zx, y U r r2 log r2
• 定义n个点p1=(x1,y1),p2=(x2,y2),….,pn=(xn,yn), 义矩阵
表示点pi和pj的距离,接下来定
薄板样条插值函数TPS将图像间的变换分为仿射变换和和非仿射变换两部分。 配准的几何变换参数根据求解方式可分成两类,一是根据获得的数据用联立 方程组直接计算得到的,二是根据参数空间的能量函数最优化搜索得到。前 者完全限制在基于特征信息的配准应用中。在后者中,所有的配准都变成一 个能量函数的极值求解问题。因此图像配准问题本质上是多参数优化问题, 所以优化算法的选择至关重要。 常用的优化算法有:Powell法、梯度下降法、遗传算法、模拟退火法、下山单 纯形法、Levenberg-Marquadrt法等。
• 图像配准技术是图像融合的先决条件
图像配准示意图
配同位置,反映某些方面的特征 2. 图像配准:通过空间变换(移动和旋转),使两幅图像对齐 3. 图像融合:得到整体特征图像
方法分类:
刚体变换:指物体内部任意两点间的距离及平行关系保持 不变(处理人脑图像,对不同方向成像的图像配 准常使用刚体变换)
仿射变换:保持平行性,但距离发生变化,直线还是直线 (校正成像设备的误差产生的畸变)
投影变换:直线映射成直线,平行性和两点间的距离变化 (二维投影图像与三维图像的配准)
弯曲变换:直线变成曲线 (解剖图谱变形拟合图像数据)
图像配准原理
• 由上图可以看出:对于在不同时间或/和不同条件下获取的两幅图像 和 的配准,就是要 定义一个相似性测度并寻找一个空间变换关系,使得经过该空间变换后两幅图像间的 相似性达到最大(或者差异性最小)。即使图像A上的每一个点在图像B上都有唯一的 点与之对应,并且这两点应对应同一解剖位置。用公式表示如下: