(完整版)高二数学第一学期期末考试试卷理科
- 格式:doc
- 大小:443.52 KB
- 文档页数:7
上学期期末考试高二数学(理科)试卷考试时间:120分钟试题分数:150分卷I一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数〃?、〃,是“方程如=]的曲线是双曲线,,的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是♦♦A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数是偶数D.存在一个能被2整除的数不是偶数x2 y23.已知椭圆一+ —— = 1上的一点P到椭圆一个焦点的距离为7,则P到另一焦点距离为25 16A. 2B. 3C. 5D. 74.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题〃是“甲降落在指定范围”,g是“乙降落在指定范围”,则命题“至少有一位学员没有降,落在指定范围”可表示为A. (-1/7)v(-ity)B. /?v(-ity)C.(^/?)A(—D. pvq2 25.若双曲线:-二=1的离心率为J5,则其渐近线的斜率为crA. ±2B. ±-C. ±5/2D. ± —2 26 ,曲线),=———一!在点M(三,0)处的切线的斜率为sinx + cosx 2 4A,在 B. 一昱 C. 1 D. -12 2 2 27.已知椭圆£ +奈的焦点与双曲线今旬的焦点恰好是一个正方形的四个顶点,则抛物线少=打2的焦点坐标为A.(4-,0)B. (^- ,0)C. (0,^-)D. (0,^—)8. 一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜:③四向倾斜.记三种盖法屋顶而积分别为4鸟,A,① ② ③若屋顶斜而与水平而所成的角都是。
,则A. 4=E = AB. 4=4<鸟C.D.9.马云常说“便宜没好货”,他这句话•的意思是:“不便宜”是“好货”的A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件10.设。
数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线221168x y -=的虚轴长是( )A .8B .C ..2 2.在公差为d 的等差数列{}n a 中,“1d >”是“是递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.为了了解800名高三学生是否喜欢背诵诗词,从中抽取一个容量为20的样本,若采用系统抽样,则分段的间隔k 为( )A .50B .60C .30D .404.已知椭圆22:1169x y C +=的左、右焦点分别为12F F 、,过2F 的直线交椭圆C 于P Q 、两点,若1F P +110FQ =,则PQ 等于( ) A .8 B .6 C.4 D .25.从某项综合能力测试中抽取100人的成绩,统计如下,则这100个成绩的平均数为( )A .3B .2.5 C.3.5 D .2.756.某单位有员工120人,其中女员工有72人,为做某项调查,拟采用分层抽样法抽取容量为15的样本,则男员工应选取的人数是( ) A .5 B .6 C.7 D .87.已知椭圆()222:10525x y C b b +=<<的长轴长、短轴长、焦距成等差数列,则该椭圆的方程是( )A .221254x y +=B .221259x y += C.2212516x y += D .22125x y +=8.已知点()00,A x y 是抛物线()220y px p =>上一点,且它在第一象限内,焦点为,F O 坐标原点,若32pAF =,AO = ) A .B .3x =- C.2x =- D .1x =-9.某班m 名学生在一次考试中数学成绩的频率分布直方图如图,若在这m 名学生中,数学成绩不低于100分的人数为33,则等于( )A .45B .48 C.50 D .5510.已知定点()3,0M -,()2,0N ,如果动点P 满足2PM PN =,则点P 的轨迹所包围的图形面积等于( ) A .1009π B .1429π C.103πD .9π11.已知命题p :直线20x y +=与直线20x y +-=之间的距离不大于1,命题q :椭圆2222754x y +=与双曲线22916144x y -=有相同的焦点,则下列命题为真命题的是( )A .()p q ∧⌝B .()p q ⌝∧ C.()()p q ⌝∧⌝ D .p q ∧12.如图,12,F F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线分别交于点,A B ,且(A ,若2ABF ∆为等边三角形,则12BF F ∆的面积为( )A .1 BD .2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知0m >,0n >,向量(),1,3a m =-与()1,,2b n =垂直,则mn 的最大值为 .14.若[]x 表示不超过x 的最大整数,执行如图所示的程序框图,则输出S 的值为 .15.在区间2,43ππ⎡⎤-⎢⎥⎣⎦上任取一个数x ,则函数()3sin 26f x x π⎛⎫=- ⎪⎝⎭的值不小于0的概率为 .16.已知点A 是抛物线()2:20C x px p =>上一点,O 为坐标原点,若,A B 是以点为圆心,OA 的长为半径的圆与抛物线C 的两个公共点,且ABO ∆为等边三角形,则p 的值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在直角坐标系xOy 中,直线l 的参数方程为3x ty =+⎧⎪⎨=⎪⎩(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρθ=.(1)写出直线的普通方程及圆C 的直角坐标方程; (2)点P 是直线上的点,求点的坐标,使到圆心的距离最小.18. (本小题满分12分)已知p :方程()2220x mx m +++=有两个不等的正根;q :方程221321x ym m-=+-表示焦点在轴上的双曲线.(1)若为真命题,求实数m 的取值范围; (2)若“或”为真,“且”为假,求实数的取值范围.19. (本小题满分12分)某公司经营一批进价为每件4百元的商品,在市场调查时发现,此商品的销售单价x (百元)与日销售量(件)之间有如下关系:(1)求y 关于x 的回归直线方程;(2)借助回归直线方程请你预测,销售单价为多少百元(精确到个位数)时,日利润最大?相关公式:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. (本小题满分12分)如图所示的茎叶图记录了甲、乙两组各5名同学的投篮命中次数,乙组记录中有一个数据模糊,无法确认,在图中用x 表示.(1)若乙组同学投篮命中次数的平均数比甲组同学的平均数少1,求x 及乙组同学投篮命中次数的方差;(2)在(1)的条件下,分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名,求这两名同学的投篮命中次数之和为16的概率. 21. (本小题满分12分)如图,在三棱锥A BCD -中,AD ⊥平面BCD ,CB CD =,AD DB =,,P Q 分别在线段,AB AC 上,3AP PB =,2AQ QC =,M 是BD 的中点.(1)证明://DQ 平面CPM ; (2)若二面角C AB D --的大小为3π,求tan BDC ∠.22. (本小题满分12分)已知()222210x y a b a b+=>>的左、右焦点分别为12F F 、,1225F F =,点P 在椭圆上,21tan 2PF F ∠=,且的面积为4.(1)求椭圆的方程;(2)点M 是椭圆上任意一点,12A A 、分别是椭圆的左、右顶点,直线12MA MA ,与直线x =分别交于,E F 两点,试证:以EF 为直径的圆交x 轴于定点,并求该定点的坐标.试卷答案一、选择题1.B 因为28b =,所以虚轴长2b =.2.A 若1d >,则n N *∀∈,110n n a a d +-=>>,所以,{}n a 是递增数列;若{}n a 是递增数列,则n N *∀∈,10n n a a d +-=>,推不出1d >3.D 由于8002040÷=,即分段的间隔40k =.4.B 因为直线PQ 过椭圆的右焦点2F ,由椭圆的定义,在1F PQ ∆中,11416F P FQ PQ a ++==.又1110F P FQ +=,所以6PQ =. 5.A 设这100个成绩的平均数记为x ,则120210*********3100x ⨯+⨯+⨯+⨯+⨯==.6.B 男员工应抽取的人数为12072156120-⨯=. 7.C 设焦距为2c ,则有222552b c c b ⎧-=⎨+=⎩,解得216b =,所以椭圆22:12516x y C +=.8.D 因为0322p px +=,所以0x p =,0y =.又)2212p +=,所以2p =,准线方程为1x =-.9.D ()10.0150.025100.6P =-+⨯=,由0.633m =,得55m =.10.A 设(),P x y ,则由2PM PN =得()()2222342x y x y ⎡⎤++=-+⎣⎦,化简得223322x y x +-70+=,即221110039x y ⎛⎫-+=⎪⎝⎭,所以所求图形的面积1009S π=. 11.B 对于命题p ,将直线l 平移到与椭圆相切,设这条平行线的方程为20x y m ++=,联立方程组224120x y x y m ⎧+=⎨++=⎩,消去y 得222210x mx m ++-=.由0∆=得,所以m =,椭圆上的点到直线l最近距离为直线20x y +-=与l 的距离d =1>,所以命题p 为假命题,于是p ⌝为真命题.对于命题q ,椭圆2222754x y +=与双曲线22916144x y -=有相同的焦点()5,0±,故q 为真命题.从而()p q ⌝∧为真命题. 12.由已知212BF BF a -=,122AF AF a -=,又2ABF ∆为等边三角形,所以121AF AF BF -=2a =,所以24BF =.在12AF F ∆中,16AF a =,24AF a =,122F F c =,1260F AF ∠=︒,由余弦定理得,所以227c a =,22226b c a a =-=,所以双曲线方程为222216x y a a-=,又()1,3A 在双曲线上,所以,解得212a =,即22a =.所以122124sin1202BF F S a a ∆=⨯⨯⨯︒==. 二、填空题13.9 因为,所以,又,所以.14.7 第一次循环,0S =,2n =;第二次循环,1S =,4n =;第三次循环,3S =,6n =;第四次循环,5S =,8n =;第五次循环,7S =.因为8>6,所以输出S 的值为7. 15.611 当2,43x ππ⎡⎤∈-⎢⎥⎣⎦时,272,636x πππ⎡⎤-∈-⎢⎥⎣⎦.当[]20,6x ππ-∈,即7,1212x ππ⎡⎤∈⎢⎥⎣⎦时()0f x ≥,则所求概率为76121221134ππππ-=⎛⎫-- ⎪⎝⎭. 16.56如图,因为MA OA =,所以,点A 在线段OM 的中垂线上,又()0,10M ,所以可设(),5A x . 由tan 305x︒=,得x =,所以A ⎫⎪⎭的坐标代入方程22x px =,得56p =.三、解答题17.解:(1)由3,.x t y =+⎧⎪⎨=⎪⎩消去参数t ,得直线l0y --=,由ρθ=得2sin ρθ=,22x y +=,即圆C的直角坐标方程为(223x y +-=.(2)()3P t +,(C ,PC ==,0t =∴时PC 最小,此时()3,0P .18.解:(1)由已知方程221321x y m m -=+-表示焦点在y 轴上的双曲线,则()244202020m m m m ⎧∆=-+>⎪->⎨⎪+>⎩解得21m -<<-,即:21p m -<<-. 因p 或q 为真,所以p q 、至少有一个为真. 又且为假,所以至少有一个为假.因此,两命题应一真一假,当为真,为假时,213m m -<<-⎧⎨≥-⎩,解得21m -<<-;当为假,为真时,213m m m ≤≥-⎧⎨<-⎩或,解得.综上,21m -<<-或.19.解:(1)因为7x =,1089616.85y ++++==,所以,122121857 6.82255549ni ii ni i x y nx yb x nx==--⨯⨯===--⨯-∑∑,()6.82720.8a y bx =-=--⨯=,于是得到y 关于x 的回归直线方程220.8y x =-+.(2)销售价为时的利润为()()24220.8228.883.2x x x x ω=--+=-+-,当28.8722x =≈⨯时,日利润最大. 20.(1)解:依题意得:82910789112155x +⨯+++++⨯=-,解得6x =,41=5x 乙,22222141414141682910 1.7655555s ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-⨯+-+-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. (2)记甲组投篮命中次数低于10次的同学为123,,A A A ,他们的命中次数分别为9,8,7. 乙组投篮命中次数低于10次的同学为1234,,,B B B B ,他们的命中次数分别为6,8,8,9. 依题意,不同的选取方法有:()()()()()()()()()()()()111213142122232431323334,,,,,,,,,,,,,,,,,,,,,,,A B A B A B A B A B A B A B A B A B A B A B A B 共12种.设“这两名同学的投篮命中次数之和为16”为事件,则中恰含有()()()222334,,,,,A B A B A B 共3种.()31124P C ==∴. 21.(1)证明:取AB 的中点E ,连接ED EQ 、,则2AE AQEP QC==,所以//EQ PC . 又EQ ⊄平面CPM ,所以//EQ 平面CPM . 又PM 是BDE ∆的中位线,所以//DE PM , 从而//DE 平面CPM . 又DEEQ E =,所以平面//DEQ 平面CPM .因为DQ ⊂平面DEQ ,所以//DQ 平面.(2)解:法1:由AD ⊥平面BCD 知,AD CM ⊥, 由BC CD =,BM MD =,知BD CM ⊥, 故CM ⊥平面ABD .由(1)知//DE PM ,面DE AB ⊥,故PM AB ⊥. 所以CPM ∠是二面角的平面角,即3CPM π∠=.设PM a =,则CM =,又易知在Rt ABD ∆中,4B π∠=,可知DM BM ==,在Rt CMD ∆中,tan MC MDC MD ∠===法2:以M 为坐标原点,,,MC MD ME 所在的直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标.设MC a =,MD b =,则(),0,0C a ,()0,,0B b -,()0,,2A b b ,则,()0,2,2BA b b =,设()1,,n x y z =是平面ABC 的一个法向量,则110,0.n BC n BA ⎧=⎪⎨=⎪⎩即0,220.ax by by bz +=⎧⎨+=⎩取()1,,n b a a =-, 不难得到平面ABD 的一个法向量为()21,0,0n =,所以121cos ,2nn <>==,所以a b =, 在中,6tan 2MC a MDC MD b ∠===.22.解:(1)因为21tan 2PF F ∠=,所以21sin PF F ∠=,21cos PF F ∠=. 由题意得((2222122125542522PF PF PF PF ⎧⨯⨯=⎪⎪⎨⎪=+-⨯⎪⎩,解得1242PF PF ⎧=⎪⎨=⎪⎩. 从而1224263a PF PF a =+=+=⇒=,结合2c =,得24b =,故椭圆的方程为22194x y +=. (2)由(1)得()13,0A -,()23,0A ,设()00,M x y ,则直线1MA 的方程为()0033y y x x =++,它与直线x =的交点的坐标为0033y E x ⎫⎫+⎪⎪⎪⎪+⎭⎭, 直线2MA 的方程为()0033y y x x =--,它与直线的交点的坐标为003535,3232y F x ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪-⎝⎭⎭, 再设以EF 为直径的圆交x 轴于点(),0Q m ,则QE QF ⊥,从而1QE QF k k =-,即033y x ⎫+00353321352y x m ⎛⎫- -⎝⎭=--,即,解得3512m =±. 故以为直径的圆交x 轴于定点,该定点的坐标为351,02⎛⎫+ ⎪ ⎪⎭或351,02⎛⎫- ⎪ ⎪⎭.。
第一学期期末考试试题 高二(理科)数学(必修5;选修2-1)(满分150分;时间120分钟)第I 卷(选择题 共50分)一、选择题(本大题共10个小题;每小题只有一个正确选项。
每小题5分;共50分)1.{}为则,中,已知等差数列n a a a a a n n ,33,431521==+=( ) A.48 B.492. {}==⋅=+q a a a a a n 则公比中,在正项等比数列,16,105362( ) A.2 B.22C. 222或3.的值为则中,在A aS b A ABC ABC Osin ,3,1,60===∆∆( ) A.3392 B.8138 C.3326 D. 724.在下列函数中;最小值为2的是( ) A.xx y 1+=B.xx y -+=33C.()101lg 1lg <<+=x xx y D.⎪⎭⎫⎝⎛<<+=20sin 1sin πx x x y5. 若椭圆221x my +=的离心率为2;则它的长半轴长为( ) A .1 B .2 C .1或2 D .与m 有关6.()线准线方程为的右焦点重合,则抛物的焦点与椭圆若12602222=+>=y x p px y ( ) A.1-=xB. 2-=xC. 21-=x D. 4-=x7. 有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件.③0a b >>是33a b >的充要条件.则其中正确的说法有( ) A .0个B .1个C .2个D .3个8. 以椭圆1162522=+y x 的焦点为顶点;离心率为2的双曲线方程( ) A .1481622=-y x B .127922=-y x C .1481622=-y x 或127922=-y x D .以上都不对 9. 下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b aB .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g10.是的距离最小的点的坐标上到直线抛物线42212=-=y x x y ( ) A.(1;1) B.(1;2) C.(2;2) D.(2;4)第II 卷(非选择题 共100分)二、填空题(本大题共5个小题;每小题5分;共25分)11. 等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于 . 12.()的最大值为则若a a a 21,210-<< . 13. 的最大值为,则足若满y x z x y x y x y x -=⎪⎩⎪⎨⎧≥+≤-≤+302142, .14. 双曲线的渐近线方程为20x y ±=;焦距为10;这双曲线的方程为 . 15. 若19(0,2,)8A ;5(1,1,)8B -;5(2,1,)8C -是平面α内的三点;设平面α的法向量),,(z y x a =;则=z y x :: .三、解答题(本大题6个小题;共75分.解答应写出说明文字;证明过程或演算步骤) 16. (本小题共12分) 如图;△ACD 是等边三角形;△ABC 是等腰直角三角形;∠ACB=90°;BD 交AC 于E ;AB=2. (1)求cos ∠CBE 的值;(2)求AE 。
高二数学(上)期末考一、选择题:本小题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 不等式0322<--x x 的解集是( )A .()1,3-B .()3,1-C .()3,-∞-Y ()+∞,1D .()1,-∞-Y ()+∞,32. 已知平面α的法向量是()2,3,1-,平面β的法向量是()4,,2λ-,若//αβ,则λ的值是( ) A .103-B .6-C .6D .1033.已知, , a b c 满足c b a <<,且0ac <,那么下列选项中一定成立的是( ) A. ab ac > B. ()0c b a -< C. 22cb ab < D. ()0ac a c ->4. 已知{}n a 是由正数组成的等比数列,n S 表示{}n a 的前n 项的和.若13a =,24144a a =,则10S 的值是( ) A .511 B .1023 C .1533 D .30695. 下列有关命题的说法正确的是( ) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. B .“1x =-”是“2560x x --=”的必要不充分条件.C .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈, 均有210x x ++<”. D .命题“若x y =,则sin sin x y =”的逆否命题为真命题6. 设21,F F 为双曲线1422=-y x 的两个焦点,点P 在双曲线上且02190=∠PF F ,则21PF F ∆的面积是( ) A.1 B.25C.2D.57. 已知向量)0,1,1(=→a ,)2,0,1(-=→b ,且→→+b a k 与→→-b a 2互相垂直,则k 的值是( ) A. 1 B.51 C. 53 D. 57 8. 若ABC ∆的内角,,A B C 所对的边,,a b c 满足22()4a b c +-=,且060C =,则a b +的最小值为( )A .3 B . 3C .43D .8-9.若双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过F 且倾斜角为︒60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率e 的取值范围是( ) A .[]2,1B .()2,1C .()+∞,2D . [)+∞,210.若抛物线24y x =的焦点是F ,准线是l ,则经过点F 、M (4,4)且与l 相切的圆共有( ). A.4个 B.2个 C.1个 D.0个二、填空题:本大题共5小题,每小题4分,满分20分.请把答案填在答题纸的相应位置.11.等差数列{}n a 中,若34512,a a a ++=则71a a += .12. 已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则z x y =+的最小值是 .13. 已知正方体1111D C B A ABCD -中,E 为11D C 的中点,则异面直线AE 与BC 所成角的余弦值为 . 14. 点P 是抛物线x y 42=上一动点,则点P 到点)1,0(-A 的距离与P 到直线1-=x 的距离和的最小值是 . 15.设{}n a 是公比为q 的等比数列,其前n 项积为n T ,并满足条件011,01,110099100991<-->->a a a a a ,给出下列结论:(1)10<<q ; (2)1198<T ;(3)110199<a a ;(4)使1<n T 成立的最小自然数n 等于199,其中正确的编号为 (写出所有正确的编号) 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16. (本小题满分13分)已知数列}{n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,⑴求12,a a 的值;⑵求数列{}n a 的通项公式。
高二第一学期数学(理)期末试卷及答案5套(时间:120分钟 总分:150分,交答题纸)第Ⅰ卷(12题:共60分)一、选择题(包括12小题,每小题5分,共60分) 1.某高中有学生1 000人,其中一、二、三年级的人数比为4∶3∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .100 B .40 C .75 D .252.某市进行一次高三教学质量抽样检测,考试后统计的所有考生的数学成绩服从正态分布.已知数学成绩平均分为90分,60分以下的人数占10%,则数学成绩在90分至120分之间的考生人数所占百分比约为 ( ) A.40%B.30%C.20%D. 10%3.对于空间的两条直线n m ,和一个平面α,下列命题中的真命题是 ( ) A.n m n m //,////则,若αα B.n m n m //,则,若αα⊥⊥ C.n m n m //,//则,若αα⊥ D.n m n m //,//则,若αα⊂4.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830,则在吹东风的条件下下雨的概率为 ( )A.911B.811C.89D.255.甲、乙两名学生六次数学测验成绩如右图所示。
①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分比乙同学的平均分高; ③甲同学的平均分比乙同学的平均分低; ④甲同学成绩的方差小于乙同学成绩的方差。
上面说法正确的是( )A.②④B.①②④C.③④D.①③ 6.下图是把二进制数11111(2)化成十进制数的一个程序框图, 则判断框内应填入的条件是( )A.?5>iB.?4≤iC.?4>iD.?5≤i7.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为8165,则事件A 在1次试验中发生的概率为( ) A.32 B.31 C.95 D.94 8.已知双曲线)0,0(12222>>=-b a by a x 的一个焦点与圆01022=-+x y x 的圆心重合,且双曲线的离心率等于5,则该双曲线的标准方程为( )A.120522=-y x B.1202522=-y x C.152022=-y x D.1252022=-y x 9.设A 为定圆C 圆周上一点,在圆周上等可能地任取一点与A 连接,求弦长超过半径2倍的概率( ) A.34B. 35C.13D.1210.命题“设R b a ∈,,若6≠+b a ,则3≠a 或3≠b ”是一个真命题; 若“q p ∨”为真命题,则q p ,均为真命题;命题“)1(2,,22--≥+∈∀b a b a R b a ”的否定是“)1(2,,22--≤+∈∃b a b a R b a ”; ④“)(2Z k k ∈+=ππϕ”是函数)2sin(ϕ+=x y 为偶函数的充要条件。
高二数学期末考试卷〔理科〕一、选择题〔本大题共 11 小题,每题 3 分,共 33 分〕r 1、与向量 a (1, 3, 2)平行的一个向量的坐标是〔 〕A .〔 1 3,1,1〕 B .〔-1,-3,2〕C .〔- 1 2 , 3 2,-1〕 D .〔 2 ,- 3,-2 2 〕2、设命题 p :方程 2 3 1 0x x 的两根符号不一样;命题 q :方程2 3 1 0x x 的两根之和为 3,判断命题“ p 〞、“ q 〞、“ p q 〞、“ p q 〞为假命题的个数为 ( ) A .0 B .1 C .2 D .3 3、“a >b >0〞是“ ab <a 2b 22〞的 〔 〕A .充足而不用要条件B .必需而不充足条件C .充要条件D .既不充足也不用要条件2y 2 x的焦距为 2,那么 m 的值等于 〔 〕. 4、椭圆 1m 4A .5B .8C .5 或 3D .5 或 85、空间四边形 OABC 中, OA a ,OB b ,OC c ,点 M 在 OA 上,且 OM=2MA ,N 为 BC 中点,那么 MN =〔 〕1 2 1A . a b c2 3 22 1 1 B . a b c3 2 21 1 1 C . a b c2 2 22 2 1 D . a b c3 3 26、抛物线 2y 4x 上的一点 M 到焦点的距离为 1,那么点 M 的纵坐标为〔 〕A .17 16B .1516C .78D .07、对称轴为坐标轴的双曲线有一条渐近线平行于直线 x +2y -3=0,那么该双曲线的离心率为〔 〕或5 4B. 5 或52C. 3 或3 2或5 38、假定不等式 |x -1| <a 成立的充足条件是 0<x<4,那么实数 a 的取值范围是 ( )A .a 1B .a 3C .a 1D .a 39、a (1 t,1 t,t),b (2,t,t) ,那么| a b |的最小值为〔〕A .55 B.555C.3 55 D.11510、动点 P(x、y)知足 10 2 ( 2)2(x 1 y =|3x+4y+2|,那么动点 P 的轨迹是〔〕)A .椭圆 B.双曲线 C.抛物线 D.没法确立2 y2x11、 P 是椭圆125 9上的一点, O 是坐标原点, F 是椭圆的左焦点且1OQ (OP OF ), | OQ | 4,那么点 P 到该椭圆左准线的距离为〔〕25D.2高二数学期末考试卷〔理科〕答题卷一、选择题〔本大题共 11 小题,每题 3 分,共 33 分〕题号 1 2 3 4 5 6 7 8 9 10 11答案二、填空题〔本大题共 4 小题,每题 3 分,共 12 分〕2 x12、命题:x R, x 1 0的否定是2 y213、假定双曲线x 4 4 的左、右焦点是F1、F2 ,过F1 的直线交左支于 A、B 两点,假定|AB|=5 ,那么△ AF2B 的周长是 .14、假定a ( 2,3, 1),b ( 2 ,1,3) ,那么a,b为邻边的平行四边形的面积为.15、以下四个对于圆锥曲线的命题中:u uur uuur ①设A、B 为两个定点, k 为正常数,| PA| | PB | k ,那么动点P 的轨迹为椭圆;②双曲线2 2x y25 91 与椭圆2x352 1y 有同样的焦点;2 x③方程2x 5 2 0 的两根可分别作为椭圆和双曲线的离心率;25④和定点A( 5, 0) 及定直线l : x 的距离之比为4此中真命题的序号为 _________.54的点的轨迹方程为2 2x y16 91.三、解答题〔本大题共 6 小题,共 55 分〕2 2x y16、〔本题总分值 8 分〕命题 p:方程1表示焦点在 y 轴上的椭圆,命题 q:2m m 12 2y x 双曲线15 m 的离心率e (1, 2) ,假定p,q只有一个为真,务实数m 的取值范围.17、〔本题总分值 8 分〕棱长为 1 的正方体 AB CD-A1B1C1D1,试用向量法求平面 A1BC1与平面 AB CD 所成的锐二面角的余弦值。
上学期期末考试 高二数学(理科)试卷注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,答题时间120分钟。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2. 第I 卷(选择题)答案必须使用2B 铅笔填涂;第II 卷(非选择题)必须将答案卸载答题卡上,写在本试卷上无效。
3. 考试结束,将答题卡交回,试卷由个人妥善保管。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、如果0a b <<,那么下列不等式成立的是( ) A .11a b < B .2ab b < C .2ab a -<- D .11a b-<- 2、{}n a 等差数列中,,,116497==+a a a =12a 则( ) A .15 B .30 C .31 D .643、已知双曲线2222:1x y C a b -=12⎫⎪⎭在双曲线C 上,则双曲线C 的方程为( )A.221164y x -= B.2214x y -= C.2214y x -= D.2214x y -= 4、已知命题1:sin 2p x =,命题:2 6q x k k Z ππ=+∈,,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 5、若实数,x y 满足|3|1x y -≤≤,则 )6、已知数列{}n a 为等比数列,则下列结论正确的是( )A .2312a a a ≥+B .若13a a >,则24a a >C .若31a a =,则21a a =D .2223212a a a ≥+7、《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现。
书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织得快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为( ) A .298尺 B .2916尺 C .2932尺 D .21尺8、若双曲线2214x y -=的渐近线与圆222(5)x y r -+=(0r >)相切,则r =(A )5(B )5(C )2(D )29、设正数,x y 满足:,23x y x y >+=,则195x y x y+-+的最小值为( ) A .83B .114C .4D .210、若椭圆()222210y x a b a b +=>>和圆2222b x y c ⎛⎫+=+ ⎪⎝⎭,(c 为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是( )A.5355⎛⎫ ⎪ ⎪⎝⎭,B.2555⎛⎫ ⎪ ⎪⎝⎭, C.2355⎛⎫ ⎪ ⎪⎝⎭, D.505⎛⎫ ⎪ ⎪⎝⎭, 11、以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB|=42,|DE|=25,则C 的焦点到准线的距离为(A )2 (B )4 (C )6 (D )812、如图,12 A A ,为椭圆22195x y +=的长轴的左、右端点,O 为坐标原点, S Q T ,,为椭圆上不同于12 A A ,的三点,直线12 QA QA OS ,,,OT 围成一个平行四边形OPQR ,则22OS OT +=( ) A .5 B .35+ C.9 D .14第II 卷二、填空题:本题共4小题,每小题5分.13、在△ABC 中,若︒=∠==120,5,3C b a ,则=c14、在平面内,三角形的面积为S ,周长为C 体积为V ,表面积为S ,利用类比推理的方法,可得三棱锥的内切球(球面与三棱锥的各个面均相切)的半径R=___________________15、已知ABC ∆中,sin 2sin cos 0A B C +=,则tan A 的最大值是 16、设数列{}n a 是首项为0的递增数列,()()[]*11sin,,,n n n n f x x a x a a n N n+=-∈∈,满足:对于任意的[)()0,1,n b f x b ∈=总有两个不同的根,则{}n a 的通项公式为_________ 三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分10分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且cos (2)cos a C b c A =- (1)求A cos 的值;(2)若6=a ,8=+c b ,求三角形ABC 的面积.(18)(本小题满分12分) 已知数列{}n a 满足112n na a +=-,10a =. (1)计算2a ,3a ,4a ,5a 的值;(2)根据以上计算结果猜想{}n a 的通项公式,并用数学归纳法证明你的猜想.(19)(本小题满分12分)数列}{n a 的前n 项和记为n S ,t a =1,121()n n a S n *+=+∈N .(Ⅰ)当t 为何值时,数列}{n a 是等比数列;(Ⅱ)在(I )的条件下,若等差数列}{n b 的前n 项和n T 有最大值,且153=T ,又11b a +,22b a +,33b a +成等比数列,求n T .20、(本小题满分12分)由4个直角边为2的等腰直角三角形拼成如图的平面凹五边形ACDEF ,沿AD 折起,使平面ADEF ⊥平面ACD .(1)求证:FB AD ⊥;(2)求二面角C EF D --的正切值.21、(本小题满分12分)已知点F 是拋物线()2:20C y px p =>的焦点, 若点()0,1M x 在C 上,且054x MF =. (1)求p 的值;(2)若直线l 经过点()3,1Q -且与C 交于,A B (异于M )两点, 证明: 直线AM 与直线BM 的斜率之积为常数.22、(本小题满分12分)已知椭圆C 的中心为坐标原点,其离心率为22,椭圆C 的一个焦点和抛物线y x 42=的焦点重合. (1)求椭圆C 的方程; (2)过点⎪⎭⎫⎝⎛-031S ,的动直线l 交椭圆C 于A 、B 两点,试问:在平面上是否存在一个定点T ,使得无论l 如何转动,以AB 为直径的圆恒过点T ,若存在,说出点T 的坐标,若不存在,说明理由.答案注意事项:4. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,答题时间120分钟。
第一学期期末教学质量检测高二理科数学试卷参考公式:用最小二乘法求回归方程ˆˆˆybx a =+的系数ˆˆ,b a 计算公式: 1221ˆˆˆb,ni ii ni i x y nx yay bx x nx==-==--∑∑ 第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“双色球”彩票中有33个红色球,每个球的编号分别为01,02,…,33.一位彩民用随机数表法选取6个号码作为6个红色球的编号,选取方法是从下面的随机数表中第1行第6列的数3开始,从左向右读数,则依次选出来的第3个红色球的编号为( )A . 21B . 32C . 09D .202. 13x -≤≤是220x x -≤成立的( )条件.A .充分不必要B . 必要不充分C .充要D .既不充分也不必要 3. 命题“若A B ≠∅ ,则A ≠∅或B ≠∅”的逆否命题是( )A .若 AB =∅ ,则A =∅或B =∅ B .若A B =∅ ,则A =∅且B =∅C .若A =∅或B =∅,则A B A ≠D . 若A =∅且B =∅,则A B =∅4.如图是甲、乙两位学生在高一至高二七次重大考试中,数学科的考试成绩(单位:分)的茎叶图,若8,,6x 的平均数是x ,乙的众数是81,设甲7次数学成绩的中位数是a ,则ay的值为 ( )A .856 B .876C. 85 D .87 5. 三国时期吴国的数学家赵爽创制了一幅“弦图”,给出了迄今为止对勾股定理最早、最简洁的证明.如图所示的“弦图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角6πα=,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是( )A.12-B.2C. 44-.46.若下图,给出的是计算11112462016++++ 值的程序框图,其中判断框内可填入的条件是( )A . 2015?i >B . 2017?i > C. 2017?i ≤ D .2015?i ≤7. 命题“如果一个四边形是正方形,那么这个四边形一定是矩形”及其逆命题、否命题、逆否命题,这四个命题中假命题的个数( )A .0B .2 C. 3 D .48.设变量x y 、满足约束条件0220x y x y y x y a-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,若满足条件的点(),P x y 表示的平面区域为一个三角形,则a 的取值范围是 ( )A .4,3⎡⎫+∞⎪⎢⎣⎭B .(]0,1 C. 41,3⎡⎤⎢⎥⎣⎦ D .(]40,1,3⎡⎫⋃+∞⎪⎢⎣⎭9. 若()()122,0,2,0F F -,124PF PF a a+=+(常数0a >),则点P 的轨迹是( ) A . 椭圆 B . 线段 C. 椭圆或线段 D .椭圆或直线10. 已知直线m ⊄平面α,直线n ⊂平面α,且点A ∈直线m ,点A ∈平面α,则直线m n 、的位置关系不可能是( )A .垂直B . 相交 C. 异面 D .平行11.若中心在原点,焦点在x 轴上的双曲线C 的渐近线与抛物线21y x =-相切,则双曲线C 的离心率为 ( ) A .5 B .54.212. 在ABC ∆中,D 为AB 的中点,点F 在线段CD (不含端点)上,且满足AF xAB yAC =+,若不等式212a at x y+≥+对[]2,2t ∈-恒成立,则a 的最小值为( ) A . -4 B . -2 C. 2 D .4第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,满分20分,将答案填在答题纸上)13.某单位有员工300人,其中女员工有160人,为做某项调查,拟采用分层抽样抽取容量为15的样本,则男员工应选取的人数是 .14.已知抛物线()220y px p =>的焦点与椭圆22162x y +=的右焦点重合,则p 的值为 . 15.先后抛掷质地均匀的硬币三次,则恰好出现一次正面朝上的概率是 .16.已知实数,x y 满足103040x y x y y -+≤⎧⎪+-≥⎨⎪-≤⎩,存在,x y 使得2x y a +≤成立,则实数a 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.现有某高新技术企业年研发费用投入x (百万元)与企业年利润y (百万元)之间具有线性相关关系,近5年的年科研费用和年利润具体数据如下表:(1)画出散点图;(2)求y对x 的回归直线方程;(3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?18. 某中学有初中学生1800人,高中学生1200人.为了解全校学生本学期开学以来的课外阅读时间,学校采用分层抽样方法,从中抽取了100名学生进行问卷调查.将样本中的“初中学生”和“高中学生”,按学生的课外阅读时间(单位:小时)各分为5组:[)[)[)[)[]0101020203030404050,,,,,,,,,,得其频率分布直方图如图所示.(1)估计全校学生中课外阅读时间在[)30,40小时内的总人数约是多少;(2)从全校课外阅读时间不足10个小时的样本学生中随机抽取3人,求抽出的3人中至少有1个高中生的概率.19.在如图所示的几何体中,正方形ABEF 所在的平面与正三角形ABC 所在的平面互相垂直,//CD BE ,且2BE CD =,M 是ED 的中点. (1)求证://AD 平面BFM ;(2)求面EDF 与面ADB 所成锐二面角的大小.20.设命题:p 关于x 的不等式21xa +<的解集为∅;命题:q 函数()2lg y ax x a =-+的定义域是R .(1)若命题“p q ∧”是真命题,求实数a 的取值范围;(2)设命题:m 函数2y x bx a =++的图像与x 轴有公共点,若p ⌝是m ⌝的充分不必要条件,求实数b 的取值范围.21. 已知椭圆()2222:10x y C a b a b +=>>,直线:20l x y -+=与以原点为圆心、椭圆C 的短半轴长为半径的圆O 相切. (1)求椭圆C 的方程;(2)是否存在直线与椭圆C 交于,A B 两点,交y 轴于点()0,M m ,使22OA OB OA OB +=-成立?若存在,求出实数m 的取值范围;若不存在,请说明理由. 22.已知()1xf x e x a=-+. (1)若0a >,对任意()0,x ∈+∞,不等式()0f x ≥恒成立,求a 的取值范围; (2)若203a <≤,证明:函数()y f x =在(),a -+∞有唯一的零点.试卷答案一、选择题1-5:CBDCA 6-10: CBDCD 11、12:DB二、填空题13. 7 14. 4 15.3816. [)2,+∞ 三、解答题17.解:(1)散点图(2)由题意可知,12345234473,455x y ++++++++====,51122334445771i ii x y==⨯+⨯+⨯+⨯+⨯=∑,522222211234555i i x ==++++=∑,根据公式,可求得271534ˆˆ1.1,4 1.130.75553ba-⨯⨯===-⨯=-⨯, 故所求回归直线的方程为ˆ 1.10.7yx =+; (3)令8x =,得到预测值ˆ 1.180.79.5y=⨯+=(百万元) 答:如果该企业某年研发费用投入8百万元,预测该企业获得年利润为9.5百万元. 18.解:(1)由直方图可知,初中生中课外阅读时间在[)30,40小时内的学生人数的频率为()10.00520.030.04100.2-⨯++⨯=,则学生人数为18000.2360⨯=,高中生中课外阅读时间在[)30,40小时内的学生人数的频率为()10.00520.0250.035100.3-⨯++⨯=,则学生人数为12000.3360⨯=,估计全校学生中课外阅读时间在[)30,40小时内的总人数约是720人; (2)因为抽样比例为10011800120030=+,则初中生应抽取60人,高中生应抽取40人,所以在课外阅读时间不足10小时的样本学生中,初中生有0.00510603⨯⨯=人,记为123,,a a a ;高中生有0.00510402⨯⨯=人,记为12,b b .从这5人中任取3人的所有可能结果为:{}{}{}{}{}123121122131132,,,,,b ,,,,,,,,,a a a a a a a b a a b a a b ,{}{}{}{}{}112231232212312,,,,,,,,,,,,,,a b b a a b a a b a b b a b b ,共10个.其中至少有1个高中生的结果有:{}{}{}{}{}{}121122131132112231,,,,,,,,,,,,,,,,,a a b a a b a a b a a b a b b a a b ,{}{}{}232212312,,,,,,,,a a b a b b a b b ,共9个.所以至少有1个高中生的概率910P =.(注:用对立事件做也可) 19.解:(1)证明:连接AE 交BF 于点N ,连接MN ,因为ABEF 是正方形,所以N 是AE 的中点, 又M 是ED 的中点,所以//MN AD , 因为AD ⊄平面,BFM MN ⊂平面BFM , 所以//AD 平面BFM ; (2)解法一:因为ABEF 是正方形,所以BE AB ⊥,因为平面ABEF ⊥平面ABC ,平面ABEF 平面ABC AB =,所以BE ⊥平面ABC ,因为//CD BE ,所以取BC 的中点O .连接OM ,则OM ⊥平面ABC ,因为ABC∆是正三角形,所以OA BC ⊥,所以以O 为坐标原点,OA OB OM 、、所在直线为x y z 、、轴建立如图所示的空间直角坐标系:设1CD =,则)()()()),0,1,0,0,1,2,0,1,1,AB E D F-,()))()0,2,1,1,0,1,0,2,1DE EF DA DB ==-=-=-,设面EDF 的法向量为()111,,n x y z =,则111100200n EF y y z n DE ⎧=-=⎪⇒⎨+==⎪⎪⎩⎩, 令11z =,则111,2y x =-=∴1,12n ⎛⎫=- ⎪ ⎪⎝⎭,设面ADB 的法向量为(),,m x y z =,则00200m DA y z y z m DB ⎧=+-=⎪⇒⎨-=⎪=⎪⎩⎩, 令1z =-,则1,26y x =-=-,∴1,12m ⎛⎫=-- ⎪ ⎪⎝⎭, 213cos ,423n m n m n m-===- ,因为求面EDF 与面ADB 所成锐二面角, ∴平面EDF 与平面ADB 所成二面角的平面角为60°.(2)解法二:因为直线//EF AB ,所以面EDF 与面ADB 的交线l 与之平行,即////EF AB l , 分别取AB EF 、的中点G H 、,连q ,因为AC BC =,且//EF AB ,根据射影定理,所以,ED DF DB AD ==, 所以,DH EF DG AB ⊥⊥, 所以,DN l CH l ⊥⊥, 所以为所求锐二面角的平面角,设2AB =,则2,1,GH CD CG ==, 所以2HD DG ==,所以DGH ∆为正三角形,所以060HDG ∠=, 所以为所示锐二面角为60°.20.解:(1)由题意得p 和q 均是真命题, 由不等式21xa +<的解集为∅,得1a ≤,由函数()2lg y ax x a =-+的定义域是R 得x R ∈时20ax x a -+>恒成立,故2011402a a a >⎧⇒>⎨∆=-<⎩, 由题意得命题p 和命题q 均正确,综上,a 的取值范围是1,12⎛⎤ ⎥⎝⎦;(2)由命题m 得2240b a ∆=-≥,解得214a b ≤, 由p ⌝是m ⌝的充分不必要条件得m 是p 的充分非必要条件, ∴(]21,,14b ⎛⎤-∞⊂-∞ ⎥⎝⎦,∴2114b <, ∴()2,2b ∈-.21.解:(1)由已知得222a b c b c a⎧⎪=+⎪⎪=⎨⎪⎪=⎪⎩,解方程组得a b c ===∴椭圆1C 的方程为22182x y +=, 假设存在这样的直线;(2)由已知可知直线的斜率存在,设直线方程为y kx m =+,由22182y kx mx y =+⎧⎪⎨+=⎪⎩得()()()22222418480,16820*k x kmx m k m +++-=∆=-+>,设()()1122,,,A x y B x y ,则2121222848,4141km m x x x x k k -+=-=++, ()()()2222121212122841m k y y kx m kx m k x x km x x m k -=++=+++=+,由22OA OB OA OB +=- 得OA OB ⊥,即0OA OB =,即12120x x y y +=, 故228580k m =-≥,代入(*)式解得5m >或5m <-. 22.解:(1)∵()0f x ≥对任意[)0,x ∈+∞恒成立,11 ∴x a e x -≥-对任意[)0,x ∈+∞恒成立, 令()x g x e x -=-,∵()x g x e x -=-在[)0,x ∈+∞内单调递减, ∴()()01g x g ≤=, ∴1a ≥,∴a 的取值范围是{}|1a a ≥;(2)∵函数x y e =在(),a -+∞上是增函数, 函数1y x a =+在(),a -+∞上是减函数,∴()1x f x e x a =-+在(),a -+∞上是增函数, 又∵203a <≤, ∴()1010f a =-<,()1101f e a =->+,由零点存在性定理得,在()f x 在()0,1上有零点, ∴函数()y f x =在(),a -+∞有唯一的零点.。
高二数学试题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线22y x =的准线方程为( )A .12y =-B .18y =-C .12x =-D .18x =- 2.给出四个条件:①22ac bc >;②a b c c>;③22a b >;>其中能分别成为a >b 的充分条件的个数为 ( )A .0B .1C .2D .33.圆222410x y x y ++-+=关于直线220ax by -+=对称,则ab 的最大值为 ( )A .1B .12C .14D .不存在 4.如图,已知点M(m,n )在直线l :A x +B y +C=0(AB ≠0)的右下方,则A m +B n +C 的值 ( ) A .与A 同号,与B 同号 B .与A 同号,与B 异号C .与A 异号,与B 异号D .与A 异号,与B 同号5.如图,在△ABC 中,∠CAB=∠CBA=30°,AC 、BC 边上的高分别为BD 、AE ,则以A 、B 为焦点,且过D 、E 的椭圆与双曲线的离心率的倒数和为 ( )A.1C..3 6.直线x -y -1=0与实轴在y 轴上的双曲线22(0)x y m m -=≠的交点在以原点为中心,边长为2且各边分别平行于坐标轴的正方形内部,则m 的取值范围为 ( )A .0<m <1B .m <0C .-1<m <0D .m <-17.直线cos 20x α-=的倾斜角的范围是 ( )A .[,]66ππ-B .[0,]6πC .5[0,][,)66πππUD .5[,]66ππ8.已知点A(1,2),过点(5,-2)且斜率为k 的直线与抛物线y 2=4x 交于B 、C 两点,那么△ABC( ) A .是锐角三角形 B .是钝角三角形 C .是直角三角形 D .的形状与k 值有关9.设 12F F 、是双曲线22214x y b-=的两个焦点,点P 在双曲线上,且1290F PF ∠=o ,△12F PF 的面积为1,则正数b 的值为 ( )AB .2 C.1 10.若不等式2222x x a y y ++≥--对一切实数x y ,恒成立,则实数a 的取值范围是 ( )A .a ≥1B .a ≤1C .a ≥2D .a ≤211.已知A 、B 分别为椭圆2212y x +=的左、右顶点,P 是椭圆上第一象限的任一点,若∠PAB=α,∠PBA=β,则必有 ( )A .2tan α+cot β=0B .2tan α-cot β=0C .tan α+2cot β=0D .tan α-2cot β=0BAEDC12.已知平面上点P ∈22{(,)|(2cos )(2sin )16,}x y x y R ααα-+-=∈,则满足条件的点P 在平面上所形成图形的面积是 ( ) A .36π B .32π C .16π D .4π 二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中的横线上. 13.不等式2212x x --<的解集是 .14.圆22420x y x y c +--+=与y 轴交于A 、B 两点,圆心为P ,若90APB ∠=o,则c 的值为 .15.设2z x y =+,式中,x y 满足约束条件220,1.x y x y +≥⎧⎨+≤⎩ 则z 的最小值是 ,最大值是 .16.已知F 1、F 2分别是双曲线22221x y a b-=的左、右焦点,P 是双曲线上任意一点,若221||||PF PF 的最小值为8a ,则此双曲线的离心率e 的取值范围是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知正数a,b 满足a +b =1,且n ∈N*,求证:112n n n n a b a b++++≥.18. (本小题满分12分)已知P (2,0),Q (8,0),点M 到点P 的距离是它到点Q 的距离的21,求点M 的轨迹方程,并求轨迹上的点到直线l :2x -y -55=0的最小距离.19.(本小题满分12分)已知过点(1,6)--的直线l 与抛物线24y x =交于A 、B 两点,若以9(,0)2P 为圆心的圆恰好过A 、B 点,求直线l 的方程.20.(本小题满分12分)设双曲线C :2221(0)x y a a-=>与直线l :1x y +=相交于两个不同的点A 、B.(I)求双曲线C 的离心率e 的取值范围;(II)设直线l 与y 轴的交点为P,且512PA PB =u u u r u u u r,求a的值.21.(本小题满分12分)某电器商场拟举办家电促销活动,活动前准备从厂家分批购入每台价格为2000元的某品牌空调共3600台,每批都购入x 台,且每批均付运费400元.整个活动期间所付储存该空调的全部保管费是购买一批空调所付货款的120.现商场有专项资金22000元准备用于支付该空调的全部运费及活动期间的全部保管费.问这笔专项资金是否够用?如果不够用,至少还需要多少资金?22..(本小题满分14分)有对称中心的曲线叫做有心曲线,显然圆、椭圆、双曲线都是有心曲线. 过有心曲线的中心的弦叫有心曲线的直径,(为研究方便,不妨设直径所在直线的斜率存在).定理:过圆)0(,222>=+r r y x 上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值-1.(Ⅰ)写出该定理在椭圆)0(12222>>=+b a by a x 中的推广,并加以证明;(Ⅱ)写出该定理在双曲线中)0,0(12222>>=-b a by a x 的推广;你能从上述结论得到有心圆锥曲线(包括椭圆、双曲线、圆)的一般性结论吗?请写出你的结论.参考答案一、选择题1.B .抛物线标准方程为212x y =,准线方程为18y =-. 2.C .①④能分别成为a >b 的充分条件.3.C .由圆的对称性知圆心(-1,2)在直线上,∴-2a -2b +2=0,即a +b =1,故21()24a b ab +≤=. 4.B .结合图形信息知,0,0,ABC A⎧->⎪⎪⎨⎪->⎪⎩,又原点O 与点M 在直线L 的异侧,∴()0C Am Bn C ++<,故A m+B n +C 与B 、C 异号,与A 同号.5.A .设AB=2c ,则AE=BD=c ,AD=BE=3c ,椭圆离心率为=,双曲线离=故离心率的倒数和为3.6.C .由2210,x y x y m --=⎧⎨-=⎩得交点坐标为(m +12,m -12),解不等式组111,2111,2m m +⎧-≤≤⎪⎪⎨-⎪-≤≤⎪⎩,得-1<m <1.又双曲线焦点在y 轴上,知m <0,故-1<m <0. 7.C .设倾斜角为θ,则tan [θ=,故50,或66ππθθπ≤≤≤<. 8.C .由24,(5)2,y x y k x ⎧=⎨=--⎩得242080ky y k ---=,设B(x 1,y 1),C(x 2,y 2),则12124208,k y y y y k k++==-,记121222,11BA CA y y k k x x --==--,则1212121222221212121212216162()42()41()21616()11164BA CA y y y y y y y y k k k y y y y y y k k x x x x k ---++-++⋅====-+-+-++-+.故BA ⊥CA . 9.D .设PF 1=m ,PF 2=n ,则由题设知2224,4(4),2,m n m n b mn -=⎧⎪+=+⎨⎪=⎩解得b=1.10.C .由22(1)(1)2x y a +++≥-恒成立知,20a -≤,即a ≥2. 11.D .考虑极端位置,当P 点落在上顶点时,有tan αβ==,显然有tan α-2cot β=0成立.12.B .P 点是以(2cos α,2sin α)为圆心,4为半径的圆周上的点,而当α在R 上变化时,点(2cos α,2sin α)又是以(0,0)为圆心,2为半径的圆周上的点,故当圆心在半径为2的圆周上变化时,P 点的轨迹形成一个内圆半径为2,外圆半径为6的圆环.故面积为36π-4π=32π. 二、填空题13.{x |―1<x <3,且x ≠1}.14.-3.圆的标准方程为22(2)(1)5x y c -+-=-,在等腰直角三角形PAB 中,由P 到y 轴的距离为2,知半径r =22,解5-c =8,得c =-3.15.2-如图,作出约束条件确定的可行域,在A 点处有最小值,在B 点处有最大值.16.(1,3].222211111||(2||)4||48||||||PF a PF a PF a a PF PF PF +==++≥,当|PF 1|=2a 时取等号.因此应有c -a ≤2a ,即e =ca ≤3,又e >1,故1<e ≤3.三、解答题17.证明:∵a 、b 为正数且a +b =1,∴原不等式等价于)(112))((+++≤++n n n n b a b a b a . ))(()(2))((1111n n n n n n n n n n a b b a b a ab b a b a b a b a --=--+=+-++++++当a ≥b 时,a -b ≥0,a n ≥b n ,即b n -a n ≤0,∴(a -b )( b n -a n )≤0, 当a <b 时,a -b <0,a n <b n ,即b n -a n >0,∴(a -b )( b n -a n )<0,因此)(-112))((+++++n n n n b a b a b a ≤0即)(112))((+++≤++n n n n b a b a b a∴原不等式成立.18. 解:设),(y x M ,则依条件得21)0()8()0()2(2222=-+--+-y x y x 两边平方,整理得2216x y +=,这就是所求的轨迹方程.设圆:2216x y +=的圆心O 到直线l :2x -y -55=0的距离为d ,则5d ==故圆上的点到直线l :2x -y -55=0的最小距离为d -4=1.19. 解:由题设,直线l 的斜率必存在且不为0,设斜率为k ,则l 的方程为:(1)6y k x =+-由2(1)64y k x y x =+-⎧⎨=⎩消去y 得222[2(6)4](6)0k x k k x k +--+-= △222[2(6)4]4(6)0k k k k =---->解得33k <<+且0k ≠.设1122(,),(,)A x y B x y ,则2211224,4y x y x ==,12242(6)k k x x k--+=, 由题意知AP BP =,得2222112299()()22x y x y -+=-+,∴22121299()()44022x x x x ---+-=,即1212()(5)0x x x x -+-=,Θ12x x ≠,∴125x x +=,∴242(6)5k k k --=,解得2k =或27k =-2(3舍去)7-<,∴所求的直线方程为24y x =-.(注:另可利用AB 的中点,及垂径分弦定理求解)20. 解:(I )由C 与l 相交于两个不同的点,故知方程组2221,1.x y ax y ⎧-=⎪⎨⎪+=⎩有两个不同的实数解.消去y 并整理得2222(1)220a x a x a -+-= ①24221048(1)0a a a a ⎧-≠⎪∴⎨+->⎪⎩解得01a a <<≠.双曲线的离心率e ==0a <<Q a ≠1 e e ∴>≠即离心率e的取值范围是)+∞U . (II )设1122(,),(,),(0,1)A x y B x y P ,5,12PA PB =u u u r u u u r Q 11225(,1)(,1).12x y x y ∴-=-由此得12512x x =.由于12,x x 都是方程①的根,且210a -≠,∴212221222121a x x a a x x a ⎧+=-⎪⎪-⎨⎪⋅=-⎪-⎩⇒222222217212152121a x a ax a ⎧=-⎪⎪-⎨⎪=-⎪-⎩ ∴2221751212x x =, ∴20x =(舍)或2175x =,∴222289160a a -=- 由0a >,所以1713a =. 21. 解:设该空调的全部运费及活动期间的全部保管费共y 元,则由题意,得36001400(2000)20y x x =⨯+⨯3600400100x x ⨯=+36004100()100x x⨯=+≥⋅=24000.当且仅当36004x x⨯=,即x =120时取等号. ∴当x =120时,y 最小,且min 24000y =.24000-22000=2000(元) ,答:这笔专项资金不够用,至少还需要2000元资金.22. 解:(Ⅰ)设直径的两个端点分别为A 、B ,由椭圆的对称性可得,A 、B 关于中心O (0,0)对称,所以A 、B 点的坐标分别为A (),11y x ,B (),11y x --.P (),y x 上椭圆12222=+by a x 上任意一点,显然||||||||11y y x x ≠≠,因为A 、B 、P 三点都在椭圆上,所以有222122122212211b a y a x b b y a x =+=+, ① 22222222221b a y a x b b y a x =+=+, ②. 而2122121111x x y y k k x x y y k x x y y k PB PA PBPA --=⋅++=--=, 由①-②得:22222211()()0,b x x a y y -+-=22212221y y b x x a-∴=--. 所以该定理在椭圆中的推广为:过椭圆)0(12222>>=+b a by a x 上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值22ab -.(Ⅱ)该定理在双曲线中的推广为:过双曲线)0,0(12222>>=-b a by a x 上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值.22a b该定理在有心圆锥曲线中的推广应为:过有心圆锥曲线)0(122≠=+AB By Ax 上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值-.BA。