数学发展的三个历史阶段
- 格式:doc
- 大小:446.50 KB
- 文档页数:19
数学历史发展阶段介绍
数学的发展史大致可以分为四个时期。
第一时期是数学形成时期,第二时期是常量数学时期,第三时期是变量数学时期,第四时期是现代数学时期。
1、数学形成时期。
这是人类建立最基本的数学概念的时期。
人类从数数开始逐渐建立了自然数的概念,认识了最基本的几何形式,算术与几何尚未分开;
2、常量数学时期。
这个时期的最基本,最简单的成果构成了中学数学的主要内容,且逐渐形成了初等数学的主要分支,包括算数,几何以及代数;
3、变量数学时期。
变量数学产生于17世纪,它是数学的一个基础学科,大体上经历了两个决定性的重大步骤。
第一步是解析几何的产生,第二步是微积分即高等数学中研究函数的微分,积分以及有关概念和应用的数学分支;
4、现代数学。
现代数学时期大致从19世纪上期开始。
数学发展的现代阶段的开端,以其所有的基础,包括代数,几何以及分析中的深刻变化为特征。
数学学科前沿课程汇报数学发展历史大致可以分为四个阶段:数学起源时期(远古——公元前5世纪),初等数学时期(前6世纪——公元16世纪),近代数学时期(公元17世纪——19世纪初),现代数学时期(19世纪20年代)。
首先我们要简要了解近代数学时期世界的经济背景和历史背景。
经济背景:家庭手工业作坊——工场手工业——机器大工业;历史背景:贸易及殖民地——航海业空前发展。
那么这样,由于经济扩张的需要,对运动和变化的研究成了自然科学的中心——“变量、函数”。
这一时期所建立的数学,大体上相当于现今大学一二年级的学习内容。
为了与中学阶段的初等数学相区别有时也叫古典高等数学,这一时期也相应叫做古典高等数学时期。
一、近代数学时期各世纪的数学发展概括(1)17世纪初,初等数学的主要科目(算术、代数、几何、三角)已基本形成,但数学的发展正是方兴未艾,它以加速的步伐迈入数学史的下一个阶段:变量数学时期,这一时期和前一时期(常称为初等数学时期)的区别在于前一时期主要是用静止的方法研究客观世界的个别要素,而这一时期是用运动的观点探索事物变化和发展的过程。
变量数学以解析几何的建立为起点,接着是微积分学的勃兴。
这一时期还出现了概率论和射影几何等新的领域。
但似乎都被微积分的强大光辉掩盖了。
分析学以汹涌澎湃之势向前发展,到18世纪达到了空前灿烂的程度,其内容的丰富,应用之广泛,使人目不暇接。
17世纪数学发展的特点,可以概括如下:产生了几个影响很大的新领域,如解析几何、微积分、概率论、射影几何等。
每一个领域都使古希腊人的成就相形见绌。
(2)将微积分学深入发展,是十八世纪数学的主流。
这种发展是与广泛的应用紧密交织在一起的,并且刺激和推动了许多新分支的产生,使数学分析形成了在观念和方法上都具有鲜明特点的独立的数学领域。
在十八世纪特别是后期,数学研究活动和数学教育方式也发生了变革。
这一切使十八世纪成为向现代数学过渡的重要时期。
18世纪的数学家忙于获取微积分的成果与应用,较少顾及其概念与方法的严密性,到十八世纪末,为微积分奠基的工作已紧迫地摆在数学家面前;另一方面,处于数学中心课题之外的数学分支已积累了一批重要问题,如复数的意义、欧式几何中平行公设的地位,高次代数方程根式解的可能性等,它们大都是从数学内部提出的课题;再者,自十八世纪后期开始,自然科学出现众多新的研究领域,如热力学、流体力学、电学、磁学、测地学等等,从数学外部给予数学以新的推动力。
自然数产生的五个阶段1.引言1.1 概述概述部分的内容:自然数产生的五个阶段是指在人类历史中,关于自然数的研究和认识经历了五个不同的发展阶段。
这些阶段包括质数的发现和基本运算规则的建立、古代数学的发展以及希腊数学的贡献、阿拉伯数学的兴起和十进制数的普及、算术与代数的统一和微积分的诞生,以及数论的发展和现代数学的多样性。
每个阶段都为数学的发展做出了重要的贡献,推动了人类对自然数的深入研究。
在第一个阶段,人们开始认识和发现了自然数中的质数,并建立了基本的运算规则。
这为后续阶段的数学发展奠定了基础,同时也促进了人们对数字和数学概念的理解。
第二个阶段是在古代数学发展的时期,人们进一步深入探究了自然数的特性和运算规则。
在这个阶段,希腊数学家们的贡献尤为显著,他们提出了许多重要的数学理论和定理,如毕达哥拉斯定理和尺规作图等。
这些贡献极大地推动了数学的发展,并为后世学者提供了丰富的数学素材。
第三个阶段是阿拉伯数学的兴起和十进制数的普及。
阿拉伯数学家在数学领域做出了许多重要的发现和创新,尤其是十进制数和小数的引入,极大地改变了数字表示和计算方法。
这个阶段的贡献使得数学在商业、科学和工程领域得到了广泛的应用。
第四个阶段是算术与代数的统一和微积分的诞生。
在这个阶段,数学家们将算术和代数的概念进行了统一,并发展出了现代代数的基本理论和方法。
同时,微积分的出现使得数学的研究范围和方法得到了进一步的扩展,为更深入的数学研究奠定了基础。
最后,第五个阶段是数论的发展和现代数学的多样性。
在这个阶段,数论作为一门独立的数学学科得到了广泛的发展,并深化了对自然数性质和规律的理解。
与此同时,现代数学以其丰富的学科分支和多样的研究方向,为数学研究提供了更广阔的空间。
总的来说,自然数产生的五个阶段代表了人类对数学认知的历史进程,每个阶段都对数学的发展做出了重要的贡献,推动了数学学科的不断发展和壮大。
对于我们理解自然数的本质和数学知识的深入研究具有重要的参考意义。
一般认为,从远古到现在,数学经历了五个历史阶段:数学萌芽时期(公元6世纪以前)初等数学时期(从公元前5世纪到公元17世纪)变量数学时期(17世纪上半叶-19世纪20年代)近代数学时期(19世纪20年代-20世纪40年代)现代数学时期(20世纪40年代以来)一、数学萌芽时期(公元6世纪以前)在人类历史上,这是原始社会和奴隶社会的初期。
这个时期数学的成就以巴比伦、埃及和中国的数学为代表。
古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。
巴比伦王国形成于约公元前19世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算。
他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。
几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。
二、初等数学时期(从公元前5世纪到公元17世纪)在人类历史上,这是发达的奴隶社会和整个封建社会时期。
这个时期外国数学发展的中心先在古希腊,后在印度和阿拉伯国家,之后又转到西欧诸国。
这时期的中国数学独立发展,在许多方面居世界领先地位。
在数学内容上,2世纪以前是几何优先发展阶段,2世纪以后是代数优先发展阶段。
如果说古希腊的几何证明的较突出,则中国和印度的代数计算可与其媲美。
这个时期的数学发生了本质的变化,数学(主要是几何学)由具体的、实用阶段发展到抽象的、理论阶段;从以实验和观察为依据的经验学科过渡到演绎的科学,并形成了自己的体系,初等几何、算术、初等代数和三角学都已成为独立的学科。
这个时期的研究内容是常量和不变的图形,因此又称为常量数学。
从公元前6世纪到公元前3世纪是希腊数学的古典时期。
中国古代数学发展史中国传统数学的形成与兴盛:公元前1 世纪至公元14 世纪。
分成三个阶段:《周髀算经》与《九章算术》、刘徽与祖冲之、宋元数学,这反映了中国传统数学发展的三次高峰,简述9 位中国科学家的数学工作。
第一次高峰:数学体系的形成秦始皇陵兵马俑(中国,1983 ),秦汉时期形成中国传统数学体系。
我们通过一些古典数学文献说明数学体系的形成。
1983 -1984 年间考古学家在湖北江陵张家山出土的一批西汉初年(即吕后至文帝初年,约为公元前170 年前后)的竹简,共千余支。
经初步整理,其中有历谱、日书等多种古代珍贵的文献,还有一部数学著作,据写在一支竹简背面的字迹辨认,这部竹简算书的书名叫《算数书》,它是中国现存最早的数学专著。
经研究,它和《九章算术》(公元1 世纪)有许多相同之处,体例也是“问题集”形式,大多数题都由问、答、术三部分组成,而且有些概念、术语也与《九章算术》的一样。
《周髀算经》(髀:量日影的标杆)编纂于西汉末年,约公元前100 年,它虽是一部天文学著作(“盖天说”-天圆地方;中国古代正统的宇宙观是“浑天说”-大地是悬浮于宇宙空间的圆球,“天体如弹丸,地如卵中黄”),涉及的数学知识有的可以追溯到公元前11 世纪(西周),其中包括两项重要的数学成就:勾股定理的普遍形式(中国最早关于勾股定理的书面记载),数学在天文测量中的应用(测太阳高或远的“陈子测日法”,陈子约公元前6、7 世纪人,相似形方法)。
勾股定理的普遍形式:求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。
中国传统数学最重要的著作是《九章算术》(东汉,公元100 年)。
它不是出自一个人之手,是经过历代多人修订、增补而成,其中的数学内容,有些也可以追溯到周代。
中国儒家的重要经典著作《周礼》记载西周贵族子弟必学的六门课程“六艺”(礼、乐、射、御、书、数)中有一门是“九数”。
《九章算术》是由“九数”发展而来。
在秦焚书(公元前213 年)之前,至少已有原始的本子。
数学史简介200字
数学是一门古老的学科,它为人们提供了一种理解和处理世界的方法。
数学的历史可以追溯到古代古埃及、古希腊和古印度,这些古代文明中就已经有了一定水平的数学知识。
从最近到最远,可以把数学史分为古代数学、中世纪数学、文艺复兴时期数学和现代数学四个阶段。
古代数学主要是古埃及、古希腊和古印度三个文明的数学。
古埃及文明的数学是实用的,以大量的实践性的计算、测量等活动为主;古希腊文明的数学则以理论为主,以抽象认识和分析质量为主;古印度的数学则介于两者之间,以抽象的认识和实践的应用为主。
中世纪数学主要是由伊斯兰文明发展起来的。
伊斯兰文明对数学的发展以印第安拉尔曼为主,他更注重数学的使用,言简意赅地表达概念,使得数学从抽象变得更加具体,从而促进数学的发展。
文艺复兴时期的数学,由欧洲文化发展而来,以古希腊、罗马文化为开端,以欧洲文化为主。
这段时期的数学发展大多数集中在阿基米德的各种数学理论和研究上,他的数学理论极大地影响了世界各地的数学发展。
现代数学的发展主要是从17世纪开始的,它拥有更多的发展方向,其中早期数学家如弗洛伊德、费曼等都建立了一些重要的数学理论,这些理论为今天的数学发展奠定了基础。
此外,在20世纪,数学仍在继续发展,出现了一些新的数学理论和数学分支,例如数学物理学、数理统计、计算机数学等。
数学是一门古老的学科,其发展历史可以追溯到古代古埃及、古希腊和古印度,可以分为古代数学、中世纪数学、文艺复兴时期数学和现代数学四个阶段。
从古至今,数学从抽象变得越来越具体,数学理论也在不断发展,推动科学发展和社会进步。
第一节数学发展的主要阶段2009—10-12 10:05:28 来源:中外数学网浏览:7次乔治·萨顿曾说过:“科学史是人类认识自然的经验的历史回顾.”数学史是数学发展历史的回顾,它研究数学产生发展的历史过程,探求其发展的规律。
研究数学史,可以通过历史留下的丰富材料,了解数学何时兴旺发达,何时停滞衰退,从中总结经验教训,以利于数学更进一步的发展。
关于数学发展史的分期,一般来说,可以按照数学本身由低级到高级分阶段进行,也就是分成四个本质不同的发展时期,每一新时期的开始都以卓越的科学成就作标志,这些成就确定了数学向本质上崭新的状态过渡.这里我们主要介绍世界数学史的发展。
一、数学的萌芽时期这一时期大体上从远古到公元前六世纪.根据目前考古学的成果,可以追溯到几十万年以前.这一时期可以分为两段,一是史前时期,从几十万年前到公元前大约五千年;二是从公元前五千年到公元前六世纪.数学萌芽时期的特点,是人类在长期的生产实践中,逐步形成了数的概念,并初步掌握了数的运算方法,积累了一些数学知识.由于土地丈量和天文观测的需要,几何知识初步兴起,但是这些知识是片断和零碎的,缺乏逻辑因素,基本上看不到命题的证明.这个时期的数学还未形成演绎的科学.这一时期对数学的发展作出贡献的主要是中国、埃及、巴比伦和印度.从很久以前的年代起,我们中华民族勤劳的祖先就已经懂得数和形的概念了.在漫长的萌芽时期中,数学迈出了十分重要的一步,形成了最初的数学概念,如自然数、分数;最简单的几何图形,如正方形、矩形、三角形、圆形等.一些简单的数学计算知识也开始产生了,如数的符号、记数方法、计算方法等等.中小学数学中关于算术和几何的最简单的概念,就是在这个时期的日常生活实践基础上形成的.总之,这一时期是最初的数学知识积累时期,是数学发展过程中的渐变阶段.二、初等数学时期从公元前六世纪到公元十七世纪初,是数学发展的第二个时期,通常称为常量数学或初等数学时期.这一时期也可以分成两段,一是初等数学的开创时代,二是初等数学的交流和发展时代.1.初等数学的开创时代.这一时代主要是希腊数学.从泰勒斯(Thales,公元前636—前546)到公元641年亚历山大图书馆被焚,前后延续千余年之久,一般把它划分为以下几个阶段:(1)爱奥尼亚阶段(公元前600—前480年);(2)雅典阶段(公元前480—前330年);(3)希腊化阶段(公元前330—前200年);(4)罗马阶段(公元前200—公元600年).爱奥尼亚阶段的主要代表有米利都学派、毕达哥拉斯(Pythagoras,公元前572-前497)学派和巧辩学派.在这个阶段上数学取得了极为重要的成就,其中有:开始了命题的逻辑证明,发现了不可通约量,提出了几何作图的三大难题——三等分任意角、倍立方和化圆为方,并且试图用“穷竭法”去解决化圆为方的问题.所有这些成就,对数学后来的发展产生了深远的影响.雅典阶段的主要代表有柏拉图(Plato,公元前427—前347)学派、亚里斯多德(Aristotle,公元前384-前322)的吕园学派、埃利亚学派和原子学派.他们在数学上取得的成果,十分令人赞叹,如柏拉图强调几何对培养逻辑思维能力的重要作用;亚里斯多德建立了形式逻辑,并且把它作为证明的工具.所有这些成就把数学向前推进了一大步.上述两个阶段称为古典时期.这一时期的数学发展,在希腊化阶段上开花结果,取得了极其辉煌的成就,产生了三个名垂青史的大数学家欧几里得、阿基米德(Archimeds,公元前287—前212)和阿波罗尼(Apollonius,约公元前262—前190).欧几里得的《几何原本》第一次把几何学建立为演绎体系,从而成为数学史乃至思想史上一部划时代的著作.阿基米德善于将抽象的数学理论和具体的工程技术结合起来.他根据力学原理去探求几何图形的面积和体积,第一个播下了积分学的种子.阿波罗尼综合前人的成果,写出了有创见的《圆锥曲线》一书,它成为后来所有研究这一问题的基础和出发点.这三大数学家的丰功伟绩,把希腊数学推向光辉的顶点.随着罗马成为地中海一带的统治者,希腊数学也就转入到罗马阶段.在这个阶段也出现了许多有成就的数学家,其中特别值得一提的是托勒密(C·Ptolemy,公元90-168)结合天文学对三角学的研究、尼可马修斯(Nichomachus,公元100年左右)的《算术入门》和丢番图(Diophantus,约246-330)的《算术》.后两本著作把数学研究从形转向数,在希腊数学中独树一帜.尤其是《算术》一书,它对后来数学发展的影响,仅次于《几何原本》.总之,这一时代的特点是:数学已经开始发展成为一门独立科学,建立了真正意义上的数学理论;数学的两个分支——算术和几何,已经作为演绎系统建立起来;数学发生了非常明显的变化,即从经验形态上升为理论形态.特别要指出的是,关于数学研究的对象,当时已经比较明确地提了出来.古希腊数学家亚里斯多德在《形而上学》第十三篇第三章中说,数学的东西(例如点、线)是感性事物的抽象.他的这个思想直到现在仍然值得我们赞赏,因为它明确地、清楚地揭示出数学研究的特点,这就是把物体、现象、生活的一个方面抽象化.2.初等数学的交流和发展时代.从公元六世纪到十七世纪初,是初等数学在各个地区之间交流,并且取得了重大进展的时期.在亚洲地区,有中国数学、印度数学和日本数学.我国在数学上取得的成就将在后面专门叙述.印度数学的特点是受婆罗门教的影响很大,此外,它还受到中国、希腊和近东数学的影响,特别是中国的影响.印度数学的成就主要在算术和代数方面,最为人称道的是位值制记数法,现行的“阿拉伯数码”源于印度.七世纪以后,建立了以巴格达为中心的阿拉伯数学.它主要受希腊数学和印度数学的影响.这一时期产生了阿尔·花拉子模(AL-Khowarizmi,780—850)等一大批数学家,为世界数学宝库增添了光彩.代数是阿拉伯数学中最先进的部分,“代数”这个名词出自花拉子模的著作,它的研究对象被规定为方程论;几何从属于代数,不重视证明;三角学是他们的最大贡献,他们引入正切、余切、正割、余割等三角函数,制作精密的三角函数表,发现平面三角与球面三角若干重要的公式,使三角学脱离天文学独立出来.中世纪欧洲的数学家们基本上是引进,学习中国、印度、希腊和阿拉伯的数学,其中著名的数学家有意大利的斐波那契(L·Fibonacci,约1170-1250)、法国的奥雷斯姆(N·Oresme,约1323—1382)等.到了十五、十六世纪,意大利的数学家帕西奥里(L·Pacioli,1445—1509)、塔塔利亚(N·Tartaglia,1500—1557)等人在代数方程论方面作了一系列突破性的工作,并使用了虚数,欧洲人终于取得了超过前人的成就.法国的韦达(F·Vieta,1540—1603)改进了符号,使代数学大为改观.苏格兰的纳皮尔(J.Napi-er,1550—1617)发明了对数,使计算方法向前推进了一大步.这个时期的特点是初等数学的主体部分(算术、代数与几何)已全部形成,并且发展成熟了.例如在算术方面,除了继承原有的计算技术之外,还发明了对数,代数也有很大的发展,韦达建立了符号代数.在三角学方面,雷琼蒙塔努斯(J·Regiomontanus,1436—1476)著了《三角全书》,其中包括平面三角和球面三角.在几何方面,透视法满足了绘画的需要,投影法满足了绘制地图的需要,等等.3.中国在这一时期对数学的贡献.我们伟大的祖国是世界上公认的四大文明古国之一,有悠久的历史和灿烂的文化.上下五千年的中国文化丰富多采、为世界文明作出了不朽的贡献.中国数学的发展和成就,在世界数学史上占有非常重要的地位.在世界数学的宝库里,中国古代数学是影响深远、风格独特的体系.在初等数学时期,我国在数学领域取得了许多伟大成就,出现了许多闻名世界的数学家,如刘徽(公元三世纪)、祖冲之(429—500)、王孝通(公元六世纪—七世纪)、李冶(1192—1279)、秦九韶(1202-1261)、朱世杰(十三、四世纪)等人.出现了许多专门的数学著作,特别是《九章算术》的完成,标志着我国的初等数学已形成了体系.这部书不但在中国数学史上而且在世界数学史上都占有重要的地位,一直受到中外数学史家的重视.我国传统数学在线性方程组、同余式理论、有理数开方、开立方、高次方程数值解法、高阶等差级数以及圆周率计算等方面,都长期居世界领先地位.例如,1802年,一个意大利科学协会为了改进高次方程的解法,曾颁发一枚金质奖章,这枚奖章为意大利数学家鲁菲尼(P·Ruffini,1765-1822)所获得,1819年英国数学家霍纳(G·Horner,1786—1837)完全独立地发展了一个相同的方法.不过他们谁也不知道,早在十三世纪,秦九韶就已经发展了古代解数值高次方程的方法,他的方法与1819年霍纳重新发现的方法实质上是相同的.我国十一世纪杰出的数学家贾宪是最早得出关于二项式展开式的系数规律的(贾宪三角形),在欧洲称之为“巴斯卡”(B·Pascal,1623—1662)三角形,而巴斯卡是在十七世纪才得出这一结果的.由刘徽在公元三世纪根据《九章算术》推导的羡除公式,欧洲人却误认为是勒让德(A·M·Legendre,1752—1833)首创的.祖冲之把圆周率π计算到范围为 3.1415926<π<3.1415927,以及密率,保持世界记录千年以上。
数学史数学是一门古老的学科,它伴随着人类文明的产生而产生,至少有四、五千年的历史.但它不是某一个民族或某一个地区的产物,而是世界许多民族、诸多地区世世代代的产物,是人们在生产斗争和科学实践中逐渐形成和发展而成的。
数学的最初的概念和原理在远古时代就萌芽了,经过四千多年世界许多民族的共同努力,才发展到今天这样内容丰富、分支众多、应用广泛的庞大系统。
第一节发展历史一般认为,从远古到现在,数学经历了五个历史阶段.一、数学萌芽时期(公元6世纪以前)在人类历史上,这是原始社会和奴隶社会的初期。
这个时期数学的成就以巴比伦、埃及和中国的数学为代表。
古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。
巴比伦王国形成于约公元前19世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算.他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。
几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。
中国是最早使用十进位值制记数法的国家。
早在三千多年前的商代中期,在甲骨文中产生了一套十进制数字和记数法,最大的数字为三万.与此同时,殷人用十个天干和十二个地支组成六十甲子,用以记日、记月、记年。
用阴(——)、阳(一)符号构成八卦表示8种事物,后来发展为64卦。
春秋战国之际,筹算已普遍应用,其记数法是十进位值制。
数的概念从整数扩充到分数、负数,建立了数的四则运算的算术系统。
几何方面,4500年前就有测量工具规、矩、准、绳,有圆方平直的概念。
公元前1100年左右的商高知道“勾三股四弦五”的勾股定理.春秋末战国初的墨子在《墨经》中给出了一些数学定义,包含有许多算术、几何方面的知识和无穷、极限的概念。
本科毕业论文(设计)(2011届本科毕业生)题目:影响代数学发展的主要因素学生姓名:王桐学生学号:09021016学院名称:数学与系统科学学院专业名称:数学与应用数学指导教师:张跃辉二零一一年五月摘要通过阅读大量的中外代数学的历史资料,大体上可以把代数学的发展分为初等代数的形成、高等代数的发展、抽象代数的产生和深化三个阶段。
同时分别对代数学的分支、内容及影响每个阶段发展的主要因素做了进一步的分析和归纳。
把影响代数学发展的主要因素做为节点来加以探讨,是由内向外来探讨和把握代数系统,为整体了解代数学提供新的视角。
从新视角来了解代数学,会激发人们学习和掌握代数思想的热情,有助于代数学的进一步发展。
同时我们要想预知代数学的未来,就应该了解和研究代数学的过去。
了解代数学的过去,有助于完整地、历史地认识代数学的全貌。
深入研究代数学的历史,有助于对代数学思想方法的理解和掌握,有助于代数学的发展。
关键词:代数学,发展,四元数,代数结构The main factors that influence the development ofalgebraAbstract: Through extensive reading of sino-foreign algebra of historical data, the development of the algebra may generally be divided into elementary algebra formation, advanced algebra, and the development of the abstract algebra and the formation of the deepening three stages. Meanwhile the branch of algebra respectively, contents and influence factors to the development of each stage did further summarized and analyzed. The influence factors to the development of algebra as node is discussed from the inside, foreign discussion and grasp the algebra system, for whole understand algebra provides a new Angle. To understand new perspective, inspire people to learn algebra and master algebra thought enthusiasm, help the further development of algebra. And we want to predict the future of algebra, you should understand and study algebra past. Understanding of the past, help complete the algebra, historical understanding to the panorama of algebra. In-depth study of the history of algebra, conduce to the way of thinking of algebra, helps to understand and grasp the development of algebra.Keywords: algebra, development, quaternions, algebraic structure目录一、引言 (1)二、代数学的产生 (1)三、代数学的发展 (2)(一)初等代数的形成 (2)(二)高等代数的发展 (3)(三)抽象代数阶段 (4)1、抽象代数的产生 (4)2、抽象代数的深化 (4)四、影响代数学发展的主要因素 (5)(一)字母运算 (5)(二)无理数的确认 (6)1、无理数的发现 (6)2、无理数的确认 (7)(三)代数方程的可解性与群的发现 (7)1、一般五次方程的不可解性 (8)2、置换群与代数方程的可解性 (8)(四)四元数对代数学的革命性影响 (11)(五)代数结构 (12)五、结束语 (14)参考文献 (15)一、引言数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。
大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范畴;沟通形与数且涉及极限运算的部分,属于分析学的范畴。
这三大类数学构成了整个数学的本体与核心。
代数学是一门内容极其丰富而又古老的学科。
现在,代数学的内容已渗透到数学的各个分支,成为不少学科的基础和有力的工具。
因此,要想预知代数学的未来,就应该了解和研究代数学的历史及影响其发展的主要因素,从不同的视角把握代数学的发展,这样才能更好地了解代数学,运用代数学和发展代数学二、代数学的产生字母表中最前面的字母a、b、c等表示已知量,而靠后的字母x、y、z等表示未知量,终于使字母表示数的地位在代数学上确立起来。
三、代数学的发展纵观代数学的历史发展,大体上可以分为初等代数的形成、高等代数的发展、抽象代数的产生和深化三个阶段。
(一)初等代数的形成初等代数亦称古典代数,相当于16世纪以前的代数学。
它在算术的基础上发展起来。
算术研究数的四则运算及其应用。
这里,数的范围是逐渐扩大的,最初只限于自然数,实践的需要随即产生正分数。
自然数添上正分数组成正有理数系。
数的运算,得要有记数法。
古代大多采用十进制 (巴比伦的泥板算书也有采用60进制的)。
那时的记数法还不是位值制的,现今用的阿拉伯数字的十进位值制记数法实际最早在印度出现,可推溯到公元6世纪,后传入阿拉伯地区,数码的记法又分成东阿拉伯与西阿拉伯两大体系。
西阿拉伯数码沿北非沿岸向西、再向北传过比利牛斯半岛,经西班牙再传至意大利和西欧各国,逐渐演变成今天被广为利用的1,2,3,…。
负数概念最早见于中国古代数学名著《九章算术》的“方程”章,即由解方程的需要而产生负数概念,时为公元1世纪,中国古代杰出数学家刘徽在《注〈九章算术〉》中明确指出“今两算得失相反,要令正负以名之,正算赤、负算黑,否则以邪正为异。
”这对正负数给出了科学的定义,并规定了区分正负数的具体表示方法。
印度数学中也有负数概念和正负数运算法则出现。
虽比中国迟了几百年,但对正负数的乘除法运算法则却要比中国早了几百年,印度数学中关于零的认识,在数学史上也是最早且有独到之处的。
自然数系添上负整数与零组成整数,在其中,加法、减法、乘法都可通行无阻,是三个二元运算,其中减法是加法的逆运算,但除法不能对任二整数进行,正有理数添上负有理数与零组成有理数,在其中,只要不用零作除数,加、减、乘、除四则运算皆可进行。
其后,数概念之继续扩充,不完全由于解方程的需要,无理数的严格定义要到19世纪中叶建立实数理论时随着被给出.但早在公元5世纪,毕达哥与1不可公度,不是有理数16世纪以前的代数学是指用字母代表一般的数,用以研究数的关系、性质和运算法则的数学分支,到17世纪中期,大体上已形成了现代的代数符号体系。
(二)高等代数的发展代数学的历史告诉我们,在研究高次方程的求解问题上,许多数学家走过了一段不平坦的路途,付出了艰辛的劳动。
人们很早就已经知道了一元一次方程和一元二次方程的求解方法。
关于三次方程,我国在公元七世纪也已经得到了一般的近似解法,这在唐朝数学家王孝通的《缉古算经》里就有论述。
到了十三世纪,宋代数学家秦九韶在他所著的《数学九章》这部书的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候已得到高次方程的一般解法。
在西方,直到十六世纪初的文艺复兴时期,才由意大利数学家发现一元三次方程的公式—卡当公式。
三次方程被解出来后,一般的四次方程很快被意大利的费拉里(1522-1560)解出。
这就很自然地促使数学家们继续努力寻求五次及五次以上的高次方程的解法。
遗憾的是这个问题虽然耗费了许多数学家的时间与精力,但一直持续了长达三个多世纪,都没有解决。
到了十九世纪初,挪威的一位青年数学家阿贝尔(1802-1829)证明了五次或五次以上的方程不可能有根式解。
即这些方程的根不可能用方程的系数通过加、减、乘、除、乘方、开方这些代数运算表示出来,阿贝尔的这个证明不但比较难,而且也没有回答每一个具体的方程是否可以用代数方法求解的问题。
后来,五次或五次以上的方程不可能有根式解的问题,由法国数学家伽罗瓦彻底解决了。
从此,代数学不再以方程理论为中心内容,而转向对代数结构性质的研究。
代数学从高等代数总的问题出发,又发展成为包括许多独立分支的一个大的数学科目,比如:多项式代数,线性代数等。
代数学的研究对象,也已不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象都可以进行运算。
虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。
因此代数学的内容可以概括为研究带有运算的一些集合,在数学中把这样的一些集合叫做代数系统。
比如群、环、域等。
现在看来,伽罗瓦所考虑的仅仅是有限置换群;伽罗瓦之后,群的概念本身进一步发展,除了有限的群,离散的群,又出现了无限群,连续群等。
这方面的探索者有:凯莱,他在1949-1854年间首先指出群可以是一个普遍的概念,不必拘泥于置换群,从而引进了(有限)抽象群;弗罗贝乌斯(F.G.Frobenius, 1849-1917),他从1895年开始发展了研究抽象群的有力工具-群表示论;韦伯(H.Weber, 1842-1913),他在1893年提出了域的抽象理论,等等。
但所有这些抽象化尝试都是局部的和不彻底的。
代数学中的公理化方法的系统运用是在希尔伯特关于几何基础的工作出现之后。
20世纪初,亨廷顿(E.V.Huntington)与狄克森(L.E.Dickson)给出了抽象群的公理系统(1902年, 1905年);斯坦尼兹(E.Steinitz)继承了韦伯的路线对抽象域展开了综合研究(《域的代数理论》,1911年);韦德玻恩(J.H.M.Wedderburn)则发展了线性结合代数(《论超复数》, 1907)等等。
特别是到了1920年左右,在希尔伯特直接影响下的诺特(Emmy Noether, 1882-1935)及其学派的工作,最终确立了公理化方法在代数领域的统治地位。