贝叶斯统计ch4决策中的收益损失与效用
- 格式:ppt
- 大小:2.72 MB
- 文档页数:61
叶斯统计决策理论是指综合运用决策科学的基础理论和决策的各种科学方法对投资进行分析决策。
其应用决策科学的一般原理和决策分析的方法研究投资方案的比选问题,从多方面考虑投资效果,并进行科学的分析,从而对投资方案作出决策。
涉及到投资效果的各种评价、评价标准、费用(效益分析)等问题。
投资决策效果的评价问题首要的是对投资效果的含义有正确理解,并进行正确评价。
贝叶斯统计中的两个基本概念是先验分布和后验分布。
①先验分布。
总体分布参数θ的一个概率分布。
贝叶斯学派的根本观点,是认为在关于总体分布参数θ的任何统计推断问题中,除了使用样本所提供的信息外,还必须规定一个先验分布,它是在进行统计推断时不可缺少的一个要素。
他们认为先验分布不必有客观的依据,可以部分地或完全地基于主观信念。
②后验分布。
根据样本分布和未知参数的先验分布,用概率论中求条件概率分布的方法,求出的在样本已知下,未知参数的条件分布。
因为这个分布是在抽样以后才得到的,故称为后验分布。
贝叶斯推断方法的关键是任何推断都必须且只须根据后验分布,而不能再涉及样本分布。
贝叶斯统计(Bayesian statistics),推断统计理论的一种。
英国学者贝叶斯在1763年发表的论文《有关机遇问题求解的短论》中提出。
依据获得样本(Xl,X2,…,Xn)之后θ的后验分布π(θ|X1,X2,…,Xn)对总体参数θ作出估计和推断。
它不是由样本分布作出推断。
其理论基础是先验概率和后验分布,即在事件概率时,除样本提供的后验信息外,还会凭借自己主观已有的先验信息来估计事件的概率。
而以R.A.费希尔为首的经典统计理论对事件概率的解释是频率解释,即通过抽取样本,由样本计算出事件的频率,而样本提供的信息完全是客观的,一切推断的结论或决策不允许加入任何主观的先验的信息。
以对神童出现的概率P的估计为例。
按经典统计的做法,完全由样本提供的信息(即后验信息)来估计,认为参数p是一个“值”。
贝叶斯统计的做法是,除样本提供的后验信息外,人类的经验对p 有了一个了解,如p可能取pl与户p2,且取p1的机会很大,取p2机会很小。
一、什么是贝叶斯决策在以上所述的一般风险性决策问题中,自然状态的概率是作为已知条件给出的。
但是,在现实经济生活中,事先给出的各种状态的概率(又称为先验概率)常常是不准确的。
因此,需要通过进一步的试验和调查,收集补充信息,并利用补充信息,对原来估计的概率进行修订,从而求得更接近实际的新概率(利用补充信息修订的概率又称为后验概率)。
所谓贝叶斯决策,就是利用补充信息,根据概率计算中的贝叶斯公式来估计后验概率,并在此基础上对备选方案进行评价和选择的一种决策方法。
利用贝叶斯决策方法,可以将先验的信息和补充的信息结合在一起进行分析与判断,从而提高了决策的可靠性。
同时,利用该方法,还可以对信息的价值以及是否需要采集新的补充信息作出科学的判断。
二、贝叶斯公式与后验概率的估计设某种状态θj的先验概率为P(θj),通过调查获得的补充信息为e k ,θj给定时,e k的条件概率(似然度)为,则在给定信息e k的条件下,θj 的条件概率即后验概率可用以下贝叶斯公式计算:(9.14)【例9-10】某空调机生产厂家拟向另一电子元件厂购买某种电子元器件,根据过去的经验,该电子元件厂产品发生不同次品率的概率分布如表9-5第二栏所示。
但据说,该厂的产品质量最近有所提高。
现从市场上该电子元件厂出售的该种元器件中,随机抽取了10件,结果未发现次品。
试根据这一信息,对以往元器件厂次品率的概率分布进行修正。
解:以往的概率分布可视为先验概率。
在各种不同次品率给定条件下,抽查10件发生0件次品(发生0件为)的概率近似地服从于二项分布,其似然度可按以下方式计算:(9.15)在Excel 中,利用BINOMDIST函数可以方便地计算二项分布的概率。
表9-5的第3栏,给出了按照上式计算的结果。
将似然度代入贝叶斯公式(9.4)式,可求得不同状态下的后验概率,结果如表9-5中最后一栏(第5栏)所示。
例如,次品率为0.05状态的后验概率为:从表中结果可以看出:由于实际抽查的次品率为0,因此,次品率为0.05这种状态的后验概率大于先验概率,而次品率为0.15和 0.20这两种状态的后验概率小于先验概率。
贝叶斯决策方法综述一、决策问题决策就是对一件事情要做出决定,它与推断的差别在于是否涉及后果。
统计学家在作推断时是按统计理论进行的,很少或根本不考虑推断结论在使用后的损失,而决策者在使用推断结果做决策时必须与得失联系在一起考虑。
能给他带来利润的他就使用,使他遭受损失的就不会被采用,度量得失的尺度就是损失函数。
著名统计学家A.Wald(1902-1950)在20世纪40年代引入了损失函数的概念,指的是由于决策失误导致的损失值。
损失函数与决策环境密切相关,因此从实际问题中归纳出合适的损失函数是决策成败关键。
把损失函数加入贝叶斯推断就形成贝叶斯决策论,而损失函数被称为贝叶斯统计中的第四种信息。
决策分析是一般分四个步骤:1)形成决策问题,包括提出方案和确定目标;2)判断自然状态及其概率;3)拟定多个可行方案;4)评价方案并做出选择。
常用的决策分析技术有:确定型情况下的决策分析、风险型情况下的决策分析及不确定型情况下的决策分析。
(1)确定型情况下的决策分析。
确定型决策问题的主要特征有四方面:一是只有一个状态,二是有决策者希望达到的一个明确的目标,三是存在着可供决策者选择的两个或两个以上的方案,四是不同方案在该状态下的收益值是清楚的。
确定型决策分析技术包括用微分法求极大值和数学规划等方法。
(2)风险型情况下的决策分析。
这类决策问题与确定型决策只在第一点特征上有所区别,即在风险型决策问题中,未来可能的状态不只一种,究竟出现哪种状态不能事先肯定,只知道各种状态出现的可能性大小(如概率、频率、比例或权等)。
常用的风险型决策分析技术有期望值法和决策树法。
期望值法是根据各可行方案在各自然状态下收益值的概率平均值的大小,决定各方案的取舍。
决策树法有利于决策人员使决策问题形象化,把各种可以更换的方案、可能出现的状态、可能性大小及产生的后果等,简单地绘制在一张图上,以便计算、研究与分析,同时还可以随时补充。
(3)不确定型情况下的决策分析。
【决策管理】贝叶斯决策模型及实例分析(doc 12页)部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑贝叶斯决策模型及实例分析一、贝叶斯决策的概念贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。
风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。
这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。
为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。
二、贝叶斯决策模型的定义贝叶斯决策应具有如下内容贝叶斯决策模型中的组成部分:)(,θθPSAa及∈∈。
概率分布SP∈θθ)(表示决策者在观察试验结果前对自然θ发生可能的估计。
这一概率称为先验分布。
一个可能的试验集合E,Ee∈,无情报试验e0通常包括在集合E之内。
一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。
概率分布P(Z/e,θ),Zz∈表示在自然状态θ的条件下,进行e试验后发生z结果的概率。
这一概率分布称为似然分布。
c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。
一个可能的后果集合C,C每一后果c=c(e,z,a,θ)取决于e,z,a和θ。
.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。
三、贝叶斯决策的常用方法3.1层次分析法(AHP)在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。
所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。
贝叶斯决策模型及实例分析一、贝叶斯决策的概念贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准那么来确定最优方案的决策方法。
风险型决策是根据历史资料或主观判断所确定的各种自然状态概率〔称为先验概率〕,然后采用期望效用最大等准那么来确定最优决策方案。
这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。
为了降低决策风险,可通过科学试验〔如市场调查、统计分析等〕等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准那么来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准那么来确定最优方案的决策方法称为贝叶斯决策方法。
二、贝叶斯决策模型的定义贝叶斯决策应具有如下内容贝叶斯决策模型中的组成局部:)(,θθPSAa及∈∈。
概率分布SP∈θθ)(表示决策者在观察试验结果前对自然θ发生可能的估计。
这一概率称为先验分布。
一个可能的试验集合E,Ee∈,无情报试验e0通常包括在集合E之内。
一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。
概率分布P(Z/e,θ),Zz∈表示在自然状态θ的条件下,进行e试验后发生z结果的概率。
这一概率分布称为似然分布。
c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。
一个可能的后果集合C,C每一后果c=c(e,z,a,θ)取决于e,z,a和θ。
.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。
三、贝叶斯决策的常用方法层次分析法(AHP)在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。
所谓层次化就是根据所研究问题的性质和要到达的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按假设干层次聚集组合,形成一个多层次的分析结构模型。
贝叶斯分析决策Bayesean Analysis§4.0引言一、决策效果的表格表示——损失矩阵对无观察(No-data)效果a=δ可用表格(损失矩阵)替代决策树来描画决策效果的结果(损失):或损失矩阵直观、运算方便二、决策原那么通常,要依据某种原那么来选择决策规那么δ,使结果最优(或满意),这种原那么就叫决策原那么,贝叶斯剖析的决策原那么是使希冀成效极大。
本章在引见贝叶斯剖析以前先引见芙他决策原那么。
三、决策效果的分类:1.不确定型(非确定型)自然形状不确定,且各种形状的概率无法估量.2.风险型自然形状不确定,但各种形状的概率可以估量.四、按形状优于:l ij ≤lik∀I, 且至少对某个i严厉不等式成立, 那么称举动aj按形状优于ak§4.1 不确定型决策效果一、极小化极大(wald)原那么(法那么、准那么) a1a2a4minj maxil (θi, aj) 或maxjminiuij例:各举动最大损失: 13 16 12 14其中损失最小的损失对应于举动a3.采用该原那么者极端保守, 是失望主义者, 以为老天总跟自己作对.二、极小化极小minj minil (θi, aj) 或maxjmaxiuij例:各举动最小损失: 4 1 7 2其中损失最小的是举动a2.采用该原那么者极端冒险,是失望主义者,以为总能撞大运。
三、Hurwitz准那么上两法的折衷,取失望系数入minj [λminil (θi, aj)+〔1-λ〕maxil (θi, aj)]例如λ=0.5时λmini lij: 2 0.5 3.5 1〔1-λ〕maxi lij: 6.5 8 6 7两者之和:8.5 8.5 9.5 8 其中损失最小的是:举动a4四、等概率准那么(Laplace)用i∑l ij来评价举动a j的优劣选minji∑l ij上例:i∑l ij: 33 34 36 35 其中举动a1的损失最小五、后梅值极小化极大准那么(svage-Niehans)定义后梅值sij =lij-minklik其中mink lik为自然形状为θi时采取不同举动时的最小损失.构成后梅值(时机本钱)矩阵S={sij }m n⨯,使后梅值极小化极大,即:min max j i s ij例:损失矩阵同上, 后梅值矩阵为:3 1 0 23 0 8 11 4 0 20 3 2 4各种举动的最大后梅值为: 3 4 8 4其中举动a1 的最大后梅值最小,所以按后梅值极小化极大准那么应采取举动1.六、Krelle准那么:使损失是成效的正数(结果的成效化),再用等概率(Laplace)准那么.七、莫尔诺(Molnor)对理想决策准那么的要求(1954)1.能把方案或举动排居完全序;2.优劣次第与举动及形状的编号有关;3.假定举动ak 按形状优于aj,那么应有ak优于aj;4.有关方案独立性:曾经思索过的假定干举动的优劣不因添加新的举动而改动;5.在损失矩阵的任一行中各元素加同一常数时,各举动间的优劣次第不变;6.在损失矩阵中添加一行,这一行与原矩阵中的某行相反,那么各举动的优劣次第不变。