平方差公式的教学设计讲解
- 格式:pdf
- 大小:257.92 KB
- 文档页数:15
平方差公式优秀教案一、教学目标1.知识与技能目标:使学生理解平方差公式的概念,掌握平方差公式的推导过程,并能熟练运用平方差公式进行计算。
2.过程与方法目标:通过自主探究、合作交流,培养学生运用平方差公式解决问题的能力,提高学生的逻辑思维和推理能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生主动探索、积极参与的精神,增强学生的团队合作意识。
二、教学内容1.平方差公式的定义:平方差公式是指两个数的平方差可以表示为两个数的和与差的乘积。
2.平方差公式的推导:通过具体的例子,引导学生观察、分析,发现平方差公式,并运用多项式乘法进行验证。
3.平方差公式的应用:解决实际问题,如计算平方差、因式分解等,培养学生运用平方差公式解决问题的能力。
三、教学重点与难点1.教学重点:平方差公式的推导和应用。
2.教学难点:平方差公式的理解和灵活运用。
四、教学过程1.导入新课:通过实际生活中的例子,如计算土地面积、求解速度问题等,引出平方差的概念。
2.自主探究:让学生观察具体的平方差例子,如\(a^2b^2\),引导学生发现平方差公式。
3.合作交流:分组讨论,让学生互相分享自己的发现,共同推导平方差公式。
4.课堂讲解:对学生的发现进行总结,给出平方差公式的定义,并进行推导。
5.案例分析:通过具体的例题,讲解平方差公式的应用,如计算平方差、因式分解等。
6.练习巩固:布置相关练习题,让学生独立完成,巩固平方差公式的运用。
7.课堂小结:总结本节课的主要内容,强调平方差公式的推导和应用。
8.课后作业:布置课后作业,让学生运用平方差公式解决实际问题。
五、教学评价1.过程评价:观察学生在课堂上的参与程度、合作交流的表现,评价学生在自主探究、合作交流中的表现。
2.练习评价:检查学生在练习中的完成情况,评价学生对平方差公式的理解和运用能力。
3.课后作业评价:批改课后作业,评价学生对平方差公式的掌握程度,以及运用平方差公式解决问题的能力。
平方差公式-优秀教案【教学目标】1. 理解平方差公式的含义和应用2. 学会运用平方差公式化简一元二次方程3. 培养学生运用公式解决实际问题的能力【教学重点】理解平方差公式的含义和应用,学会运用公式化简一元二次方程【教学难点】运用平方差公式化简一元二次方程【教学内容】1. 平方差公式的含义和应用2. 运用平方差公式化简一元二次方程3. 实际问题解析【教学过程】一、引入1. 教师通过提示,让学生回忆二次方程的解法以及解法的局限性,引出平方差公式。
2. 展示平方差公式的公式表达式,让学生观察该公式的形式和含义。
3. 将一个简单的二次方程转化为标准形式,使用平方差公式求解,让学生理解和掌握该公式的具体应用。
二、知识讲解1. 平方差公式的含义和应用(1)平方差公式的定义:在代数学中,平方差公式用于将二次多项式写成一个平方项和一个差项的和的形式。
(2)平方差公式的公式表达式:(a+b)² = a²+2ab+b²和(a-b)² = a²-2ab+b²。
(3)平方差公式的应用:主要用于化简一元二次方程和求解两个数的平方之差等问题。
2. 运用平方差公式化简一元二次方程(1)将一元二次方程转化为标准形式:ax²+bx+c=0;(2)将公式中的a、b、c代入平方差公式;(3)化简得二次方程的解。
(4)特别地,当二次方程中有平方项且系数a=1时,可以直接使用平方差公式。
三、练习与实际问题解析1. 练习题:练习一元二次方程的化简和求解2. 实际问题解析:通过实际问题的分析与计算,激发学生的兴趣,帮助学生理解和掌握平方差公式的应用。
【教学总结】通过本节课的学习,学生可以理解平方差公式的含义和应用,掌握平方差公式化简一元二次方程的方法,并能够通过实际问题的解析,运用所学知识解决实际问题。
同时,本节课旨在培养学生的问题解决能力,提高学生的数学素养与实际应用能力。
《平方差公式》教案(精选15篇)《平方差公式》教案1教学目的进一步使学生理解把握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。
教学重点和难点:公式的应用及推广。
教学过程:一、复习提问1.(1)用较简洁的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规章的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.讲评要点:沿HD、GD裁开均可,但肯定要让学生在裁开之前知道HD=BC=GD=FE=a-b,这样裁开后才能重新拼成一个矩形.期望推出公式:a2-b2=(a+b)(a-b)2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.说明:平方差公式的数学表达式在使用上有三个优点。
(1)公式详细,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁。
但数学表达式中的a与b有概括性及抽象性,这样也就造成对详细问题存在一个判定a、b的问题,否则简单对公式产生各种主观上的误会。
依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,敏捷运用公式的'两种表达式,比如用文字公式推断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又敏捷.3.推断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)二、新课例1运用平方差公式计算:(1)102×98;(2)(y+2)(y-2)(y2+4).解:(1)102×98(2)(y+2)(y-2)(y2+4)=(100+2)(100-2)=(y2-4)(y2+4)=1002-22=10000-4=(y2)2-42=y4-16.=9996;2.运用平方差公式计算:(1)103×97;(2)(x+3)(x-3)(x2+9);(3)59.8×60.2;(4)(x-)(x2+)(x+).3.请每位同学自编两道能运用平方差公式计算的题目.例2填空:(1)a2-4=(a+2)();(2)25-x2=(5-x)();(3)m2-n2=()();思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习填空:1.x2-25=()();2.4m2-49=(2m-7)();3.a4-m4=(a2+m2)()=(a2+m2)()();例3计算:(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2=m4-14m2+49-n2.三、小结1.什么是平方差公式?一般两个二项式相乘的积应是几项式?2.平方差公式中字母a、b可以是那些形式?3.怎样推断一个多项式的乘法问题是否可以用平方差公式?四、布置作业1.运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).2.运用平方差公式计算:(1)69×71;(2)53×47;(3)503×497;(4)40×39.《平方差公式》教案2平方差公式一、学习目标:1.经历探究平方差公式的过程.2.会推导平方差公式,并能运用公式进行简洁的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,敏捷应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?12001×19992998×1002导入新课:计算下列多项式的积.1x+1x-12m+2m-232x+12x-14x+5yx-5y结论:两个数的和与这两个数的差的`积,等于这两个数的平方差.即:a+ba-b=a2-b2四、精讲精练例1:运用平方差公式计算:13x+23x-22b+2a2a-b3-x+2y-x-2y例2:计算:1102×982y+2y-2-y-1y+5随堂练习计算:1a+b-b+a2-a-ba-b33a+2b3a-2b4a5-b2a5+b25a+2b+2ca+2b-2c6a-ba+ba2+b2五、小结:a+ba-b=a2-b2《平方差公式》教案3学习目标:1、经历探究完全平方公式的过程,发展学生观察、交流、归纳、猜想、验证等能力。
教学对象:初中二年级学生教学目标:1. 让学生理解并掌握平方差公式的基本概念和结构特征。
2. 通过探索和推导,发展学生的符号感和推理能力。
3. 学会运用平方差公式进行简单的代数运算。
4. 培养学生的归纳能力和分析问题、解决问题的能力。
教学重难点:1. 平方差公式的推导过程。
2. 平方差公式的正确应用。
教学准备:1. 多媒体课件2. 教学用书3. 练习题教学过程:一、导入新课1. 回顾整式乘法的相关知识,引导学生思考:多项式乘法中是否存在一些特殊的规律?2. 提出问题:如何将两个二项式相乘,使得乘积只有两项?二、讲授新课1. 引入平方差公式的概念:平方差公式是指形如(a+b)(a-b)=a^2-b^2的乘法公式。
2. 讲解平方差公式的结构特征:(1)左边是两个二项式相乘,其中一项完全相同,另一项互为相反数。
(2)右边是乘式中两项的平方差,即相同项的平方与相反项的平方差。
3. 举例说明平方差公式的应用:(1)字母表示具体数:如(2+3)(2-3)=2^2-3^2=4-9=-5。
(2)字母表示单项式:如(x+2)(x-2)=x^2-2^2=x^2-4。
(3)字母表示多项式:如(3x+4)(3x-4)=(3x)^2-4^2=9x^2-16。
4. 讲解平方差公式的推导过程:(1)将两个二项式相乘,展开后合并同类项。
(2)观察展开后的结果,发现可以化简为平方差的形式。
三、课堂练习1. 让学生独立完成以下练习题,巩固平方差公式的应用:(1)(a+5)(a-5)=__________;(2)(2x+3)(2x-3)=__________;(3)(3y+4)(3y-4)=__________。
2. 教师巡视指导,解答学生疑问。
四、课堂小结1. 总结平方差公式的概念、结构特征和应用方法。
2. 强调平方差公式的推导过程和计算技巧。
五、布置作业1. 完成课后练习题,巩固所学知识。
2. 查阅相关资料,了解平方差公式在生活中的应用。
中学数学平方差公式教案详解一、教学目标:1. 通过教学讲解,学生能够掌握使用平方差公式解决问题的方法。
2. 学生能够自如地运用平方差公式进行乘法和因式分解。
3. 学生能够在以后的数学学习中,独立运用平方差公式进行计算。
二、教学重点:1. 掌握平方差公式的概念及其运用方法。
2. 理解平方差公式的几何意义,并能与乘积和式子相互转化。
三、教学难点:1. 学生对平方差公式的几何意义和运用方法的理解。
2. 学生运用平方差公式解题的能力。
四、教学方法:1. 演示法:通过演示让学生理解平方差公式的几何意义和运用方法。
2. 实践操作法:通过实践让学生掌握平方差公式的应用。
五、教学过程:1. 引入(10分钟)通过导入所学的乘法和因式分解,引出今天要讲的平方差公式,同时告诉学生今天的教学目标和重点。
2. 理论讲解(30分钟)(1)平方差公式的定义及运用方法。
平方差公式(a + b)² = a² + 2ab + b²(a 和 b 可以是任意实数),是一种计算平方和的方法。
通过平方差公式,可以将一个式子的平方和转化为两个式子的平方差。
例1:计算 (2+3)²= 2² + 2×2×3 + 3²= 4 + 12 + 9= 25例2:计算(4a+2b)²= (4a)² + 2 × (4a) × (2b) + (2b)²= 16a² + 16ab + 4b²(2)平方差公式的几何意义平方差公式的几何意义是将一个正方形的面积分为一个小正方形的面积加上四个直角三角形的面积。
体现了一个数的平方与两数的乘积之间的关系。
(3)平方差公式的应用平方差公式应用广泛,不仅可以用来简化式子,解决多项式乘法问题,还可以解方程,证明不等式等。
3. 实践训练(50分钟)通过课堂练习和课后作业来让学生巩固和练习平方差公式的运用。
平方差公式的教学设计及分析【教学目标】1.理解平方差公式的定义和含义;2.学会正确运用平方差公式计算示例题;3.能够应用平方差公式解决实际问题。
【教学内容】1.平方差公式的定义和推导过程;2.平方差公式的应用;3.相关习题和实际问题。
【教学步骤】一、导入环节(5分钟)1. 创设情境,比如老师提问:“小明手中有一块木板,宽度是 a cm,长度是b cm。
请问,木板的面积为多少?”引导学生思考。
2.引介平方差公式:“学过面积公式了,面积就是长度和宽度的乘积。
但有没有其它方法计算面积呢?”二、讲解平方差公式的定义和推导过程(20分钟)1.带着学生一起推导平方差公式。
2.讲解平方差公式的定义和含义:“平方差公式是用于计算两个数的平方差的公式。
”3.引导学生记忆平方差公式。
三、运用平方差公式计算示例题(15分钟)1.出示几道简单的计算题,引导学生运用平方差公式计算。
2.逐步提高难度,引导学生解决更复杂的计算问题。
四、学生练习(15分钟)1.分发练习册,要求学生独立完成相关习题。
2.自主学习,教师巡视指导。
五、解答习题和梳理知识(15分钟)1.学生互相核对习题答案,教师解答学生提出的问题和疑惑。
2.回顾和梳理平方差公式的基本知识点。
六、应用实际问题(15分钟)1. 出示一些实际问题,引导学生运用平方差公式解决问题,如“长方形的长是5 cm,宽是3 cm。
如果长方形的一条边增加2 cm,另一条边减少1 cm,面积的变化是多少?”2.引导学生分析问题、列方程,然后计算并得出答案。
七、巩固和拓展(10分钟)1.师生互动,复习平方差公式的应用技巧和注意事项。
2.出示一些拓展题,引导学生运用平方差公式解决更复杂的问题。
3.鼓励学生独立思考,提出自己的解题方法和思路。
【教学分析】教学设计的亮点有以下几个方面:1.通过创设情境引导学生思考,激发学生的学习兴趣和主动性;2.以学生为中心,通过学生自主学习和自主解题来加深理解和巩固知识;3.引导学生从解决实际问题的角度去理解和应用平方差公式。
《平方差公式》教学设计教学设计平方差公式教学设计一、教学目标1. 理解平方差公式的定义和含义;2. 掌握平方差公式的应用方法;3. 发展学生的逻辑思维和推理能力。
二、教学内容1. 平方差公式的概念和定义;2. 平方差公式的推导过程;3. 平方差公式的应用。
三、教学过程导入:1. 通过问答的方式引入平方差公式的概念,如:你们知道平方差公式是什么吗?它有什么作用?2. 引导学生回顾平方差公式之前所学过的知识,如平方根等。
知识讲解:1. 讲解平方差公式的定义和含义,如:平方差公式是指两个数的平方差等于这两个数的和与差的乘积。
用数学符号表示为:(a+b)(a-b)=a^2-b^2。
2. 讲解平方差公式的推导过程,通过具体的例子展示如何由(a+b)(a-b)=a^2-b^2推导出这一公式。
实例演示:1. 通过给出一些具体的数值例子,让学生进行演算,进一步加深对平方差公式的理解。
2. 提供一些实际问题,引导学生运用平方差公式解决实际问题。
练习巩固:1. 在教师的指导下,学生进行平方差公式的相关练习,如计算等。
2. 留出时间让学生进行自主练习,提高他们的巩固能力。
拓展应用:1. 鼓励学生思考更多的数学问题和应用,提高他们的数学思维能力。
2. 提供一些深入的扩展问题,让学生进行探索和研究。
四、教学评价1. 结合教学过程中的课堂练习和自主练习,收集学生的练习作业,进行评价和反馈。
2. 参考学生对平方差公式的掌握情况,对教学过程进行评估,并对下一步的教学进行调整。
五、教学资源1. 平方差公式的定义和推导过程的讲解材料;2. 平方差公式的练习题和答案;3. 相关的课件和教学工具。
六、教学反思本次教学设计主要围绕平方差公式展开,通过引导学生认识和理解平方差公式的概念和定义,提供具体的推导过程,并通过实例演示和练习巩固,达到对平方差公式的掌握和灵活运用。
同时,通过拓展应用和思考更多的数学问题,培养学生的数学思维和解决问题的能力。
教师如何教授平方差公式的教案一、教学目标1.知识目标:使学生掌握平方差公式的概念、公式及其应用。
2.能力目标:让学生能够熟练地运用平方差公式解决实际问题。
3.情感目标:让学生了解平方差公式的应用及其实用性,激发学生的学习兴趣和科学探究的热情。
二、教学重点与难点1.教学重点:让学生掌握平方差公式的概念、公式及其应用。
2.教学难点:让学生能够熟练地运用平方差公式解决实际问题。
三、教学策略本次教学使用的策略主要包括课堂讲解、案例分析、组织练习和小组合作等形式。
四、教学过程1.引入教师以生动活泼的语言介绍平方差公式的背景和实际应用场景,激发学生的学习兴趣和好奇心。
2.概念讲解教师对平方差公式的概念进行详细讲解,并在课堂上提供相关的案例,从理论和实践两个方面让学生了解平方差公式的基本概念和原理。
3.公式推导为了更好地掌握平方差公式的应用,教师通过演示推导的方法分析平方差公式,让学生能够理解公式的本质和重要性,同时讲解相关的数学公式及其衍生公式。
4.案例分析为了加强学生的应用能力,教师给出几个实际问题,让学生通过平方差公式解决问题,学以致用、能够掌握平方差公式的实际应用。
5.组织练习教师在课堂上组织学生进行练习,加强学生的运用能力和熟练度,通过实际操作促进学生的思维能力和创造性思维。
6.小组合作教师组织学生分组,让每个小组自行思考和解决一个数学问题,通过小组合作促进学生彼此交流、思路拓展和创造性思维的提升。
7.总结在课堂上,教师对本节课的内容和关键点进行总结,强调平方差公式的重要性和应用场景,同时鼓励学生在学习中多思考、多提问、多交流和多创新。
五、教学评价1.从知识掌握的程度来考察学生是否掌握平方差公式的概念、公式及其应用。
2.从应用能力的发挥来考察学生是否能够熟练地运用平方差公式解决实际问题。
3.从情感的反映角度来考察学生对平方差公式的认知和认可程度,以及愉悦感、成就感和探究兴趣是否得到促进。
六、教学延伸为了让学生更好地掌握平方差公式的应用,教师可以让学生自己选取一些数据进行计算,使用平方差公式进行解决,并在班级上进行展示,促进学生思维的交流,拓展学生的思维空间,为学生的未来科学研究打下坚实的基础。
平方差公式教案(共5篇)第一篇:平方差公式教案学习周报专业辅导学生学习第七节平方差公式(一)学习目的:1、通过经历探索平方差公式的过程,进一步发展符号感和推理能力。
2、会推导平方差公式、理解平方差公式的特点,并能运用公式进行简单的计算。
3、通过对平方差公式结构的认识,体会数学中的结构美、简约美。
学习重点:理解平方差公式的特点,会运用平方差公式计算学习难点:会推导平方差公式,并能灵活运用公式进行计算学习过程:一、复习探究1、请写出多项式与多项式相乘的法则:2、计算下列各题(1)(x+2)(x-2);(2)(1+3a)(1-3a)(3)(x+5y)(x-5y);(4)(y+3z)(y-3z)解:3、通过以上计算,你发现了什么规律?能不能猜想出一个一般性的结论?规律:结论:二、学习新课1、推导公式:现在要对大家提出的猜想进行证明,请试着写出证明过程:证明:我们经历了由发现——猜测——证明的过程,最后得出一个公式性的结论,根据它的特点,我们给它取个容易记的名字,就叫做平方差公式学习周报专业辅导学生学习即:(a+b)(a-b)=a-b两个数的和与这两个数的差相乘,它们的积就等于这两个数的平方差.你知道公式中的a、b表示什么?请同学们分析公式的结构并记忆。
2、应用公式例1、用平方差公式计算:(1)(5+6x)(5-6x);(2)(x-2y)(x+2y)分析:要利用平方差公式解题,必须找到相同的项和互为相反数的项,结果为相同项的平方减互为相反数的项的平方.解:(1)(5+6x)(5-6x)=5-(6x)=25-36x(2)(x-2y)(x+2y)=x-(2y)=x-4y 例2、利用平方差公式计算(1)(-m+n)(-m-n);(2)(-2x-5y)(5y-2x);222222222(3)(ab+8)(-ab+8)分析:注意找准相同项与互为相反数的项.解:(1)(-m+n)(-m-n)=(-m)-n=m-n(2)(-2x-5y)(5y-2x)=(-2x)2-(5y)2=4x2-25y2(3)(ab+8)(-ab+8)=82-(ab)2=64-a2b2 现在让我们来试试吧!练习1:下列各题能否用平方差公式来进行计算?若能,请写出结果。
平方差公式教学设计(优秀10篇)平方差公式说课课件篇一平方差公式教学反思本节课采用情景—探究的方式,以猜想、实验、论证为主要探究方式,得出平方差公式,应用逆向思维的方向,演绎出平方差公式,对公式的应用首先提醒学生要注意其特征,其次要做好式子的变形,把问题转化成能够应用公式的方面上来,应用公式法因式分解的过程,实际上就是转化和化归的过程。
在解决认识平方差公式的`结构时候,重点突出学生自我思想的形成,能够充分地不公式用自己的语言来叙述,在整个教学设计中,教师只作为了一个点拨者和引路人。
然后应用有梯度的典型例题加以巩固,在学生头脑中形成一个清晰完整的数学模型,使学生在今后的练习中游刃有余。
不足之处:教学中时间把握还是不足,在设计的题目中不怎么合理,应按题目的难度从易到难。
有些题目的归纳可放手给学生讨论后由学生说出,而不是教师代替。
小组评价做的不够,没有足够的小组的活动,没有小组的竞赛。
教学语言还太随意,数学的语言应该严谨。
在语调上应该有所变化。
平方差公式篇二2.运用公式要注意什么?(1)要符合公式特征才能运用平方差公式;(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.四、作业1.运用平方差公式计算:(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);(5)(2x3+壹五)(2x3-壹五);(6)(0.3x-0.l)(0.3x+l);2.计算:(1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).热门文章青少年思想道德建设当前我国作文教学改革的新趋势古诗三首(墨梅竹石石灰吟)一场雪Unit2Look at me第五课时植物妈妈有办法威尼斯的小艇等比数列的前n项和相关文章・多项式的乘法・单项式与多项式相乘・单项式的乘法・幂的乘方与积的乘方(二)・幂的乘方与积的乘方・同底数幂的乘法(二)・同底数幂的乘法・一元一次不等式组和它的解法平方差公式教学课件篇三平方差公式教学课件教学目的:1、使学生会推导平方差公式,并掌握公式特征。