+b2+c3的值.【习7】已知实数a、b、x、y满足a+b=x+y=2,ax+by=5,求(a2+b2)xy+ab(x2+y2)的值.【习8】已知x是实数并且x3+2x2+2x+1=0.求x2008+x2011+x2014的值.【习9】(1999年北京市初二数学竞赛)若3x3-x=1,求9x4+12x3-3x2-7x+2010的值.的值.【习11】(十八届希望杯初二二试)已知a1,a2,a3,…,a2007,是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),试比较M、N的大小.【习12】(2013年联赛)已知实数x,y,z满足x+y=4,|z+1|=xy+2y-9,则x+2y+3z=_______.【习13】(2013年竞赛)已知正整数a、b、c满足a+b2-2c-2=0,3a2-8b+c=0,则abc的最大值为____________.【习14】(2001年联赛)求实数x,y的值,使得(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值.。
专题1 代数式的恒等变形(原卷版)专题诠释:代数式的恒等变形是中考最常见的题型,恒等变形所用的核心知识是整式的乘除、因式分解、方程、函数、不等式等;运用到的主要方法是整体代入,配方法,作差比较法等。
通过恒等变形可以求值,求最值,确定字母的范围,比较大小等。
第一部分 典例剖析+针对训练类型一 通过恒等变形求代数式的值典例1 设m >n >0,m 2+n 2=4mn ,求m 2−n 2mn 的值.典例2 已知:m 2﹣2m ﹣1=0,n 2+2n ﹣1=0且mn ≠1,则mn+n+1n 的值为 .针对练习11.(2020秋•锦江区校级期末)已知2a ﹣3b +1=0,则代数式6a ﹣9b +1= .2.已知实数a 、b 满足a +b =8,ab =15,且a >b ,求a ﹣b 的值.解:∵a +b =8 ab =15∴(a ﹣b )2=a 2﹣2ab +b 2﹣4ab =(a +b )2﹣4ab =82﹣4×15=4又∵a >b∴a ﹣b >0∴a ﹣b =2.请利用上面的解法,解答下面的问题.已知实数x 满足x −1x =√5,且x <0,求x +1x 的值.类型二 通过恒等变形求代数式的最值典例3 (2021秋•下城区期中)已知实数m ,n 满足m ﹣n 2=1,则代数式m 2+2n 2+4m ﹣2的最小值等于 .典例4(2021秋•鼓楼区校级期末)阅读下面的材料,并解答后面的问题材料:将分式2x 2+4x−3x−1拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x ﹣1,可设2x 2+4x ﹣3=(x ﹣1)(2x +m )+n .因为(x ﹣1)(2x +m )+n =2x 2+mx ﹣2x ﹣m +n =2x 2+(m ﹣2)x ﹣m +n ,所以2x 2+4x ﹣3=2x 2+(m ﹣2)x ﹣m +n ,所以{m −2=4−m +n =−3,解得{m =6n =3,所以2x 2+4x−3x−1=(x−1)(2x+6)+3x−1=2x +6+3x−1. 这样,分式就被拆分成了一个整式2x +6与一个分式3x−1的和的形式, 根据你的理解解决下列问题:(1)请将分式3x 2+4x−1x+1拆分成一个整式与一个分式(分子为整数)的和(差)的形式; (2)若分式5x 2+9x−3x+2拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m ﹣11+1n−6,求m 2﹣n 2+mn 的最大值.针对练习23.若m ,n 是方程x 2﹣2ax +1=0且a ≥1的两个实数根,则(m ﹣1)2+(n ﹣1)2的最小值是 .类型三 通过代数式的恒等变形求字母的取值范围典例5已知:2a ﹣3x +1=0,3b ﹣2x ﹣16=0,且a ≤4<b ,求x 的取值范围.针对训练34.平面直角坐标系中,已知点(a ,b )在双曲线(0)k y k x 上,且满足22a b m ,22b a m ,a b ,求k 的取值范围。
1—1 代数式的恒等变换方法与技巧一、代数式恒等的一般概念定义1 在给定的数集中,使一个代数式有意义的字母的值,称为字母的允许值。
字母的所有允许值组成的集合称为这个代数式的定义域。
对于定义域中的数值,按照代数式所包含的运算所得出的值,称为代数式的值,这些值的全体组成的集合,称为代数式的值域。
定义2 如果两个代数式A、B,对于它们定义域的公共部分(或公共部分的子集)内的一切值,它们的值都相等,那么称这两个代数式恒等,记作A=B。
两个代数式恒等的概念是相对的。
同样的两个代数式在它们各自的定义域的某一个子集内是恒等,但x=,在x≥0时成立,但在x<0时不成立。
因此,在研究两个代数式恒等时,一定要首先弄清楚它们在什么范围内恒等。
定义3 把一个代数式变形成另一个与它恒等的代数式,这种变形称为恒等变换。
代数式的变形,可能引起定义域的变化。
如lgx2的定义域是(,0)(0,)-∞+∞,2lgx的定义域是(0,)+∞,因此,只有在两个定义域的公共部分(0,)+∞内,才有恒等式lgx2=2lgx。
由lgx2变形为2lgx时,定义域缩小了;反之,由2lgx变形为lgx2时,定义域扩大了。
这种由恒等变换而引起的代数式定义域的变化,对研究方程和函数等相关问题时也十分重要。
由于方程的变形不全是代数式的恒等变形,但与代数式的恒等变形有类似之处,因此,在本节里,我们把方程的恒等变形与代数式的恒等变形结合起来讨论。
例1:设px=有实根的充要条件,并求出所有实根。
由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。
这样可避免增根和遣根的出现。
解:原方程等价于222(0,0x p xx x⎧-=-⎪⎨-≥⎪⎩222222(4)4448(2)441330440,0pxx p px xx x p x⎧-=⎪⎧=+--⎪⎪⎪⎪⇔≤≤⇔≤⎨⎨⎪⎪≥⎪⎪+-≤≥⎩⎪⎩222(4)8(2)44,043pxppx x⎧-=⎪⎪-⇔⎨-⎪≤≤≥⎪⎩由上式知,原方程有实根,当且仅当p满足条件24(4)4448(2)33p ppp--≤≤⇔≤≤-这说明原方程有实根的充要条件是43p≤≤。
代数式恒等变形A 卷1、若3265122-+-+=+--x bx a M x x x ,a 、b 是常数,则( ) A 、M 是一个二次多项式 B 、M是一个一次多项式 C 、6=++b a M D 、10=-+M b a 答案:C解答:由已知等式得:()()6522656512222+---+++-+=+--x x b M x b a M Mx x x x ∴()()b M x b a M Mx x 226522--+++-+= ∴⎪⎩⎪⎨⎧-=--=++-=1236051b a M b a M M ,解得:⎪⎩⎪⎨⎧=-==831b a M 提示:利用待定系数法解决问题。
2、(2002年重庆市初中竞赛题)若012192=+-x x ,则=+441xx ( ) A 、411 B 、16121 C 、1689 D 、427答案:C 解答:∵0≠x ∴2191=+x x ,411122=+xx ∴168921122244=-⎪⎭⎫ ⎝⎛+=+x x x x提示:本题的关键是利用211222-⎪⎭⎫⎝⎛+=+x x x x 进行化简。
3、(2001年全国初中数学竞赛)若143=-x x ,则552128234+--+x x x x 的值是( )A 、2B 、4C 、6D 、8答案:D解答:∵143=-x x∴()()8523252434255212833234=+-+=+--+-=+--+x x x x x x x x x x x x 提示:本题利用添项与拆项进行分解整体代入,本题也可以利用已知逐步降次解决问题。
4、(全国竞赛题)如果52332412---=----+cc b a b a ,则c b a ++的值是( ) A 、6 B 、8 C 、20 D 、24 答案:C解答:∵52332412---=----+cc b a b a ∴()[]()[]()[]053293632142421121=+--+----+---++---c c b b a a∴()()()033212211222=-----+--c b a∴011=--a ,022=--b ,033=--c ∴2=a ,6=b ,12=c ∴20=++c b a提示:本题利用添项构造完全平方式解决问题。
代数式的解题方法
一、代数式的化简与求值
1.代数式的化简:通过合并同类项、提取公因式、分母有理化等手段,简化代数式的形式,使其更易于处理。
2.代数式的求值:根据已知条件,将代数式中的字母代入具体的数值,求得代数式的值。
二、代数式的恒等变形
1.代数式的恒等变形是指通过代数手段,将一个代数式变形为另一个与原式等价的代数式。
2.常用的恒等变形方法有:配方法、因式分解法、公式法等。
三、代数式的因式分解
1.因式分解是指将一个多项式分解为若干个整式的积。
2.常用的因式分解方法有:提公因式法、分组分解法、十字相乘法、公式法等。
四、代数式的最值问题
1.最值问题是指求代数式在一定条件下的最大值或最小值。
2.解决最值问题的方法有:配方法、不等式法、导数法等。
五、代数式的几何意义
1.代数式在几何上可能有特定的意义或应用,如线性方程表示直线,二次方程表示圆或抛物线等。
2.通过理解代数式的几何意义,可以更直观地理解代数式的本质和应用。
六、代数式的分类讨论
1.当代数式中的参数取不同值时,可能导致代数式的形式发生变化,需要进行分类讨论。
2.分类讨论有助于全面理解和掌握代数式的性质和变化规律。
解题基本技巧之因式分解因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能.因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等.一、公式法(立方和、立方差公式)在第一讲里,我们已经学习了乘法公式中的立方和、立方差公式:2233()()a b a ab b a b +-+=+ (立方和公式)2233()()a b a ab b a b -++=- (立方差公式)由于因式分解与整式乘法正好是互为逆变形,所以把整式乘法公式反过来写,就得到:3322()()a b a b a ab b +=+-+3322()()a b a b a ab b -=-++这就是说,两个数的立方和(差),等于这两个数的和(差)乘以它们的平方和与它们积的差(和).运用这两个公式,可以把形式是立方和或立方差的多项式进行因式分解.【例1】用立方和或立方差公式分解下列各多项式:(1) 38x + (2) 30.12527b -分析: (1)中,382=,(2)中3330.1250.5,27(3)b b ==.解:(1) 333282(2)(42)x x x x x +=+=+-+(2) 333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b -=-=-+⨯+ 2(0.53)(0.25 1.59)b b b =-++说明:(1) 在运用立方和(差)公式分解因式时,经常要逆用幂的运算法则,如3338(2)a b ab =,这里逆用了法则()n n n ab a b =;(2) 在运用立方和(差)公式分解因式时,一定要看准因式中各项的符号.【例2】分解因式:(1) 34381a b b - (2) 76a ab - 分析:(1) 中应先提取公因式再进一步分解;(2) 中提取公因式后,括号内出现66a b -,可看着是3232()()a b -或2323()()a b -.解:(1) 3433223813(27)3(3)(39)a b b b a b b a b a ab b -=-=-++.(2) 76663333()()()a ab a a b a a b a b -=-=+- 22222222()()()()()()()()a a b a ab b a b a ab b a a b a b a ab b a ab b =+-+-++=+-++-+二、分组分解法从前面可以看出,能够直接运用公式法分解的多项式,主要是二项式和三项式.而对于四项以上的多项式,如ma mb na nb +++既没有公式可用,也没有公因式可以提取.因此,可以先将多项式分组处理.这种利用分组来因式分解的方法叫做分组分解法.分组分解法的关键在于如何分组.1.分组后能提取公因式【例3】把2105ax ay by bx -+-分解因式. 分析:把多项式的四项按前两项与后两项分成两组,并使两组的项按x 的降幂排列,然后从两组分别提出公因式2a 与b -,这时另一个因式正好都是5x y -,这样可以继续提取公因式.解:21052(5)(5)(5)(2)ax ay by bx a x y b x y x y a b -+-=---=--说明:用分组分解法,一定要想想分组后能否继续完成因式分解,由此合理选择分组的方法.本题也可以将一、四项为一组,二、三项为一组,同学不妨一试.【例4】把2222()()ab c d a b cd ---分解因式. 分析:按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式.解:22222222()()ab c d a b cd abc abd a cd b cd ---=--+2222()()abc a cd b cd abd =-+- ()()()()ac bc ad bd bc ad bc ad ac bd =-+-=-+说明:由例3、例4可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律.由此可以看出运算律在因式分解中所起的作用.2.分组后能直接运用公式【例5】把22x y ax ay -++分解因式. 分析:把第一、二项为一组,这两项虽然没有公因式,但可以运用平方差公式分解因式,其中一个因式是x y +;把第三、四项作为另一组,在提出公因式a 后,另一个因式也是x y +.解:22()()()()()x y ax ay x y x y a x y x y x y a -++=+-++=+-+【例6】把2222428x xy y z ++-分解因式. 分析:先将系数2提出后,得到22224x xy y z ++-,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式.解:22222224282(24)x xy y z x xy y z ++-=++-222[()(2)]2(2)(2)x y z x y z x y z =+-=+++-说明:从例5、例6可以看出:如果一个多项式的项分组后,各组都能直接运用公式或提取公因式进行分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多项式就可以分组分解法来分解因式.三、十字相乘法1.2()x p q x pq +++型的因式分解 这类式子在许多问题中经常出现,其特点是:(1) 二次项系数是1;(2) 常数项是两个数之积;(3) 一次项系数是常数项的两个因数之和.22()()()()()x p q x pq x px qx pq x x p q x p x p x q +++=+++=+++=++ 因此,2()()()x p q x pq x p x q +++=++运用这个公式,可以把某些二次项系数为1的二次三项式分解因式.【例7】把下列各式因式分解: (1) 276x x -+ (2) 21336x x ++ 解:(1)6(1)(6),(1)(6)7=-⨯--+-=-2 76[(1)][(6)](1)(6)x x x x x x ∴-+=+-+-=--.(2) 3649,4913=⨯+= 2 1336(4)(9)x x x x ∴++=++说明:此例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项系数的符号相同.【例8】把下列各式因式分解: (1) 2524x x +- (2) 2215x x -- 解:(1)24(3)8,(3)85-=-⨯-+=2 524[(3)](8)(3)(8)x x x x x x ∴+-=+-+=-+(2) 15(5)3,(5)32-=-⨯-+=- 2 215[(5)](3)(5)(3)x x x x x x ∴--=+-+=-+说明:此例可以看出,常数项为负数时,应分解为两个异号的因数,其中绝对值较大的因数与一次项系数的符号相同.【例9】把下列各式因式分解:(1) 226x xy y +- (2) 222()8()12x x x x +-++ 分析:(1) 把226x xy y +-看成x 的二次三项式,这时常数项是26y -,一次项系数是y ,把26y -分解成3y 与2y -的积,而3(2)y y y +-=,正好是一次项系数.(2) 由换元思想,只要把2x x +整体看作一个字母a ,可不必写出,只当作分解二次三项式2812a a -+.解:(1) 222266(3)(2)x xy y x yx x y x y +-=+-=+-(2) 22222()8()12(6)(2)x x x x x x x x +-++=+-+- (3)(2)(2)(1)x x x x =+-+-2.一般二次三项式2ax bx c ++型的因式分解大家知道,2112212122112()()()a x c a x c a a x a c a c x c c ++=+++.反过来,就得到:2121221121122()()()a a x a c a c x c c a x c a x c +++=++我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,把1212,,,a a c c 写成1122a c a c ⨯,这里按斜线交叉相乘,再相加,就得到1221a c a c +,如果它正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解成1122()()a x c a x c ++,其中11,a c 位于上一行,22,a c 位于下一行.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法. 必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解.【例10】把下列各式因式分解: (1) 21252x x -- (2) 22568x xy y +- 解:(1) 21252(32)(41)x x x x --=-+ 324 1-⨯(2) 22568(2)(54)x xy y x y x y +-=+- 1 254y y -⨯说明:用十字相乘法分解二次三项式很重要.当二次项系数不是1时较困难,具体分解时,为提高速度,可先对有关常数分解,交叉相乘后,若原常数为负数,用减法”凑”,看是否符合一次项系数,否则用加法”凑”,先”凑”绝对值,然后调整,添加正、负号.四、其它因式分解的方法1.配方法 【例11】分解因式2616x x +-解:222222616233316(3)5x x x x x +-=+⨯⨯+--=+-(35)(35)(8)(2)x x x x =+++-=+-说明:这种设法配成有完全平方式的方法叫做配方法,配方后将二次三项式化为两个平方式,然后用平方差公式分解.当然,本题还有其它方法,请大家试验.2.拆、添项法【例12】分解因式3234x x -+ 分析:此多项式显然不能直接提取公因式或运用公式,分组也不易进行.细查式中无一次项,如果它能分解成几个因式的积,那么进行乘法运算时,必是把一次项系数合并为0了,可考虑通过添项或拆项解决.解: 323234(1)(33)x x x x -+=+--22(1)(1)3(1)(1)(1)[(1)3(1)]x x x x x x x x x =+-+-+-=+-+-- 22(1)(44)(1)(2)x x x x x =+-+=+-说明:本解法把原常数4拆成1与3的和,将多项式分成两组,满足系数对应成比例,造成可以用公式法及提取公因式的条件.本题还可以将23x -拆成224x y -,将多项式分成两组32()x x +和244x -+. 一般地,把一个多项式因式分解,可以按照下列步骤进行:(1) 如果多项式各项有公因式,那么先提取公因式;(2) 如果各项没有公因式,那么可以尝试运用公式来分解;(3) 如果用上述方法不能分解,那么可以尝试用分组或其它方法(如十字相乘法)来分解;(4) 分解因式,必须进行到每一个多项式因式都不能再分解为止.因式分解的十二种方法 : 把一个多项式化成几个整式的积的形式;这种变形叫做把这个多项式因式分解。
代数式的恒等变形
一、常值代换求值法——“1”的妙用
例1 、 已知ab=1,求2
211
11b
a +++的值 [解] 把ab=1代入,得
22
11
11b a +++ =22
b ab ab
a a
b ab +++ =b a a b a b ++
+
=1
例2 、已知xyzt=1,求下面代数式的值:
分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变. 解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.
同理
练习:1
111,1=++++++++=c ca c
b b
c b a ab a abc 证明:若
二、配方法
例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b a a b +
之值。
[解] ∵a2b2+a2+b2-4ab+1
=(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0
∴⎩⎨
⎧==-.1,0ab b a
解得⎩⎨⎧==;1,1b a ⎩⎨⎧-=-=.1,1b a
当a=1,b=1时,
b a
a b +=1+1=2 当a=-1,b=-1时,b a
a b +
=1+1=2
例1 设a 、b 、c 、d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整
数的平方和,其形式是______.
解mn=(a2+b2)(c2+d2)
=a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2 =(ac-bd)2+(ad+bc)2,
所以,mn 的形式为(ac+bd)2+(ad-bc)2或(ac-bd )2+(ad+bc)2.
例
2
设
x
、
y
、
z
为
实
数
,
且
(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2.
求
的值.
解 将条件化简成
2x2+2y2+2z2-2xy-2x2-2yz=0 ∴ (x-y)2+(x-z)2+(y-z)2=0 ∴ x=y=z,∴原式=1.
练习:,0146422
222=+---++x cx bx ax c b a 已知求证:3:2:1::=c b a
三、因式分解法
例6 已知a4+b4+c4+d4=4abcd ,且a ,b ,c ,d 都是正数,求证:a=b=c=d .
证 由已知可得
a4+b4+c4+d4-4abcd=0,
(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,
所以
(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.
因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以 a2-b2=c2-d2=ab-cd=0,
所以 (a+b)(a-b)=(c+d)(c-d)=0.
又因为a ,b ,c ,d 都为正数,所以a+b≠0,c+d≠0,所以 a =b ,c=d . 所以
ab-cd=a2-c2=(a+c)(a-c)=0, 所以a =c .故a=b =c=d 成立.
例4 已知|a|+|b|=|ab|+1, 求a+b 之值
[解] ∵|a|+|b|=|ab|+1
∴|a|·|b|-|a|-|b|+1=0
(|a|-1)(|b|-1)=0 |a|=1 |b|=1 ∴a=±1或b=±1. 则当a=1,b=1时,a+b=2 当a=1,b=-1时,a+b=0 当a=-1,b=1时,a+b=0 当a=-1,b=-1时,a+b=-2
[评注] 运用该法一般有两种途径求值,一是将已知条件变形为一边为0,另一边能分解成几个因式的积的形式,运用“若A ·B=0,则A=0或B=0”的思想来解决问题。
另一种途径是对待求的代数式进行因式分解,分解成含有已知条件的代数式,然后再将已知条件代入求值。
练习:
证:))(()()()()(2
2
3
3
3
c b a bc ac ab c b a abc b a c a c b c b a ++++=++++++++ 四.换元
例4 设a+b+c=3m,求证:
(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0. 证明 令p=m-a,q=m-b,r=m-c 则 p+q+r=0.
P3+q3+r3-3pqr=(p+q+r)(p2+q2+r2-pq-qr-rp)=0 ∴p3+q3+r3-3pqr=0
即 (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0
练习:求证:2
2)1(1)2(2--+=-+-+-+ab b a ab b a ab b a )()(
2.比较法
a=b(比商法).这也是证明恒等式的重要思路之一. 例3 求证:
分析 用比差法证明左-右=0.本例中,
这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b 代a ,c 代b ,a 代c ,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化. 证 因为
所以
所以
说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.
全不为零.证明:
(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).同理所以
所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).
3.分析法与综合法
证要证 a2+b2+c2=(a+b-c)2,只要证
a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,
只要证 ab=ac+bc , 只要证 c(a+b)=ab ,
只要证
练习:2
222222221
11,0,0c
b a b a
c a c b abc c b a -++-++-+≠=++求
且已知 4.设参
当已知条件以连比的形式出现时,可引进一个比例系数来表示这个连比.
例6 若求x+y+z 的值.
解 令
则有 x=k(a-b), y=(b-c)k z=(c-a)k, ∴x+y+z=(a -b)k+(b-c)k+(c-a)k=0.。