浅基础十字交叉梁课程设计模板
- 格式:doc
- 大小:890.00 KB
- 文档页数:18
课程名称:基础工程设计题目:1#桥墩独立基础设计院系:专业:年级:姓名:指导教师:西南交通大学峨眉校区2017年4月20日第一部分:基本资料 (3)1.1设计题目 (3)1.2设计目的 (3)1.3基础资料 (3)§1、设计的任务及建筑物的性质和用途 (3)§2 基本资料 (4)1.4设计依据 (6)1.5设计要求 (6)第二部分柱下独立刚性基础设计 (7)2.1确定合理的基础埋置深度 (7)2.2基础尺寸初步拟定 (7)2.3作用在基础上的荷载 (7)(一) 主力 (7)(二) 纵向附加力(水平力) (12)2.4浅基础的设计计算 (14)附录一:滑动及倾覆稳定性计算表 (16)附录二:刚性基础横断面、平面及立面图 (17)第一部分:基本资料1.1设计题目本课程的题目是“1#桥墩独立基础设计”1.2设计目的柱下独立基础是桥梁工程中的常用基础形式之一,在工程中应用范围较广。
为系统掌握此类基础的设计方法,通过本次课程设计应全面掌握柱下独立基础设计计内容与步骤及主要验算内容与方法,了解现行《铁路桥涵地基和基础设计规范》(TB 10002.5-2005)和《公路桥涵设计通用规范》(JTG D60——2004)的有关规定,并初步具备独立进行该类基础设计的能力。
1.3基础资料§1、设计的任务及建筑物的性质和用途设计任务:根据已有建筑物的图样,所受上部结构的荷载、地质和水文地质情况,遵照“中华人民共和国铁路桥涵地基和基础设计规范TB10002.5—2005”(公路桥涵设计通用规范JTG D60——2015)设计某铁路(公路)干线上跨越某河流的桥梁之1#号桥墩的地基和基础。
建筑物的性质和用途:该桥梁为等跨度32m,梁全长32.6m,梁端缝0.1m,梁高3.0m,梁宽铁路按单线布置,公路按双线布置m,梁及上部体系自重按870KN 计,简支箱梁支座中心距梁端距离0.75m,同一桥墩相邻梁支座间距1.6m。
十字交叉梁天然基础计算书本计算书主要依据施工图纸及以下规范、参考文献编制:《建筑结构荷载规范》(GB50009-2019)、《建筑地基基础设计规范》(GB50007-2019)、《混凝土结构设计规范》(GB50010-2019)、《塔式起重机设计规范》(GB/T13752-1992)、《建筑安全检查标准》(JGJ59-99)、本工程用《塔吊使用说明书》、地质勘探报告和施工现场总平面布置图等编制。
基本参数1、塔吊基本参数塔吊型号:QT60;塔吊自重Gt:245kN;标准节长度b:2.5m;最大起重荷载Q:60kN;塔身宽度B:1.6m;主弦杆材料:角钢/方钢;塔吊起升高度H:37m;主弦杆宽度c:200mm;非工作状态时:额定起重力矩Me:600kN·m;基础所受的水平力P:20kN;工作状态时:额定起重力矩Me:600kN·m;基础所受的水平力P:50kN;2、风荷载基本参数所处城市:北京;风荷载高度变化系数μz:1.02;地面粗糙度类别:D类密集建筑群,房屋较高;非工作状态时,基本风压ω0:0.45kN·m;工作状态时,基本风压ω0:0.45kN·m;3、基础基本参数交叉梁宽t:0.5m;基础底面宽度Bc:6m;基础截面高度h1:1m;基础底板厚度h2:0.4m;基础上部中心部分正方形边长a1:3m;混凝土强度等级:C35;承台混凝土保护层厚度:50mm;基础埋置深度d:0.6m;十字交叉梁上部钢筋直径:25mm;十字交叉梁上部钢筋型号:HRB335;十字交叉梁底部钢筋直径:25mm;十字交叉梁底部钢筋型号:HRB335;十字交叉梁箍筋直径:10mm;十字交叉梁箍筋型号:HPB235;十字交叉梁箍筋肢数:6;十字交叉梁腰筋直径:14mm;十字交叉梁腰筋型号:HRB335;基础底板钢筋直径:20mm;基础底板钢筋型号:HRB335;4、地基基本参数地基承载力特征值f ak:325kN/m2;基础宽度的地基承载力修正系数ηb:0.3;基础埋深的地基承载力修正系数ηd:1.3;基础底面以下土的重度γ:20kN/m3;基础底面以上土的加权平均重度γm:22kN/m3;地基承载力设计值f a:345.86kN/m2;非工作状态下荷载计算一、塔吊对交叉梁中心作用力的计算1、塔吊竖向力计算塔吊自重:G=245.000kN;塔吊最大起重荷载:Q=60.000kN;作用于塔吊的竖向力:F=1.2×G+1.2×Q=1.2×245.000+1.2×60.000=366.000kN;2、塔吊风荷载计算依据《建筑结构荷载规范》(GB50009-2019)中风荷载体型系数:地处北京,基本风压为ω0=0.45kN/m2;查表得:荷载高度变化系数μz=1.02;挡风系数计算:φ = [3B+2b+(4B2+b2)1/2]c / Bbφ=[(3×1.60+2×2.50+(4×(1.60)2+(2.50)2)0.5)]×0.20/(1.60×2.50)=0.693因为是角钢/方钢,体型系数μs=1.90;高度z处的风振系数取:βz=1.0;所以风荷载设计值为:ω=0.7×βz×μs×μz×ω0=0.7×1.00×1.90×1.02×0.45=0.61kN/m2;3、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:Mω=ω×φ×B×H×H×0.5=0.61×0.693×1.60×37.00×37.00×0.5=463.36kN·m;M=Me+Mω+P×h1=600.00+463.36+20.00×1.00=1083.4kN·m;M max=1.4×1083.4=1516.70kN·m;二、塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e = M/(F+G)≤Bc/3式中 e──偏心距,即地面反力的合力至基础中心的距离;M──作用在基础上的弯矩;F──作用在基础上的垂直载荷;G──混凝土基础重力,G = 25×1.2×21.963=658.90kN;Bc──为基础的底面宽度;计算得:e=1516.700/(366.000+658.900)=1.480m ≤ 6.000/3=2.000m;基础抗倾覆稳定性满足要求!三、地基承载力验算e = M/(F+G)=1516.700/(366.000+658.900)=1.480≥ Bc/6=6.000/6=1.000地面压应力计算:P = 2(F+G)/3a2式中 M──倾覆力矩,包括风荷载产生的力矩和最大起重力矩;F──作用在基础上的垂直载荷;G──混凝土基础重力;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a = Bc/20.5-M max/(F+G)=6.000/20.5-1516.700/(366.000+658.900)=2.763m;不考虑附着基础设计值:P max=2×(366.000+658.90)/(3×2.762)=89.515kPa;地基承载力特征值计算依据《建筑地基基础设计规范》(GB50007-2019)第5.2.3条,计算公式如下:f a = f ak+ηbγ(Bc-3)+ηdγm(d-0.5)式中 f a--修正后的地基承载力特征值;f ak--地基承载力特征值,按本规范第5.2.3条的原则确定,取325.000kN/m2;ηb、ηd--基础宽度和埋深的地基承载力修正系数;γ--基础底面以上土的重度,地下水位以下取浮重度,取γ=20.000kN/m3;Bc--基础底面宽度,当基宽小于3m按3m取值,大于6m按6m取值,取Bc=6.000m;γm--基础底面以上土的加权平均重度,地下水位以下取浮重度,取γm=22.000kN/m3;d--基础埋置深度(m) ,取d=0.600m;解得修正后的地基承载力特征值:f a=325.000+0.3×20.000×(6.000-3)+1.3×20.000×(0.600-0.5)=345.860kPa;实际计算取的地基承载力设计值为:f a=345.860kPa;地基承载力特征值f a大于有附着时压力设计值P max= 89.515kPa,满足要求!四、基础受冲切承载力验算依据《建筑地基基础设计规范》(GB50007-2019)第8.2.7条。
十字梁式基础计算书一、塔机属性二、塔机荷载三、承台验算十字梁板式基础布置图承台底面积:A=2bl-l2+2a2=2×6.20×0.90-0.902+2×1.002=12.35m2承台中一条形基础底面积:A0=bl+2(a+l)a=6.20×0.90+2×(1.00+0.90)×1.00=9.38m2 承台及其上土的自重荷载标准值:G k=AhγC=12.35×1.00×25.00=308.75kN承台及其上土的自重荷载设计值:G=1.35G k=1.35×308.75=416.81kN1、偏心距验算条形基础的竖向荷载标准值:F k''=(F k+G k)A0/A=(230.00+308.75)×9.38/12.35=409.19kNF''=(F+G)A0/A=(310.50+416.81)×9.38/12.35=552.40kNe=(M k+F Vk·h)/ F k''=(400.00+16.76×1.00)/409.19=1.02m≤b/4=6.20/4=1.55m满足要求!2、承台偏心荷载作用应力(1)、荷载效应标准组合时,承台底面边缘压力值e=1.02m≤b/6=6.20/6=1.03mI=lb3/12+2×al3/12+4×[a4/36+a2/2(a/3+l/2)2]=0.90×6.203/12+2×1.00×0.903/12+4×[1.004/36+1.002/2×(1.00/3+0.90/2)2]=19.33承台底面抵抗矩:W=I/(b/2)=19.33/(6.20/2)=6.24m3P kmin= F k''/A0-(M k+F Vk·h)/W=409.19/9.38-(400.00+16.76×1.00)/6.24=-23.20kPaP kmax= F k''/A0+(M k+F Vk·h)/W=409.19/9.38+(400.00+16.76×1.00)/6.24=110.44kPa(2)、荷载效应基本组合时,承台底面边缘压力值P min= F''/A0-(M+F V·h)/W=552.40/9.38-(540.00+9.64×1.00)/6.24=-29.24kPaP max= F''/A0+(M+F V·h)/W=552.40/9.38+(540.00+9.64×1.00)/6.24=147.02kPa3、承台轴心荷载作用应力P k=(F k+G k)/A=(230.00+308.75)/12.35=43.62kN/m24、承台底面压应力验算(1)、修正后地基承载力特征值f a=120.00kPa(2)、轴心作用时地基承载力验算P k=43.62kPa≤f a=120.00kPa满足要求!(3)、偏心作用时地基承载力验算P kmax=110.44kPa≤1.2f a=1.2×120.00=144.00kPa满足要求!5、承台抗剪验算承台有效高度:h0=H-δ=1000-70=930mm塔身边缘至承台底边缘最大反力处距离:a1=(b-20.5B)/2=(6.20-20.5×1.50)/2=2.04m 塔身边缘处承台底面地基反力设计值:P1=P max-a1(P max-P min)/b=147.02-2.04×(147.02-(-29.24))/6.20=89.04kPa承台底平均压力设计值:p=(P max+P1)/2=(147.02+89.04)/2=118.03kPa承台所受剪力:V=pa1l=118.03×2.04×0.90=216.64kNh0/l=930/900=1.03≤40.25βc f c lh0=0.25×1.00×16.70×900×930/1000=3494.48kN≥V=216.64kN满足要求!四、承台配筋验算承台自重在承台底面产生的压力设计值:P G=G/A=416.81/12.35=33.75kPa承台底均布荷载设计值:q1=(p-P G)l=(118.03-33.75)×0.90=75.85kN/m塔吊边缘弯矩:M=q1a12/2=75.85×2.042/2=157.73kN·m2、基础配筋计算(1)、承台梁底部配筋αS1= M/(α1f c lh02)=157.73×106/(1.00×16.70×900×9302)=0.012δ1=1-(1-2αS1)0.5=1-(1-2×0.012)0.5=0.012γS1=1-δ1/2=1-0.012/2=0.994A s1=M/(γS1h0f y1)=157.73×106/(0.994×930×300)=569mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/300)=max(0.2,0.24)=0.24%承台底需要配筋:A1=max(569,ρlh)=max(569,0.002×900×1000)=2120mm2承台梁底实际配筋:A s1'=2211mm2≥A1=2120mm2满足要求!(2)、承台梁上部配筋承台梁上部实际配筋:A s2'=1206mm2≥0.5A1=1060mm2满足要求!(3)、承台梁腰筋配筋梁腰筋按照构造配筋HPB235 2Φ8(4)、承台梁箍筋配筋箍筋抗剪截面高度影响系数:βh=(800/h0)0.25=(800/930)0.25=0.960.7βh f t lh0=0.7×0.96×1.57×103×0.90×0.93=885.88kN≥V=216.64kN按构造规定选配钢筋!配箍率验算ρsv=nA sv1/(ls)=4×50.24/(900×120)=0.19%≥ρsv,min=0.24f t/f yv=0.24×1.57/210=0.18%满足要求!(5)、承台加腋处配筋承台加腋处,顶部与底部配置水平构造筋Φ12@200mm、竖向构造箍筋Φ8@200mm,外侧纵向筋Φ10@200mm。
十字交叉梁基础计算书2楼工程;工程建设地点:;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天。
本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人。
本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2002)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《混凝土结构设计规范》(GB50010-2002)、《建筑桩基技术规范》(JGJ94-94)等编制。
一、塔吊的基本参数信息塔吊型号: QTZ40;塔吊起升高度H: 58.000m;塔吊倾覆力矩M: 465kN.m;塔身宽度B: 2.500m;塔吊自重G: 275.92kN;最大起重荷载Q: 40.000kN;桩间距l: 3m;桩边长d: 0.400m;桩钢筋级别: II级钢;混凝土强度等级: C35;交叉梁截面宽度: 1.4m;交叉梁截面高度: 1.200m;交叉梁长度: 6.6m;桩入土深度: 13.200m;保护层厚度: 80mm;空心桩的空心直径: 0.250m;标准节长度a:2.2m;额定起重力矩:400kN·m;基础所受的水平力:30kN;主弦杆材料:角钢/方钢;宽度/直径c:120mm;所处城市:江苏盐城;基本风压W0:0.45 kN/m2;地面粗糙度类别为 D类密集建筑群,房屋较高,风荷载高度变化系数μz=0.93 。
二、塔吊对交叉梁中心作用力的计算1. 塔吊自重G=275.92kN2. 塔吊最大起重荷载Q=40kN作用于塔吊的竖向力 F=1.2×275.92+1.2×40=379.1kN塔吊倾覆力矩M= 1.4 ×465.00 = 651.00kN·m三、交叉梁最大弯矩和桩顶竖向力的计算计算简图:十字交叉梁计算模型(最大弯矩M方向与十字交叉梁平行)。
《土力学与地基基础》课程设计第一部分墙下条形基础课程设计一、墙下条形基础课程设计任务书(一)设计题目某教学楼采用毛石条形基础,教学楼建筑平面如图1所示,试设计该基础。
图1 建筑平面图(二)设计资料⑴工程地质条件如图2所示。
图2工程地质剖面图⑵室外设计地面-0.6m,室外设计地面标高同天然地面标高。
⑶由上部结构传至基础顶面的竖向力值分别为外纵墙∑F1K=558.57kN,山墙∑F2K=168.61kN,横墙∑F3K=162.68kN,纵墙∑F4K=1533.15kN。
⑷基础采用M5水泥砂浆砌毛石,标准冻深为1.2m。
(三)设计容⑴荷载计算(包括选计算单元、确定其宽度)。
⑵确定基础埋置深度。
⑶确定地基承载力特征值。
⑷确定基础的宽度和剖面尺寸。
⑸软弱下卧层强度验算。
⑹绘制施工图(平面图、详图)。
(四)设计要求⑴计算书要求书写工整、数字准确、图文并茂。
⑵制图要求所有图线、图例尺寸和标注方法均应符合新的制图标准,图纸上所有汉字和数字均应书写端正、排列整齐、笔画清晰,中文书写为仿宋字。
二、墙下条形基础课程设计指导书(一)荷载计算1.选定计算单元对有门窗洞口的墙体,取洞口间墙体为计算单元;对无门窗洞口的墙体,则可取1m 为计算单元(在计算书上应表示出来)。
2.荷载计算计算每个计算单元上的竖向力值(已知竖向力值除以计算单元宽度)。
(二)确定基础埋置深度dGB50007-2002规定d min=Z d-h max或经验确定d min=Z0+(100~200)mm。
式中Z d——设计冻深,Z d= Z0·ψzs·ψzw·ψze;Z0——标准冻深;ψzs——土的类别对冻深的影响系数,按规中表5.1.7-1;ψzw——土的冻胀性对冻深的影响系数,按规中表5.1.7-2;ψze——环境对冻深的影响系数,按规中表5.1.7-3;(三)确定地基承载力特征值fa式中f a——修正后的地基承载力特征值(kPa);f ak——地基承载力特征值(已知)(kPa);ηb、ηb——基础宽度和埋深的地基承载力修正系数(已知);γ——基础底面以下土的重度,地下水位以下取浮重度(kN/m3);γm——基础底面以上土的加权平均重度,地下水位以下取浮重度(kN/m3);b——基础底面宽度(m),当小于3m按3m取值,大于6m按6m取值;d——基础埋置深度(m)。
浅基础(十字交叉梁)课程设计浅基础是指基础埋深3~5m或基础埋深小于基础宽度的基础,且只需排水或挖槽等普通施工即可建造的基础,在实际施工中对于其质量问题必须进行严格把控,下面整理了预防质量问题相关知识点,一起来看看吧。
基础设计问题防控(1)地基容许承载力设计方法要确保基底压力不超过地基极限承载力,且安全度满足设计要求;地基变形不超过允许变形值。
(2)设计方法以概率理论为基础,在极限状态进行设计。
基础施工问题防控基槽(坑)尺寸偏差(1)施工前根据平面控制桩和水准点建立测绘控制网,并定期复查。
(2)定位放线时在主要轴线部位设控制桩并进行后期校核。
(3)开挖前应确定合理的边坡坡度,并计算确定最小开挖线尺寸。
(4)开挖中定期分次校核基础平面位置与尺寸坡度是否合格。
基底标高误差(1)防止超挖,机械开挖时应预留一定高度进行人工修平,具体留置厚度应根据机械准确性进行确定。
(2)基槽(坑)挖至基底标高后应会同设计单位、监理单位及时检查基底土质是否符合要求,并进行隐蔽工程验收。
回填土密实度不合格(1)选择垫层材料时,确保砂石级配良好,使用粉细砂时还应掺入碎石或卵石,并控制最大粒径。
(2)控制素土土料中的有机质含量,禁用冻土或膨胀土料,并应过筛。
(3)灰土施工时控制含水量,并结合实际含水率进行晒干或洒水处理;拌和时应及时摊铺,不得隔日夯打。
(4)地基压实施工时,注意分层进行,合理设置分层厚度,下层密实度满足要求后方可进行上层施工。
回填质量不满足要求(1)填土前进行场地处理,清除垃圾并进行场内排水、地下降水,回填时按基底排水方向由高到低分层进行。
(2)回填施工须确保分层进行,逐层压实,确保每层铺填压实质量,完成压实施工后及时进行验收。
基础外观不合格(1)根据测量放线数据安装模板并浇筑混凝土,确保模板垂直度和上口平直,并有足够的刚度及稳定性。
(2)浇筑混凝土时须四周均匀振捣,及时铲除、抹平多余的外露混凝土。
(3)模板支撑在不稳定界面时须加设底部垫板以防倾覆,并确保模板板面平整,整体结构牢固。
浅基础课程设计任务书——十字交叉条形基础设计一、计算内容1.1 基础埋深的确定 1.2 地基承载力确定1、承载力公式法0b d c k f M b M d M c γγ=++适应范围:偏心距0.033e b ≤,并应满足变形要求。
2、(3)(0.5)k b d m f f b d ηγηγ=+-+- d 取室外地面标高;填土地面标高;天然地面标高;室内地面标高。
当 1.1k f f <时,取 1.1k f f =。
1.3 基础底面尺寸的确定假定横向、纵向基础底面宽度相同,按总荷载来确定基础底面宽度biiF b L=∑∑,注意十字交叉处不能重复计算长度,适当扩大10-30%。
条形基础:b ≥df FG γ-1.4 地基承载力验算(一)十字交叉条形基础的柱荷载分配1、节点荷载在两个正交条形基础梁上的分配必须满足两个条件: A 、静力平衡:i iX iY P P P =+B 、变形协调:ix iy ωω=,节点上的弯矩x y M M 、直接加于相应方向的基梁上,不作分配,即不考虑基础梁承受扭矩。
C 、通常,采用文克勒地基模型,略去本节点荷载对其它点挠度的影响。
内柱节点:两条正交的无限长梁计算 角柱节点:两条正交的半无限长梁计算边柱节点:正交的一无限长梁和半无限长梁计算 2、荷载分配 (1)边柱节点:(x 方向为无限长梁;y 方向为办无限长梁)441; 4x x ix ix x y y y y iy i xx x y y x b S P P b S b S b S P P S b S b S λ⎧=⎪+⎪⎨⎪===⎪+⎩对于边柱有伸出悬臂长度的情况,悬臂长度(0.60.75)y y l S =-,假定y 方向外伸,则有:; x x ix ix x y y y y y x iy i x x y y y x b S P P b S b S b S l l P P b S b S S S αααα⎧=⎪+⎪⎨⎪=⎪+⎩由、之比查表确定(2)、内柱节点:1; x x ix ix x y y y y iy i xx x y y x b S P P b S b S b S P P S b S b S λ⎧=⎪+⎪⎨⎪===⎪+⎩(3)、角柱节点:A 、双向均不外伸时,计算方法同内柱节点B 、双向均外伸,且x xy yl S l S =时,荷载分配同内柱节点 C 、若只有一个方向外伸(x 方向外伸)时:; x x ix ix x y y y y x iyi x x y y x b S P P b S b S b S l P P b S b S S ββββ⎧=⎪+⎪⎨⎪=⎪+⎩由之比查表确定(二)单向条形基础地基强调和变形验算max ; 1.2a a F Gp f p f A+=≤≤ max min6(1)LG P e p bLL+=±∑; L M e P G==+∑∑∑外力对基底形心力矩和基底反力之和当偏心距max 2(),63(/2)x x b F G e p l b e +>=-(三)软弱下卧层的承载力验算如在地基变形计算深度范围内有软弱下卧层时,还需对其验算承载力(见图),使作用在下卧层顶面的总应力不超过下卧层的承载力,即cz z σσ+≤f z式中,γ软弱下卧层以上各土层加权平均重度(kN/m 3); z 基础底面到软弱下卧层顶面处的距离(m );f z 软弱下卧层顶面处经深度修正后的地基承载力设计值(kPa ); z σ软弱下卧层顶面处的附加应力设计值(kPa );对条形基础:z σ=()θσztg b p b c 2+-对矩形基础,z σ=()()θθσztg l ztg b p bl c 2)2(++- (2.8-22)式中的θ为地基压力扩散线与竖直线的夹角,其值由有关表给出。
《土力学及基础工程》课程设计任务书浅基础(十子父梁)基础设计、工程概况某工程为两跨钢筋混凝土框架结构,高度为5层,丙级建筑,设3排柱,其柱网平面布置如下图所示:已知:1、柱截面尺寸为 500 X 500;32、 基床系数 k=5MN/m ;3、 作用在基础顶面的荷载(弯矩作用于y 轴方向)为: 学号A 轴B 轴C 轴F/kN My/kNmF/kN My/kNmF/kN My/kNm1 2050 3002400 210 1800 2502 2100 300 2400 210 1800 2503 2150 300 2400 210 1800 2504 2200 300 2400 210 1800 2505 2250 300 2400 210 1800 2506 2300 300 2400 210 1800 2507 2350 300 2400 210 1800 2508 2050 310 2400 210 1800 2509 2050 320 2400 210 1800 250 10 2050 330 2400 210 1800 250 11 2050 340 2400 210 1800 250 12 2050 350 2400 210 1800 250 13 2050 360 2400 210 1800 250 14 2050 370 2400 210 1800 250 15 2050 300 2450 210 1800 250 16 2050 300 2500 210 1800 250 172050300 2550 210 1800 250 18205030026002101800250—Cp ——-——一 H056CB.— ■九-Etl ■—-[BOB90 -A7000L•“ 2、工程地质条件地表以下土层构成如下:1、人工填土0.0〜-1.2m ;粘性土-1.2〜-7.2m ;细砂-7.2m以下;地下水位在细砂层以下;标准冻深为0.60m。
目录一、编制依据 (2)二、工程概况 (2)三、塔吊基础设计概况 (2)四、塔吊桩基础的计算 (5)4.1 3#塔吊基础计算 (5)4.2 4#塔吊基础计算 (8)五、施工组织与部署 (12)六、施工要点 (12)七、施工安全 (13)一、编制依据1.1塔吊租赁合同。
1.2根据***设计院提供的设计施工图纸和工程特点。
1.3**地质工程勘察院提供的《***工程详细勘察报告》(工程编号:勘2008-024)。
1.4湖北江汉建筑工程机械有限公司提供的TC5610塔式起重机使用说明书;长沙中联重工科技发展股份有限公司提供的TC5610塔式起重机使用说明书。
1.5《建筑机械使用安全规范》(JGJ33-2001)1.6《建筑桩基技术规范》(JGJ94-94)1.7《建筑地基基础设计规范》(GB50007-2002)1.8《混凝土结构设计规范》(GB50010-2002)1.9《建筑施工安全检查标准》(JGJ59-99)1.10国家现行桩基础工程设计、施工及验收规范等。
二、工程概况**包括1层地下室(包括1层夹层)、8层裙楼、A写字楼(26层)和B写字楼(28层),占地面积10185.7m2、总建筑面积138610.81m2。
裙楼顶标高33.9m,写字楼A高90.8m (最高点为97.8m),写字楼B高97m(最高点为104m),混凝土框架剪力墙结构。
现裙楼混凝土结构已完成,基坑周边土方回填已完成30%。
三、塔吊基础设计概况3.1 塔吊定位因业主方提出裙楼提前营业,设置于裙楼内部的1#、2#塔吊需拆除。
现1#、2#塔吊距离建筑物外边线有28m远,工程施工场地和周边场地都比较狭小,无法采用吊车拆除此两台塔吊,拟利用设置的3#、4#塔吊拆除1#、2#塔吊。
为了使设置的3#、4#塔吊既可以服务于两栋塔楼,又可以满足拆除1#、2#塔吊和先拆塔吊后拆施工升降机的要求,将3#、4#塔吊定位在铁西路与建筑物间的施工场地内(见附图一)。
目录一、编制依据 (2)二、工程概况 (2)三、塔吊基础设计概况 (2)四、塔吊桩基础的计算 (5)4.1 3#塔吊基础计算 (5)4.2 4#塔吊基础计算 (8)五、施工组织与部署 (12)六、施工要点 (12)七、施工安全 (13)一、编制依据1.1塔吊租赁合同。
1.2根据***设计院提供的设计施工图纸和工程特点。
1.3**地质工程勘察院提供的《***工程详细勘察报告》(工程编号:勘2008-024)。
1.4湖北江汉建筑工程机械有限公司提供的TC5610塔式起重机使用说明书;长沙中联重工科技发展股份有限公司提供的TC5610塔式起重机使用说明书。
1.5《建筑机械使用安全规范》(JGJ33-2001)1.6《建筑桩基技术规范》(JGJ94-94)1.7《建筑地基基础设计规范》(GB50007-2002)1.8《混凝土结构设计规范》(GB50010-2002)1.9《建筑施工安全检查标准》(JGJ59-99)1.10国家现行桩基础工程设计、施工及验收规范等。
二、工程概况**包括1层地下室(包括1层夹层)、8层裙楼、A写字楼(26层)和B写字楼(28层),占地面积10185.7m2、总建筑面积138610.81m2。
裙楼顶标高33.9m,写字楼A高90.8m (最高点为97.8m),写字楼B高97m(最高点为104m),混凝土框架剪力墙结构。
现裙楼混凝土结构已完成,基坑周边土方回填已完成30%。
三、塔吊基础设计概况3.1 塔吊定位因业主方提出裙楼提前营业,设置于裙楼内部的1#、2#塔吊需拆除。
现1#、2#塔吊距离建筑物外边线有28m远,工程施工场地和周边场地都比较狭小,无法采用吊车拆除此两台塔吊,拟利用设置的3#、4#塔吊拆除1#、2#塔吊。
为了使设置的3#、4#塔吊既可以服务于两栋塔楼,又可以满足拆除1#、2#塔吊和先拆塔吊后拆施工升降机的要求,将3#、4#塔吊定位在铁西路与建筑物间的施工场地内(见附图一)。
浅基础十字交叉梁
课程设计
《土力学及基础工程》课程设计任务书
浅基础(十字交梁)基础设计
一、工程概况
某工程为两跨钢筋混凝土框架结构,高度为5层,丙级建筑,设3排柱,其柱网平面布置如下图所示:
A
B
C
y x
O
已知:1、柱截面尺寸为500×500;
2、基床系数k=5MN/m 3;
3、作用在基础顶面的荷载(弯矩作用于y 轴方向)为:
二、工程地质条件
地表以下土层构成如下:
1、人工填土0.0~-1.2m ;粘性土-1.2~-7.2m ;细砂-7.2m
以下;地下水位在细砂层以下;标准冻深为0.60m 。
2、土的主要物理力学指标
三、设计内容
1、确定基础埋深;
2、确定持力层承载力特征值;
3、确定基础形式、尺寸;
4、验算地基强度、变形;
5、按winkler地基模型进行基础结构设计;
6、完成基础设计计算书一份;
7、绘制基础施工图。
四、设计时间为一周
五、计算书。