浙江大学《601高等代数》历年考研真题汇编(含部分答案)
- 格式:pdf
- 大小:17.96 MB
- 文档页数:51
1。
解:由题意可知1123212233131231,1,1δλλλδλλλλλλδλλλ=++=-=++=== 从而知()()()2123121231g g g λλλδδδ++=-++=()()()()()()2212233121312312122324231g g g g g g λλλλλλδδδδδδδδδδ++=-+-+-+++=-()()()22123311223313212213g g g λλλδδδδδδδδδδδ=++++--++=-故()323p x x x x =--+2。
证明:由分析知()()21112221n n n n f x nx nx nx x ---'=+=+。
如果()f x 有重数大于2的非零根,在()f x '有重数大于1的非零根,根据()f x '的表达式可知()f x '没有非零重根,从而()f x 没有重数大于2的非零根 3。
解:由于()111n nk jk k k j nD x xx =≤<≤=-∏∏,又可知()()12111111121111211111112112111111n ni i i i i n n n n k j k i i i i i k k j nn n i i i i i n nnnn nnn nx x x x yx x x x y y x x x x x x x y x x x x y x x x x y -------=≤<≤-+++++--=--∏∏ 从而知()()()()1111111nn i n i i i i ijk k j nD yxx y δ+-----≤<≤-=--∏即()1ni ijk k j nD xx δ≤<≤=-∏,从而知()111nnn i i j k i i k j n D x x δ==≤<≤⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭∑∑∏ 4。
解;由于11TT A E XYY X α=+=+=+从而()1当1α≠时,A 可逆()2由于当1α=时()()()111n T TE E XY E XY λλλλ--+=--=-,从而A 的特征多项式为()11n λλ--故()1rank A n =-,又()()()1TTrank A E rank X Y rank YX-===从而()()rank A rank A En =-=,从而2A A =,故A 的最小多项式()m λ能整除()1λλ-,从而()m λ无重根,从而A 可对角化5。
浙江大学攻读硕士研究生入学初试试题 2005年高等代数试题浙江大学2005年高等代数试题1.设整系数多项式)(x f 的次数是m n 2=或12+=m n (其中m 为正整数),证明:如果有)12(+≥m k 个不同的整数kααα,,,21,使)(i f α取值1或1-,则)(x f 在有理数域上不可约。
2.设A 是n 阶矩阵,),,,(21n Tx x x X=,Tny y y Y ),,,(21=,a是一个数。
(1) 求证;YA X X Y AT T*-=0;(2) 进一步,再证YA X A a aX Y A T T*-=||。
3.设sξξξ,,,21 是某个齐次线性方程组的一个基础解系,kμηη,,,21 是该齐次方程组的k 个线性无关的解。
证明若s k <,则在sξξξ,,,21中必可取出k s -个向量使与kμηη,,,21共同构成该齐次方程组的一个基础解系4.设A 是s n ⨯矩阵,证明秩r A =)(的充分必要条件是存在两个列满秩的矩阵rn B ⨯和rs C ⨯使TBC A =。
5.设21,T T 为线性空间V 的两个线性变换,若有V的可逆线性变换S 使ST S T211-=,则称1T 与2T 相似。
证明1T 与2T 相似的充要条件是存在可逆线性变换S,使对V 中任一向量α,由βα=1T 可得ββS S T =)(2。
6.若把所有阶实对称矩阵按合同关系分类,问共有几类(说明原因)?每一类中最简单的矩阵是什么?7.(1) 在2R 中内积定义为22114,y x y x y x +>=<其中22121),(),,(R y y y x x x T∈==。
令}1:{==x x S ,表示向量的长度,说明S 是什么形状的图形,并画出草图。
(2) 令⎭⎬⎫⎩⎨⎧∈=++-⎥⎦⎤⎢⎣⎡=R d c b a d c b a d c b a W ,,,,032:证明W 关于矩阵的加法和数乘成为R 上的线性空间,并求出W 的维数,给出W 的一组基。
目录Ⅰ历年考研真题试卷 (2)浙江大学2007年招收攻读硕士学位研究生入学考试试题 (2)浙江大学2008年招收攻读硕士学位研究生入学考试试题 (5)浙江大学2009年招收攻读硕士学位研究生入学考试试题 (7)浙江大学2010年招收攻读硕士学位研究生入学考试试题 (9)浙江大学2011年招收攻读硕士学位研究生入学考试试题 (11)浙江大学2012年招收攻读硕士学位研究生入学考试试题 (13)浙江大学2014年招收攻读硕士学位研究生入学考试试题 (15)浙江大学2015年招收攻读硕士学位研究生入学考试试题 (16)浙江大学2016年招收攻读硕士学位研究生入学考试试题 (17)浙江大学2017年招收攻读硕士学位研究生入学考试试题 (18)浙江大学2018年招收攻读硕士学位研究生入学考试试题 (19)浙江大学2019年招收攻读硕士学位研究生入学考试试题 (21)Ⅱ历年考研真题试卷答案解析 (23)浙江大学2007年招收攻读硕士学位研究生入学考试试题答案解析 (23)浙江大学2008年招收攻读硕士学位研究生入学考试试题答案解析 (31)浙江大学2009年招收攻读硕士学位研究生入学考试试题答案解析 (39)浙江大学2010年招收攻读硕士学位研究生入学考试试题答案解析 (46)浙江大学2011年招收攻读硕士学位研究生入学考试试题答案解析 (52)浙江大学2012年招收攻读硕士学位研究生入学考试试题答案解析 (57)浙江大学2014年招收攻读硕士学位研究生入学考试试题答案解析 (64)浙江大学2016年招收攻读硕士学位研究生入学考试试题答案解析 (70)Ⅰ历年考研真题试卷浙江大学2007年招收攻读硕士学位研究生入学考试试题考试科目:高等代数编号:601注意:答案必须写在答题纸上,写在试卷或草稿纸上均无效。
一、(17分)设整系数的线性方程组为),..2,1(,1n i b x ai j nj ij==∑=,证明该方程组对任意整数n b b b ,..,,21都有整数解的充分必要条件是该方程组的系数行列式等于1±。
目 录2012年浙江大学601高等代数考研真题2011年浙江大学601高等代数考研真题及详解2010年浙江大学360高等代数考研真题2009年浙江大学360高等代数考研真题2008年浙江大学724高等代数考研真题及详解2007年浙江大学741高等代数考研真题及详解2006年浙江大学341高等代数考研真题及详解2005年浙江大学341高等代数考研真题2004年浙江大学341高等代数考研真题2003年浙江大学344高等代数考研真题2002年浙江大学365高等代数考研真题2001年浙江大学359高等代数考研真题2000年浙江大学226高等代数考研真题1999年浙江大学高等代数考研真题及详解2012年浙江大学601高等代数考研真题浙江大学2012年攻读硕士学位研究生入学试题考试科目:高等代数(601)考生注意:1.本试卷满分为150 分,共计10道题,每题满分15分,考试时间总计180 分钟;2.答案必须写在答题纸上,写在试题纸上或草稿纸上均无效。
一、设是阶单位矩阵,,矩阵满足,证明的行列式等于.二、设是阶幂零矩阵满足,.证明所有的都相似于一个对角矩阵,的特征值之和等于矩阵的秩.三、设是维欧氏空间的正交变换,证明最多可以表示为个镜面反射的复合.四、设是阶复矩阵,证明存在常数项等于零的多项式使得是可以对角化的矩阵,是幂零矩阵,且.五、设.当为何值时,存在使得为对角矩阵并求出这样的矩阵和对角矩阵;求时矩阵的标准型.六、令二次型.求次二次型的方阵;当均为实数,给出次二次型为正定的条件.七、令和是域上的线性空间,表示到所有线性映射组成的线性空间.证明:对,若,则和在中是线性无关的.八、令线性空间,其中是的线性变换的不变子空间.证明;证明若是有限维线性空间,则;举例说明,当时无限维的,可能有,且.九、令.求阶秩为的矩阵,使得(零矩阵);假如是满足的阶矩阵,证明:秩.十、令是有限维线性空间上的线性变换,设是的不变子空间.那么,的最小多项式整除的最小多项式.。
1。
解:由题意可知1123212233131231,1,1δλλλδλλλλλλδλλλ=++=-=++=== 从而知()()()2123121231g g g λλλδδδ++=-++=()()()()()()2212233121312312122324231g g g g g g λλλλλλδδδδδδδδδδ++=-+-+-+++=-()()()22123311223313212213g g g λλλδδδδδδδδδδδ=++++--++=-故()323p x x x x =--+2。
证明:由分析知()()21112221n n n n f x nx nx nx x ---'=+=+。
如果()f x 有重数大于2的非零根,在()f x '有重数大于1的非零根,根据()f x '的表达式可知()f x '没有非零重根,从而()f x 没有重数大于2的非零根 3。
解:由于()111n nk jk k k j nD x xx =≤<≤=-∏∏,又可知()()12111111121111*********112111111n ni i i i i n n n n k j k i i i i i k k j nn n i i i i i n nnnn nnn nx x x x yx x x x y y x x x x x x x y x x x x y x x x x y -------=≤<≤-+++++--=--∏∏ 从而知()()()()1111111nn i n i i i i ijk k j nD yxx y δ+-----≤<≤-=--∏即()1ni ijk k j nD xx δ≤<≤=-∏,从而知()111nnn i i j k i i k j n D x x δ==≤<≤⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭∑∑∏ 4。
解;由于11TT A E XYY X α=+=+=+从而()1当1α≠时,A 可逆()2由于当1α=时()()()111n T TE E XY E XY λλλλ--+=--=-,从而A 的特征多项式为()11n λλ--故()1rank A n =-,又()()()1TTrank A E rank X Y rank YX-===从而()()rank A rank A E n =-=,从而2A A =,故A 的最小多项式()m λ能整除()1λλ-,从而()m λ无重根,从而A 可对角化5。
浙江大学2019年研究生高等代数试题一.n a a a ,,,21 是n 个不相同的整数,证明1)())(()(21+---=n a x a x a x x f 在有理数域上可约的充分必要条件是)(x f 可表示为一个整数多项式的平方二.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a 21α,且0=ααT,求(1)T n E αα- (2)1)(--T n E αα(其中n E 为n 阶单位阵,的转置为ααT) 三.矩阵n m A ⨯是行满秩)(m A =即秩,证明: (1)存在可逆阵Q ,使得Q E A m )0,(= (2) 存在矩阵mn B ⨯,使得mE AB =四.设n 阶方阵A 满足A A =2,n ααα,,,21 是n P 中n 个线形无关的列向量,设2V 是由n A A A ααα,,,21 生成的子空间,1V 是0=AX 的解空间,证明:21V V P n⊕=(21V V ⊕表示1V 与2V 的直和)五.设B A ,都是n 阶实对称矩阵,且B 正定,则存在⎪⎪⎪⎭⎫ ⎝⎛=n D S λλ 1及,使得T T SS B SDS A ==, 六.设n 阶矩阵)(ij a A =,满足下列条件:(1)0≤ij a ≤1,j i ,∀ (2)121=+++in i i a a a (i=1,2, ,n)求证:(1)A的每一个特征值λ,都有1≤λ(2)10=λ为A 的一个特征⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎪⎭⎫ ⎝⎛=ℜ是实数i n nx x x |1 ,阶正定阵是n A ,⎪⎪⎪⎭⎫ ⎝⎛=n x x 1α,n n y y ℜ∈⎪⎪⎪⎭⎫⎝⎛= 1β,求证:(1)))(()(2ββααβαA A A T T T ≤等号成立当且仅当βα与线形相关时成立(2)若是正定矩阵,则A ))(()(2ββααβαA A A TTT≤也成立八(1)设B A ,分别为复数矩阵域上的阶方阵阶和l k ,并且B A ,没有公共的特征值,求证XB AX =只有空解(这里k k ij x X ⨯=)()(2)在nn ⨯ℜ中,变换nn A XA AX X ⨯ℜ∈+A ,: ,A 为一个固定的矩阵,且A 的特征值不为(-A )的特征值,求证:A 为一个线形变换。
二〇〇七年攻读硕士学位研究生入学考试试题考试科目: 高等代数 编号: 741一、(17分)设整系数的线性方程组为,证明该方程组对任意整数都有整数解的充分必要条件是该方程组的系数行列式等于. ),..2,1(,1n i b x a i j nj ij ==∑=n b b b ,..,,211±二、(17分)计算阶行列式, 其中.(1n n >)2−1211232341112...........................n n n n nn n ns s s s s s s s s s s s s s s −+−+⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠kn k k k x x x s +++=...21三、(17分)设矩阵,,A B C 满足有意义.求证: ABC ()()()AB BC B ABC +≤+秩秩秩秩.四、(17分)设s ξξξ,...,,21是某个齐次线性方程组的基础解系,而k ηηη,...,,21是该齐次线性方程组的个线性无关的解,并且k k s <s k −s ξξξ,...,,21.求证中必可取出个解,使得它们个k ηηη,...,,21一起构成原方程组的一个基础解系.五、(17分)设阶方阵(1n n >)A 满足其中,0652=+−E A A E 是阶单位矩阵.证明:n A 相似于对角矩阵;如果A 行列式等于是正整数).求与m n m m n m ,0(32<<−A 相似的对角矩阵. )(2R M V =六、(17分)假设22×是由实数域上所有矩阵构成的实数域上向量空间.1112,11A B λ−⎛⎞⎛==⎜⎟⎜−−⎝⎠⎝1⎞⎟⎠λ,其中是参数. 是V 上的线性变换. (1)证明 AXB X =)(ϕ1−≠λ(2)当ϕ时,证明是可逆线性变换. 1−=λ(3)当ϕ时,求线性变换的核和值域.(4)在值域中取一组基,并把它扩充成V 的基,求线性变换ϕ在这组基下的矩阵.222211λλλλλλλλλ⎛⎞−⎜⎟−⎜⎜⎟+−⎝⎠λ七、(16分)求-矩阵⎟的初等因子和不变因子. 8111181111811118A −⎛⎞⎜⎟−⎜⎟=⎜⎟−⎜⎟−⎝⎠八、(16分)已知矩阵 123412341234(,,,)(,,,)(,,,)T f x x x x x x x x A x x x x =(1)求二次型; (2)用正交线性替换化二次型为标准型;),,,(4321x x x x f (3)证明定义了βαβαA T =),(α4R 4R 上的内积,其中βα,是的列向量,是T α的转置,并求在该内积下4R 的一组标准正交基;(4)求实对称矩阵B 使得A B k =,其中为正整数(只要写出k B 的表达式,不必计算其中的矩阵乘积). 九、(16分)设, 其中是互不相同的整数.证明n a a a ,...,,211)()()()(22221+−⋅⋅⋅−−=n a x a x a x x f ()f x 是有理数域上的不可约多项式.。