宽禁带紫外光电探测器资料
- 格式:ppt
- 大小:1008.50 KB
- 文档页数:35
实验十四 禁带宽度的测量应物0903 蔡志骏 u200910207 张文杰 u200910205一、实验目的1、学习紫外分光光度计的工作原理和使用方法。
2、学习用紫外分光光度计测量薄膜样品的透射(吸收)光谱3、能根据吸收光谱推算出材料的光学禁带宽度。
二、实验原理1、禁带宽度的涵义(1)、禁带宽度表示晶体中公有化电子所不能具有的能量范围 (2)、禁带支付表示价键束缚的强弱 2、允许的带间直接跃迁在跃迁过程中波矢改变量0k ∆=,这种跃迁为允许带间直接跃迁。
这种跃迁满足g g E ω=如果假定仅讨论导带底以上价带顶以下较小的能量范围内光吸收过程,对于导带与价带都是抛物线的并且非简并的情况有()()1412210gE cmαωω-≈⨯-吸收系数与能量的关系服从1/2次方律。
3、禁戒的带间直接跃迁在一些情况中,0k = 的跃迁被选择定则1L ∆=±禁止,而0k ≠的跃迁允许,这种跃迁为禁戒的直接跃迁。
虽然在0k = 徙的跃迁几率为0,但是0k ≠处仍存在一定的的跃迁几率,且跃迁几率正比于2k ,此时的吸收系数为()()411.310gE cmωαωω--=⨯由上式可知吸收系数主要由3/2次方律决定4、导带底和价带顶位于波矢空间不同位置的带间直接跃迁和间接跃迁这种情况是指导带底的最低能量状态和价带的最高能量状态不在k空间同一位置而发生直接跃迁。
(1)、当g p E E ω>- 时,只能伴随着声子的吸收过程,吸收系数为()()2exp 1g p p B c E E E k T αωαω-+=⎛⎫- ⎪⎝⎭(2)、对于g p E E ω>+ 时,既可伴随着声子的发射,也可伴随着声子的吸收。
其中伴随一个声子发射的吸收光谱为()()21exp g p e p B c E E E k T ωαω--=⎛⎫- ⎪⎝⎭以上两式表明间接跃迁系数与入射光子的能量有二次方关系。
5、透射率、吸光度与吸收系数之间的关系吸光度A 与透射率T 的关系为1lgA T=光吸收规律()0exp I I x α=-α为吸收系数,x 为光的传播距离,根据朗伯—比尔定律,A 正比于α。
紫外探测器原理紫外探测器是一种可以检测紫外光的光电传感器,广泛应用于科学研究、工业检测、环境监测等领域。
它基于紫外光与物质之间的相互作用原理,将光信号转换为电信号,实现对紫外光的探测、测量和分析。
紫外探测器的工作原理基于紫外光的光电效应,即当紫外光照射到感光材料上时,光子的能量被传递给感光材料中的电子,使其从价带跃迁到导带,形成电子空穴对。
紫外光的强度越大,传递给感光材料的能量就越大,电子的跃迁数量就越多,形成的电子空穴对也就越多。
接着,这些电子空穴对会被电场分离并收集到电极上,产生电流信号,从而实现对紫外光的探测。
常用于紫外探测器的感光材料有硅(Si)、氮化镓(GaN)、硒化镉(CdSe)等。
硅是一种常见的半导体材料,具有良好的光电性能和相对较宽的响应范围,在宽波长范围内都能对紫外光产生响应。
氮化镓则是一种具有较高选择性的材料,适用于高能量的光子探测。
而硒化镉则是一种高灵敏度的材料,适用于高精度的紫外光测量。
除了感光材料,紫外探测器还包括光透过窗、滤光膜、光敏电极等组件。
光透过窗用于过滤掉紫外光以外的光线,确保只有紫外光能够进入探测器。
滤光膜则用于进一步调节入射光的波长和强度,以满足具体应用需求。
光敏电极则负责收集感光材料中产生的电子空穴对,将其转化为电流信号。
在实际应用中,紫外探测器通常与信号放大器、滤波器、数据采集系统等设备结合使用,以提高信号的检测灵敏度和增加探测范围。
信号放大器将探测器输出的微弱电流放大为可测量的电压信号,滤波器则用于进一步滤除噪音和杂散光,数据采集系统则用于记录和分析探测器输出的电信号。
总的来说,紫外探测器的原理是基于光电效应,通过感光材料吸收和转换紫外光的能量,产生电流信号。
感光材料的选择、光透过窗、滤光膜、光敏电极等组件的设计和优化,以及与其他设备的配合使用,都是实现高灵敏度、高准确性紫外光探测的关键。
日盲紫外光电探测器结构日盲紫外光电探测器(Solar Blind Ultraviolet Photodetector)是一种能够在太阳能紫外线波段(200-280纳米)具有高响应度和低响应度的探测器。
它在紫外线波段的探测对于环境监测、军事侦查、卫星通信等领域都有重要的应用。
首先是光敏元件,它是日盲紫外光电探测器的核心部分,用于接收紫外光并产生电荷载流子。
常用的光敏元件有硅(Si)材料和氮化镓(GaN)材料的PIN结构二极管。
硅材料具有高响应度和低响应度的特点,但其长波边缘在280纳米左右,因此不能实现日盲性。
而氮化镓材料具有非常好的紫外光透过性,在200纳米以下具有低响应度,能够实现日盲特性。
其次是光学系统,它主要用于将入射的紫外光聚焦到光敏元件上,提高光信号接收效率。
光学系统通常由凸透镜和滤光片组成,凸透镜用于聚焦光线,滤光片用于屏蔽可见光和红外光。
进一步是电子信号处理系统,它主要用于放大和转换光敏元件产生的微弱电流信号。
电子信号处理系统通常由前置放大器、滤波器、放大器和模数转换器等组成。
前置放大器用于放大微弱电流信号,滤波器用于除去噪声和杂散信号,放大器用于进一步放大信号,模数转换器用于将模拟信号转换为数字信号。
最后是外壳保护,它用于保护整个光电探测器免受外界环境的干扰和损伤。
外壳通常采用金属材料制成,具有良好的导热性和机械强度,并可以有效地屏蔽外界干扰源。
总结来说,日盲紫外光电探测器的结构主要包括光敏元件、光学系统、电子信号处理系统和外壳保护。
光敏元件负责接收和产生电荷载流子,光学系统用于聚焦紫外光,电子信号处理系统用于放大和转换信号,外壳保护用于保护整个探测器。
这些部件的结合使得日盲紫外光电探测器能够高效地探测太阳能紫外线波段的信号。
禁带半导体紫外探测器紫外探测技术在国防预警与跟踪、电力工业、环境监测及生命科学领域具有重要的应用,其核心器件是高性能的紫外光电探测器。
基于半导体材料的固态紫外探测器件具有体重小、功耗低、量子效率高、和便于集成等系列优势。
以碳化硅(SiC)和III族氮化物为代表的宽禁带半导体是近年来国内外重点研究和发展的新型第三代半导体材料,具有禁带宽度大、导热性能好、电子饱和漂移速度高以及化学稳定性优等特点,用于制备紫外波段的光探测器件具有显著的材料性能优势。
我们实验室在宽禁带半导体紫外探测器领域具有较强的实力。
率先在国内实现4H-SiC基紫外雪崩单光子探测器;分别研制成功高增益同质外延GaN基紫外雪崩光电探测器、国际上领先的高增益AlGaN基日盲雪崩光电探测器、具有极低暗电流的AlGaN基MSM日盲深紫外探测器、高量子效率AlGaN基PIN日盲深紫外探测器、以及现有芯片面积最大的AlGaN基日盲深紫外探测器,相关结果多次获得国际主流媒体的跟踪报导。
目前,我们的工作重点是研制高灵敏度宽禁带半导体紫外探测器,包括:紫外单光子探测器件结构设计和物理分析,紫外单光子探测线阵和日盲紫外探测阵列制备。
宽禁带半导体功率电子器件针对未来高效电力管理系统、电动汽车和广泛军事应用大容量化、高密度化和高频率化的要求,将宽禁带半导体材料应用于高档次功率电子器件可以有效解决当今功率电子器件发展所面临的“硅极限”(silicon limit)问题,将大幅度降低电能转换过程中的无益损耗,在各领域创造可观的节能空间。
宽禁带Ⅲ族氮化物半导体具有强击穿电场、高饱和漂移速度、高热导率和良好化学稳定性等系列材料性能优势,是制备新一代功率电子器件的理想材料。
这一研究方向近年来成为国际上继GaN基发光二极管和微波功率器件之后的新兴研究热点。
我们小组在这一研究领域具有较好的基础,已经研制成功AlGaN/GaN平面功率二极管,其击穿电压大于1100V,功率优值系数高达280MW/cm2。
宽禁带半导体光电材料的研究及其应用宽禁带半导体材料(Eg大于或等于3.2ev)被称为第三代半导体材料。
主要包括金刚石、SiC、GaN等。
和第一代、第二代半导体材料相比,第三代半导体材料具有禁带宽度大,电子漂移饱和速度高、介电常数小、导电性能好,具有更高的击穿电场、更高的抗辐射能力的特点,其本身具有的优越性质及其在微波功率器件领域应用中潜在的巨大前景,非常适用于制作抗辐射、高频、大功率和高密度集成的电子器件。
以氮化镓(GaN)为代表的Ⅲ族氮化物作为第三代半导体材料,是一种良好的直接宽隙半导体光电材料,其室温禁带宽度为3.4eV,它可以实现从红外到紫外全可见光范围的光辐射。
近年来已相继制造出了蓝、绿色发光二极管和蓝色激光器等光电子器,这为实现红、黄、蓝三原色全光固体显示,制备大功率、耐高温、抗腐蚀器件,外空间紫外探测,雷达,光盘存储精细化、高密度,微波器件高速化等奠定了基础。
氮化镓和砷化镓同属III-V族半导体化合物,但氮化镓是III-V族半导体化合物中少有的宽禁带材料。
利用宽禁带这一特点制备的氮化镓激光器可以发出蓝色激光,其波长比砷化镓激光器发出的近红外波长的一半还要短,这样就可以大大降低激光束聚焦斑点的面积,从而提高光纪录的密度。
与目前常用的砷化镓激光器相比,它不仅可以将光盘纪录的信息量提高四倍以上,而且可以大大提高光信息的存取速度。
这一优点不仅在光纪录方面具有明显的实用价值,同时在光电子领域的其他方面也可以得到广泛应用。
虽然人们早就认识到氮化镓的这一优点,但由于氮化镓单晶材料制备上的困难以及难于生长出氮化镓PN结,氮化镓发光器件的研究很长时间一直没有获得突破。
经过近20年的努力,1985年通过先进的分子束外延方法大大改善了氮化镓材料的性能;1989年,Akasaki等人利用电子辐照方法实现了氮化镓P型材料的生长并制备出PN结;1995年Nakamura等人制备出发蓝紫光的氮化镓发光二极管,效率达到5%,赶上了传统的磷砷化镓发光二极管的效率,寿命超过一万小时。
ZnMgO紫外探测器研究现状1 引言ZnO是一种直接宽带隙的半导体材料(禁带宽度为3.37 eV),在室温下有很高的激子束缚能(60 meV),外延生长温度低,抗辐射能力强。
通过Mg的掺入可实现禁带宽度从3.3 eV 到7.8 eV可调的ZnMgO合金,ZnMgO作为优良的紫外光电材料在光电系统中有着广泛的应用,像LED、光探测器和太阳能电池等,特别是紫外光探测器方面的应用。
紫外探测器广泛用于矿井可燃气体和汽车尾气的监测、固体燃料成分分析、环境污染监测、细胞癌变分析、DNA 测试、准分子激光器检测等领域。
在军事上可用于导弹跟踪、火箭发射、飞行器制导以及生化武器的探测。
在现实生活中,用于火灾监测、紫外通信以及紫外线辐射的测量。
随着紫外线的广泛应用,紫外探测器在环保、医学、军事等领域将得到更广泛的应用。
作为一种宽禁带半导体材料,ZnMgO近年来受到了研究人员的广泛关注。
2 ZnMgO紫外光探测器的研究进展ZnMgO薄膜材料生长和紫外探测器的研究主要有美国、日本,印度、南韩等国家,薄膜生长方法以脉冲激光沉积(PLD),分子束外延(MBE),金属有机化学气相沉积(MOCVD),和磁控溅射等为主。
自1998年日本东京技术研究所用PLD方法在蓝宝石(0001)衬底上生长出了Mg组分达0.33的ZnMgO单晶薄膜之后,高Mg组分的ZnMgO薄膜材料生长和紫外探测器研究引起了人们的极大兴趣。
美国北卡罗那州大学,马里兰大学都相继报道了ZnMgO薄膜的生长及光学特性研究;南韩Pohang科技大学采用MOCVD方法在蓝宝石衬底上生长了Mg组分(0-0.49)连续可调的ZnMgO薄膜,并有X-射线衍射(XRD)谱表明未发生结构分相。
这些结果已远远超过平衡态下Mg在ZnO中的固溶度值≤4%。
以上ZnMgO薄膜大都是在单晶衬底和较高的衬底温度(350-750℃)上生长,而日本Ritsumeikan大学和印度德里大学均采用磁控溅射方法,在不加热的硅和石英衬底上生长出了Mg组分0.42和0.46的ZnMgO薄膜,结果表明薄膜仍未发生结构分相。
紫外分光光度计测非晶态氧化锌的禁带宽度季朋飞 12011001396摘要:本文首先对紫外分光光度计工作原理、分类、结构、优点等作了一些基本的介绍。
然后在通过紫外分光光度计对非晶态氧化锌的禁带宽度作了一定的分析,进而让大家对紫外分光光度计有更加全面的了解。
关键词:氧化锌,禁带宽度,紫外分光光度计一对紫外分光光度计的介绍紫外-可见分光光度法的特点与其它光谱分析方法相比,其仪器设备和操作都比较简单、费用少、分析速度快、灵敏度高、选择性好精密度和准确度较高、用途广泛。
紫外分光光度计的原理它是利用物质的分子或离子对某一波长范围的光的吸收作用,对物质进行定性分析、定量分析及结构分析, 所依据的光谱是分子或离子吸收入射光中特定波长的光而产生的吸收光谱。
按所吸收光的波长区域不同,分为紫外分光光度法和可见分光光度法,合称为紫外-可见分光光度法。
物质对光的吸收是选择性的,利用被测物质对某波长的光的吸收来了解物质的特性,这就是光谱法的基础。
通过测定被测物质对不同波长的光的吸收强度(吸光度),以波长为横坐标,吸光度为纵坐标作图,得出该物质在测定波长范围的吸收曲线。
在吸收曲线中,通常选用最大吸收波长λmax进行物质含量的测定。
朗伯-比尔定律是紫外-可见分光光度法的理论基础。
朗伯-比尔定律:当一束平行单色光通过含有吸光物质的稀溶液时,溶液的吸光度与吸光物质浓度、液层厚度乘积成正比,即A= κcl 式中比例常数κ与吸光物质的本性,入射光波长及温度等因素有关。
c为吸光物质浓度,l为透光液层厚度。
设入射光强度为I0,吸收光强度为Ia,透射光强度为 It,反射光强度为Ir,则I0= Ia+ It+ Ir 由于反射光强度基本相同,其影响可相互抵消,上式可简化为:I0= Ia+ It透光度:透光度为透过光的强度It与入射光强度I0之比,用T表示:即 T= It/I0吸光度: 为透光度倒数的对数,用A表示即A=lg1/T=lgI0/It。
氧化镓材料特性及光电探测器研究氧化镓材料特性及光电探测器研究引言:在当今科技快速发展的时代,光电材料和光电器件成为了研究的热点。
光电探测器是一种能够将光信号转换为电信号的装置,广泛应用于通信、能源、医疗等领域。
而氧化镓材料作为一种重要的光电材料,具有优异的特性,因此成为了研究的焦点之一。
本文将探讨氧化镓材料的特性及其在光电探测器研究中的应用。
一、氧化镓材料的特性1.1 氧化镓的结构氧化镓(Ga2O3)是一种宽禁带半导体材料,具有六面体晶体结构。
它的结构稳定,晶体中的镓离子处于八面体的配位环境中,利于电子的传导和控制。
1.2 氧化镓的能带结构氧化镓的能带结构是其特性的重要指标之一。
氧化镓具有宽大的能带隙(约4.9-4.3 eV),这意味着氧化镓材料具有较高的能带边沿和导带边沿能级,因此具有较高的耐热性和耐辐照性,适合在高温和辐射环境中使用。
1.3 氧化镓的光学特性氧化镓材料对可见光和紫外光具有较高的透过率和折射率。
其低能隙结构使其具有良好的紫外光吸收能力,适合于紫外光探测器的研究和应用。
二、氧化镓材料在光电探测器研究中的应用2.1 紫外光探测器由于氧化镓材料对紫外光有良好的吸收能力,因此在紫外光探测器的研究中得到广泛应用。
通过氧化镓材料制备的紫外光探测器灵敏度高、响应速度快,并具有较低的噪声水平,能够实现高精度的光信号检测。
2.2 光电二极管氧化镓材料可用于制备光电二极管,通过调控材料的掺杂和结构,可以实现对不同波长光的响应。
深紫外光电二极管由氧化镓材料制备,具有较低的暗电流和较高的光电响应,适合于生物医学成像、环境检测等领域的应用。
2.3 太阳能电池利用氧化镓材料的优异性能,可以制备高效的太阳能电池。
氧化镓材料作为主要的光吸收层,能够有效吸收可见光和部分红外光,将其转化为电能。
通过优化材料的结构和器件设计,可以提高太阳能电池的光电转换效率。
结论:氧化镓材料作为重要的光电材料,在光电探测器研究中表现出了良好的应用前景。
氮化镓pn结
氮化镓(GaN)是一种宽禁带半导体材料,由于其具有高热导率、高击穿电场、高饱和电子速率等优异性能,在高温、高频、大功率微波器件以及深紫外光器件等方面具有广泛的应用前景。
氮化镓pn结是指利用氮化镓材料制作的p型和n型半导体材料之间的接触区域。
在氮化镓pn结中,由于p型和n型半导体材料的掺杂原子种类和浓度不同,会产生电子和空穴的扩散运动。
在p型半导体中,空穴浓度较高,电子浓度较低,而在n型半导体中,电子浓度较高,空穴浓度较低。
当p型和n型
半导体相接触时,由于浓度梯度作用,电子和空穴会从n型半导体向p型
半导体扩散,在接触区形成一层耗尽层,进而形成空间电荷区。
氮化镓pn结的主要应用包括:
1. 深紫外光电器件:氮化镓材料具有宽的禁带宽度和高的光电转换效率,可以用于制备深紫外光电器件,如深紫外探测器、深紫外激光器等。
2. 高频大功率微波器件:氮化镓材料具有高热导率、高击穿电场和高饱和电子速率等优异性能,可以用于制备高频大功率微波器件,如功率放大器、高频率振荡器等。
3. 电力电子器件:氮化镓材料具有高击穿电场和高饱和电子速率等优异性能,可以用于制备电力电子器件,如功率二极管、功率晶体管等。
总之,氮化镓pn结作为一种新型的半导体材料接触区域,在多个领域都具有广泛的应用前景。
氧化镓日盲紫外-概述说明以及解释1.引言1.1 概述概述部分内容:氧化镓(Ga2O3)是一种具有宽禁带宽度的半导体材料,具有良好的光电性能和热稳定性,在近年来备受关注。
其特别之处在于其带隙较宽,可以实现紫外光的高效吸收和发射,因此在紫外光电子器件领域具有巨大的应用潜力。
本文旨在系统地介绍氧化镓在紫外光电子器件领域的研究进展和应用。
首先,本文将对氧化镓的基本性质进行介绍,包括晶体结构、能带结构以及其在紫外光下的吸收和发射特性。
接着,将详细探讨氧化镓材料在紫外光电探测器、紫外光发光二极管和紫外激光器方面的应用。
同时,本文还将对氧化镓材料的制备方法和表征技术进行介绍,以及目前面临的挑战和未来的发展方向。
通过对已有研究成果的总结和分析,我们可以清晰地认识到氧化镓材料在紫外光电子器件领域的巨大潜力。
其高效的紫外光吸收和发射特性,使得氧化镓在紫外光电子器件中展现出了优异的性能表现。
然而,仍然存在一些技术难题需要解决,例如如何提高氧化镓材料的纯度和晶体质量,以及如何进一步优化器件结构和性能等。
综上所述,通过对氧化镓在紫外光电子器件领域的研究进展和应用进行全面的介绍和探讨,本文有助于提高人们对氧化镓材料的认识和理解,同时为进一步的研究和应用提供了参考和借鉴。
希望本文能够对紫外光电子器件领域的学者和工程师有所启发,并推动相关研究的发展和进步。
1.2 文章结构文章结构部分的内容可以按照以下方式编写:文章结构本文共包括引言、正文和结论三个部分。
每个部分分别包含若干小节,用于展开讨论文中的相关内容。
引言部分主要介绍了本文的研究背景和意义,并明确了文章的目的。
首先,概述介绍了氧化镓日盲紫外的研究领域,说明了该领域的重要性和研究现状。
然后,文章结构部分对整篇文章进行了简要的概述,包括各个部分的内容和组织顺序。
最后,明确了本文的研究目的,即从多个角度探讨氧化镓日盲紫外的相关问题。
正文部分是整篇文章的核心部分,包括了第一要点、第二要点和第三要点三个小节。
第 44 卷第 10 期2023年 10 月Vol.44 No.10Oct., 2023发光学报CHINESE JOURNAL OF LUMINESCENCE高增益ZnO肖特基紫外光电探测器光响应特性段雨晗1,2*,蒋大勇1,2,赵曼1,2(1. 长春理工大学材料科学与工程学院,吉林长春 130022; 2. 光电功能材料教育部工程研究中心,吉林长春 130022)摘要:ZnO宽禁带半导体紫外光电探测器具有稳定性高、成本低等诸多优势,在国防、医疗、环境监测等领域具有重要的应用前景。
本文采用射频磁控技术在SiO2衬底上制备了ZnO薄膜,在此基础上获得了具有高增益的金属⁃半导体⁃金属(MSM)结构的ZnO紫外光电探测器。
10 V偏压下,探测器的响应度和外量子效率分别为4.90 A/W和1668%。
这是由于光照情况下,半导体与金属界面处的空穴俘获产生高增益所导致的。
此外,进一步研究了增益效应、外加偏压和耗尽层宽度对ZnO紫外光电探测器响应度的调控规律与影响机制,为高性能紫外光电探测器的研制与性能调控提供了重要的参考依据。
关键词:ZnO;紫外光电探测器;响应度;增益效应;耗尽层中图分类号:O472 文献标识码:A DOI: 10.37188/CJL.20230169Responsivity Characteristics of ZnO SchottkyUltraviolet Photodetectors with High GainDUAN Yuhan1,2*, JIANG Dayong1,2, ZHAO Man1,2(1. School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China;2. Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun 130022, China)* Corresponding Author, E-mail: duanyuhan@Abstract:The wide bandgap semiconductor ZnO ultraviolet (UV)photodetector has many advantages,such as high stability,low cost,and has important application prospects in fields such as national defense,medical care,and environmental monitoring. In this work, ZnO thin films were fabricated on SiO2 substrate using radio frequency magnetron sputtering.Subsequently,a ZnO UV photodetector with a high-gain metal-semiconductor-metal (MSM)structure was achieved. At a bias voltage of 10 V, the detector exhibited a responsivity of 4.90 A/W and an external quantum efficiency of 1668%. This high gain was attributed to the hole trapping at the semiconductor-metal interface under illumination.Furthermore,the modulation rules and influence mechanisms of gain effect,applied bias volt⁃age,and depletion layer width on the responsivity of ZnO UV photodetector were thoroughly investigated.This re⁃search provides an important reference for the development and performance control of high-performance UV photode⁃tectors.Key words:ZnO; ultraviolet photodetector; responsivity; gain effect; depletion layer1 引 言紫外探测技术在导弹制导、紫外预警、保密通讯、电网安全监测、人类医疗健康以及全球环境监测等领域具有重要的应用前景[1-6]。