微分中值定理及其应用Word
- 格式:doc
- 大小:1.27 MB
- 文档页数:25
定理及其证明费马定理:设)(f x 在c 的某邻域)(δδ+−c c ,内有定义,而且在这个领域上有)()(c f x f ≤(其中)c (f 为局部最大值)或者)()(c f x f ≥(其中)c (f 为局部最小值),当)(f x 在c 处可导时,则有0)c ('=f .证明:因为假设)c ('f 存在,由定义可得左导数)('-x f 和右导数)(f 'c +均存在且满足:)(f )()('''-c c f c f ==+当c x <时,0)()(≥−−c x c f x f ,所以0)(f )(lim)(f '≥−−=−→c x c x f c c x 当c >x 时,0)()(≤−−c x c f x f ,所以0)(f )(lim)(f '≤−−=+→c x c x f c cx 所以0)c ('=f以上是对于)()(c f x f ≤这种情况进行的证明,同理也可证明)()(c f x f ≥这种情形 罗尔定理:设)(f x 在[]b ,a 上连续,在()b ,a 上可导,若)()a (b f f =,则必有一点()b a ,c ∈使得0)c ('=f .证明:分两种情况,若)(f x 为常值,结论显然成立.若)(f x 不为常值,根据最大、最小值定理(有界闭区间[]b ,a 上的连续函数)(f x 具有最大值和最小值)可知,)(f x 必在()b ,a 内某一点c 处达到最大值或最小值,再有费马定理可得,0)c ('=f .拉格朗日中值定理:设)(f x 在[]b ,a 上连续,在()b ,a 上可导,则一定有一点()b ,a ∈ξ使ab a f −−=)(f )b ()(f 'ξ.证明:分两种情况,若)(f x 恒为常数,则0)x ('=f 在()b ,a 上处处成立,则定理结论明显成立.若)(f x 在[]b ,a 不恒为常数时,由于)(f x 在[]b ,a 上连续,由闭区间连续函数的性质,)(f x 必在[]b ,a 上达到其最大值M 和最小值m ,有一种特殊情况)()a (b f f =时,定理成立,这就是上面所证明过的罗尔定理.考虑一般情形,)()a (b f f ≠.做辅助函数x )(f )b ()(f )x (ab a f x −−−=ϕ.由连续函数的性质及导数运算法则,可得)x (ϕ在[]b ,a 上连续,在()b ,a 上可导,且()a ab b a bf ϕϕ=−−=)(f )a ()b (,这就是说)x (ϕ满足刚刚的特殊情况,因此在()b ,a 内至少有一点ξ,使得()0)(f )b (f )(''=−−−=ab a f ξξϕ.即()ab a f −−=)(f )b (f 'ξ.定理得证. 柯西中值定理:若)(f x 和)(g x 在[]b ,a 上连续,在()b ,a 上可导,且0)x (g '≠,则一定存在()b ,a ∈ξ使()()()()ξξ''g )(f )b (g f a g b a f =−−. 证明:首先能肯定)()a (g b g ≠,因为如果)()a (g b g =,那么由拉格朗日中值定理,)x (g '在()b ,a 内存在零点,因此与假设矛盾. 还是做辅助函数()()()()()a g a g b a f x F −−−−=x g g )(f )b ()(f )x (.由()()b F F =a ,再由拉格朗日中值定理,可以证明定理成立.泰勒中值定理:若)(f x 在0x =点的某个邻域内有直到1n +阶连续导数,那么在此邻域内有()()()()()()()x R x n f x f f f x n nn +++++=!0...!20x 00f 2'''.其中()()()()11n x !1+++=n n n f x R ξ.ξ是介于0与x 之间的某个值.证明:做辅助函数()()()()()()()()()()n n t x n t f t x t f t x t f t f x f −−−−−−−+=!...!2t 2'''ϕ.由假设容易看出()t ϕ在[]x ,0或[]0,x 上连续,且()()x R n 0=ϕ,()0x =ϕ,()()()()()[]()()()()()()()()()()()()()()()−−−−−−−−−−−−−−−−−=−+11n 2'''''2''''''''!1!...!2...f -!2-f n n n t x n t f t x n t f t x t f t x t f t x t t x t f t f t x t f t t ϕ化简后有()()()()n 1n '!-t x n t f t −=+ϕ.在引进一个辅助函数()()1t +−=n t x ψ.对函数()t ϕ和()t ψ利用柯西中值定理得到()()()()()()ξψξϕψψϕϕ''00x =−−x ,ξ是介于0与x 之间的某个值,此时有()()x R n 0=ϕ,()0x =ϕ,()()()()n x n f ξξξϕ−=+!-1n ',()1n x 0+=ψ,()0x =ψ,()()()nx ξξψ−+=1n -',代入上式,即得()()()()11n x !1+++=n n n f x R ξ. 定理证明完毕.这是函数()x f 在0x =点的泰勒公式,同理推导可得()x f 在0x x =点附近的泰勒公式()()()()()()()()()()x R x x n x f x x x f x x x f x f x n n o n +−++−+−+=0200''00'0!...!2f .其中()()()()()101n !1++−+=n n x x n f x R ξ.ξ是介于0x 与x 之间的某个值.定理间关系:罗尔定理,拉格朗日定理,柯西定理以及泰勒公式是微分学的基本定理。
微分中的中值定理及其应用微分中的中值定理是微积分中的基本定理之一,它在数学和物理学中具有重要的应用。
本文将介绍微分中的中值定理及其应用,并展示其在实际问题中的解决方法。
一、中值定理的概念与原理中值定理是微分学中的重要理论,它涉及到函数在某个区间上的平均变化率与瞬时变化率之间的联系。
其中最常见的三种形式为:罗尔定理、拉格朗日中值定理和柯西中值定理。
1. 罗尔定理罗尔定理是中值定理的基础,它的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且满足f(a) = f(b),则在开区间(a, b)上至少存在一点c,使得f'(c) = 0。
罗尔定理可通过对函数在该区间的最大值和最小值进行讨论得出,它主要用于证明函数在某一区间上恒为常数的情况。
2. 拉格朗日中值定理拉格朗日中值定理是中值定理的一种推广,它的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则至少存在一点c,使得f'(c) = (f(b) - f(a))/(b - a)。
拉格朗日中值定理的证明可以通过构造辅助函数g(x) = f(x) - [(f(b) - f(a))/(b - a)]x来完成,它可以将任意两点间的斜率与函数在某一点的导数联系起来。
3. 柯西中值定理柯西中值定理是拉格朗日中值定理的进一步推广,它的表述为:如果函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且g'(x)≠0,则至少存在一点c,使得[f(b) - f(a)]/g(b) - g(a) = f'(c)/g'(c)。
柯西中值定理可以用来研究函数间的关系,它提供了一种描述两个函数在某一区间上的变化率相等的条件。
二、中值定理的应用中值定理不仅仅是一种理论工具,还具有广泛的应用。
下面将介绍中值定理在实际问题中的应用案例。
1. 最速下降线问题最速下降线问题是求解两个给定点之间的最短路径问题。
第六章 微分中值定理及其应用在这一章里,讨论了怎样由导数f ′的已知性质来推断函数所应具有的性质.微分中值定理正是进行这一讨论的有效工具.f 一、拉格朗日中值定理1.罗尔定理定理 设函数在区间满足:f ],[b a i)在区间上连续,f ],[b a ii)在区间上可导,f ),(b a iii),)()(b f a f =则在内至少存在一点),(b a ξ,使得0)(=′ξf .几何意义:在每一点都可导的一段连续曲线上,如果曲线的两端高度相同,则至少存在一条水平切线.例1 设f 为上的可导函数,证明:若方程R 0)(=′x f 没有实根,则方程至多只有一个实根.0)(=x f 2.拉格朗日定理:设函数在区间满足:f ],[b a i)在区间上连续f ],[b a ii)在区间上可导f ),(b a 则在内至少存在一点),(b a ξ,使得ab a f b f f −−=′)()()(ξ (拉格朗日公式) 注:几何意义:在满足条件的曲线上至少存在一点,曲线在该点处的切线平行于曲线端点的连线.拉格朗日公式的几种等价表示:))(()()(a b f a f b f −′=−ξ)))((()()(a b a b a f a f b f −−+′=−θ , 10<<θh h a f a f h a f )()()(θ+′=−+ , 10<<θ推论 (1)若函数在区间f I 上可导,且0≡′)(x f ,则为区间f I 上的常值函数.(2)若函数和f g 均在区间I 上可导,且)()(x g x f ′≡′,则在区间I 上和f g 只相差一个常数,即c x g x f +=)()((3)导数的极限定理:设函数在点的某邻域连续,在内可导,且存在,则在可导,且 f 0x )(0x U )(0x U o )(lim 0x f x x ′→f 0x )(0x f ′= )(lim x f x x ′→0注:这个定理给出的是充分条件,即当)(lim x f x x ′→0不存在的时候,也可能存在.例如 )(0x f ′⎪⎩⎪⎨⎧=≠=00012x x x x y ,,sin .但是也要注意的是如果的左右极限都存在当不相等,则一定不存在.这一点也说明了若在区间)(lim x f x x ′→0)(0x f ′f I 上可导,那么要么连续,要么只可能有第二类间断点.)(x f ′3.拉格朗日定理的一些应用:(证明不等式)例 证明对一切0,1≠−>h h ,下列不等式成立h h hh <+<+)ln(11 (根的存在及个数的估计) 例 设为多项式,)(x p α为0)(=x p 的r 重根,证明α为0)(=′x p 的1−r 重根. (利用导数的极限定理求分段函数的导数)例 求分段函数⎩⎨⎧>+≤+=0),1ln(0,sin )(2x x x x x x f 的导数.(关于函数的单调性的讨论)定理 设函数在区间f I 上可导,则在区间f I 上递增(减)的充要条件是: ))(()(00≤′≥′x f x f例 讨论的单调区间.x x x f −=3)(定理 若函数在上可导,则在上严格递增(减)的充要条件是:f ),(b a f ),(b a i)对一切,有),(b a x ∈))(()(00≤′≥′x f x fii)在内的任何子区间上),(b a 0≠′)(x f .推论 若函数在上可导,且f ),(b a 0>′)(x f (0<′)(x f ),则在上严格递f ),(b a增(减).注:若函数在上(严格)递增(减)且在点a 右连续,则在上(严格)递增(减),对右端点的讨论类似.(利用单调性证明不等式) f ),(b a f ),[b a 例 证明,0,1≠+>x x e x )2,0(,sin 2ππ∈<<x x x x 二 、柯西中值定理和不定式的极限1.定理(柯西中值)设函数和f g 满足:1)在区间上连续,],[b a 2)在区间上都可导,),(b a 3)与不同时为0,)(x f ′)(x g ′4),)()(b g a g ≠则至少存在一点),(b a ∈ξ,使得:)()()()()()(b g a g a f b f g f −−=′′ξξ 几何意义:与拉格朗日的类似.例 设函数在()上连续,在内可导,则至少存在一点f ],[b a 0>a ),(b a ),(b a ∈ξ,使得ab f a f b f ln )()()(ξξ′=− 2.不定式的极限0型的不定式 定理 若函数和f g 满足:1) . =→)(lim x f x x 000=→)(lim x g x x 2)在点的某空心邻域内二者都可导,且0x )(0x U o 0)(≠′x g .3) A x g x f x x =′′→)()(lim 0(A 可为实数,也可为无穷大). 则)()(lim0x g x f x x →=A x g x f x x =′′→)()(lim 0 例 求xx x 21tan cos lim +→π )1ln()21(lim 2210x x e x x ++−→ x x e x −+→1lim 0∞∞型的不定式 定理 若函数和f g 满足:1) . =→)(lim x f x x 0∞=→)(lim x g x x 02)在点的某空心邻域内二者都可导,且0x )(0x U o 0≠′)(x g .3) A x g x f x x =′′→)()(lim 0(A 可为实数,也可为无穷大). 则 )()(lim x g x f x x 0→=A x g x f x x =′′→)()(lim 0 例 x x x ln lim+∞→ (αx x x ln lim +∞→,只要0>α) 3lim x e xx +∞→注:在)()(lim x g x f x x ′′→0不存在的时候,并不能说明)()(lim x g x f x x 0→不存在. 比如以下几个不能使用罗比达法则的例子:x x x x sin lim +∞→ xx x x x sin sin lim −+∞→ 其他类型的不定式极限:型 ∞⋅0x x x ln lim +→0型 ∞121x x x )(cos lim → 型 00x k x x ln )(sin lim +→+10型 0∞x x x x ln )(lim 121+++∞→型 ∞−∞)ln 111(lim 1xx x −−→ 对于数列的极限也可以用罗比达法则来求.例 n n n n )(lim 2111+++∞→ → x x xx )(lim 2111+++∞→ 三、泰勒公式多项式是各种函数中最简单的一种,本节是考虑如何用多项式去逼近函数,因此是近似计算的重要内容.1.带有皮亚诺型余项的泰勒公式考察下列多项式n n n x x a x x a x x a a x p )()()()(0202010−++−+−+=L则不难发现,)(00x p a n =!)(101x p a n ′=, !2)("01x p a n = ,… , !)()(n x p a n n n 0= 那么对于一般函数,设它在点具有直到阶的导数,由这些导数可以构造一个多项式f 0x n n n n x x n x f x x x f x x x f x f x T )(!)()(!)()(!)()()()(0020000021−++−′′+−′+=L 称其为在的泰勒多项式,系数为泰勒系数.不难发现f 0x )()()()(00x T x f k n k = ),,,(n k L 10=定理 函数在点存在直到阶的导数,则有,即f 0x n ))(()()(n n x x o x T x f 0−+=n n x x n x f x x x f x x x f x f x f )(!)()(!)()(!)()()()(0020000021−++−′′+−′+=L ……… 带有皮亚诺型余项的泰勒公式))((n x x o 0−+当时,称00=x )(!)(!)(!)()()()(n n n x o x n f x f x f f x f +++′′+′+=0201002L 为带有皮 亚诺型余项的麦克劳林公式.以下是几个常用函数的麦克劳林公式:)(!!n n x x o x n x x e +++++=12112L )()!()(!!sin !222531215131++++−+++−=m m m x o x m x x x x L)()!()(!!cos 122422141211++−+++−=m m mx o x m x x x L )()()ln(n n n x o x n x x x x +−+++−=+−132131211L )(n n x o x x x x+++++=−L 2111 利用上述麦克劳林公式,可间接求得一些函数的麦克劳林公式或泰勒公式以及求某种类型的函数极限.例 写出22x e x f −=)(的麦克劳林公式,并求,.)()(098f )()(099f 例 求在处的泰勒公式.x ln 2=x 例 求4202x e x x x −→−cos lim . 2.带有拉格朗日型余项的泰勒公式 定理 若函数f 在上存在直至阶的连续导函数,在内存在阶的导数,则对任给的,至少存在一点],[b a n ),(b a 1+n ],[,b a x x ∈0),(b a ∈ξ,使得n n x x n x f x x x f x x x f x f x f )(!)()(!)()(!)()()()(0020000021−++−′′+−′+=L 1011++−++n n x x n f )()!()()(ξ ………………带有拉格朗日型余项的泰勒公式 当时,称00=x n n x n f x f x f f x f !)(!)(!)()()()(0201002++′′+′+=L 111++++n n x n x f )!()()(θ 为带有拉格朗日型余项的泰勒公式.1211211+++++++=n xn xx n e x n x x e )!(!!θL 3212533211215131++++−++−+++−=m m m m x m x x m x x x x )!(cos )()!()(!!sin !θL 2212422212141211+++−+−+++−=m m m mx m x x m x x x )!(cos )()!()(!!cos θL 11132111131211++−++−+−+++−=+n n n n n x x n x n x x x x ))(()()()ln(θL12211111++−+++++=−n n n x x x x x x )(θL 3.在近似计算中的应用例 计算e 的值,使其误差不超过,并且证明e 为无理数.610−例 用泰勒多项式逼近正弦函数,要求误差不超过,试以一次和二次的多项式逼近,分别讨论x sin 310−x 的范围. 四、函数的极值与最大(小)值1.极值的判别函数的极值是函数局部的又一性质.定理(极值的第一充分条件) 设在点连续,在某内可导. f 0x )(0x U o i) 若当),(00x x x δ−∈时0≤′)(x f ,当),(δ+∈00x x x 时0≥′)(x f ,则在点取得极小值.f 0x ii) 若当),(00x x x δ−∈时0≥′)(x f ,当),(δ+∈00x x x 时0≤′)(x f ,则在点取得极大值.f 0x 例 求3252x x x f )()(−=的极值点与极值定理(极值的第二充分条件) 设在某内一阶可导,在处二阶可导,且,,f );(δ0x U o 0x x =00=′)(x f 00≠′′)(x f i)若,则在点取得极大值.00<′′)(x f f 0x ii)若,则在点取得极小值.00>′′)(x f f 0x 例 求xx x f 4322+=)( 的极值与极值点 定理(极值的第三充分条件) 设在某内存在直到阶导函数,在处阶可导,且 f );(δ0x U o 1−n 0x n 00=)()(x f k ),,,121−=n k L ,,则 00≠)()(x f n i)当为偶数时,在点取得极值,且当时取极大值,时取极小值.n f 0x 00>)()(x f n 00<)()(x f n ii) 当为奇数时,在点不取得极值.n f 0x例 试求函数的极值.(可以利用第一充分和第三充分条件))()(4−=x x x f 12.最大值与最小值若函数在上连续,则在上连续上一定有最大,最小值.我们只要比较在所有稳定点,不可导点和区间端点上的函数值,就能从中找到在上的最大,最小值.f ],[b a f ],[b a f f ],[b a 例 求函数x x x x f 129223+−=)(在],[2541−上的最大与最小值. 例 设f 在区间I 上连续,并且在I 上仅有唯一的极值点,证明:若是的极大(小)值点,则必是在0x 0x f 0x f I 上的最大(小)值. 五、函数的凸性与拐点根据函数图像的特点研究函数的凸凹性.1.定义 设f 为定义在区间I 上的函数,若对I 上的任意两点和任意实数21x x ,),(10∈λ总有)()()())((212111x f x f x x f λλλλ−+≤−+则称为f I 上的凸函数.反之,如果总有)()()())((212111x f x f x x f λλλλ−+≥−+则称为f I 上的凹函数.通过图形来解释.引理 为f I 上的凸函数的充要条件是:对于I 上的任意三点,总有 321x x x <<≤−−1212x x x f x f )()(2323x x x f x f −−)()( 还可以证明≤−−1212x x x f x f )()(≤−−1313x x x f x f )()(2323x x x f x f −−)()( 定理 设f 为区间I 上的可导函数,则下述结论等价:1) 为区间f I 上的凸函数2)f 为′I 上的增函数3)对I 上的任意两点,有21x x , ))(()()(12112x x x f x f x f −′+≥(结论3的几何意义是:可导的凸函数其切线总在曲线的下方.)定理 设f 为区间I 上的二阶可导函数,则在I 上为凸函数的充要条件是:.f 0>′′)(x f 例 讨论函数的凸凹区间.x x f arctan )(=例 证明若函数为定义在内的可导的凸(凹)函数,则为的极小(大)值点的充要条件是为的稳定点,即f ),(b a 0x ),(b a ∈f 0x f 00=′)(x f .(说明:尽管可导的极值点未必是稳定点.但为可导的凸(凹)函数时,则极值点必为稳定点) f 例(Jesson 不等式) 若为上的凸函数,则对任意f ],[b a ],[b a x i ∈,0>i λ,),,,,(n i L 21=11=∑=ni i λ,有)()(i ni i n i i i x f x f ∑∑==≤11λλ例 设为区间f I 内的凸(凹)函数,证明在f I 内任一点都都存在左右导数.0x 2.拐点设曲线在点处有穿过曲线的切线,且在切点近旁,曲线在切线的两侧分别是严格凸和严格凹的,这时称点为曲线的拐点.)(x f y =))(,(00x f x ))(,(00x f x )(x f y =定理 若f 在点二阶可导,则为曲线0x ))(,(00x f x )(x f y =的拐点的必要条件是 00=′′)(x f .定理 设f 在点可导,在某邻域内二阶可导.若在和上的符号相反,则为曲线0x );(δ0x U o )(0x U o +)(0x U o −f ′′))(,(00x f x )(x f y =的拐点.。
微分中值定理与导数的应用总结一、微分中值定理1.拉格朗日中值定理拉格朗日中值定理是微分中值定理的最基本形式,它表述为:如果函数f(x)在区间[a,b]上连续,在开区间(a,b)内可导,则在(a,b)内至少存在一个数c,使得f(b)-f(a)=f'(c)(b-a),其中c属于(a,b)。
拉格朗日中值定理的几何意义是:如果一条曲线在两个点a和b上的斜率相等,则在这两个点之间必然存在一点c,使得曲线在c点和a、b两点之间的切线斜率相等。
2.柯西中值定理柯西中值定理是微分中值定理的推广形式,它给出了两个函数的导数的关系。
设f(x)和g(x)在[a,b]上连续,在开区间(a,b)内可导且g'(x)≠0,则存在一个数c,使得[f(b)-f(a)]/[g(b)-g(a)]=[f'(c)]/[g'(c)]。
柯西中值定理的几何意义是:如果曲线f(x)和g(x)在两个点a和b上的切线斜率之比等于f'(c)和g'(c)的比,则在这两个点之间必然存在一点c,使得曲线f(x)和g(x)在c点的切线斜率之比等于f'(c)和g'(c)的比。
3.罗尔中值定理罗尔中值定理是微分中值定理的特殊形式,它给出了导数为零的充分条件。
设函数f(x)在[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一个数c,使得f'(c)=0。
罗尔中值定理的几何意义是:如果一条曲线在两个端点上的函数值相等,则在这两个端点之间必然存在一个点c,使得曲线在c点的切线斜率为零。
微分中值定理的应用非常广泛,例如在证明极限存在或连续性、研究函数增减性和函数极值、解方程和不等式等问题中都有重要的作用。
在实际生活中,微分中值定理可以应用于求解速度、加速度、距离等问题,帮助我们更好地理解和解决实际问题。
二、导数的应用导数作为微积分的重要概念,具有很多实际应用。
微分中值定理及其应用一、本文概述《微分中值定理及其应用》是一篇深入探讨微分学中值定理及其在实际应用中的作用的学术性文章。
微分中值定理是数学分析领域中的一个核心概念,它建立了函数在特定区间内的变化与其导数之间的紧密联系。
本文旨在通过对微分中值定理的深入剖析,揭示其在理论研究和实际应用中的广泛价值。
文章首先介绍了微分中值定理的基本概念,包括罗尔定理、拉格朗日中值定理和柯西中值定理等。
这些定理不仅在数学分析中占有重要地位,而且在实际应用中发挥着重要作用。
接着,文章通过一系列实例展示了微分中值定理在几何、物理、工程等领域的应用,如曲线形状的判定、物体运动的分析、工程设计的优化等。
本文还关注微分中值定理在经济学、生物学等社会科学领域的应用。
通过引入这些领域的实际案例,文章进一步强调了微分中值定理在解决实际问题中的重要作用。
文章对微分中值定理的应用前景进行了展望,探讨了其在未来科学研究和技术发展中的潜在影响。
《微分中值定理及其应用》是一篇系统介绍微分中值定理及其在各个领域应用的综合性文章。
通过本文的阅读,读者可以全面了解微分中值定理的基本知识和应用技巧,为深入研究和实际应用打下坚实基础。
二、微分中值定理概述微分中值定理是微积分理论中的核心内容之一,它揭示了函数在某区间内与导数之间的紧密联系。
这些定理不仅为函数的研究提供了重要的工具,还在解决实际问题中发挥了重要作用。
微分中值定理主要包括罗尔定理、拉格朗日定理和柯西定理。
罗尔定理是微分中值定理的基础,它指出如果一个函数在某闭区间上连续,在开区间内可导,并且区间两端点的函数值相等,那么在这个开区间内至少存在一点,使得该点的导数值为零。
拉格朗日定理是罗尔定理的推广,它进一步指出,如果存在满足上述条件的点,那么该点的导数值等于函数在区间两端点值的差与区间长度的商。
柯西定理则是拉格朗日定理的推广,它涉及到两个函数在相同区间上的性质。
这些定理在实际应用中具有广泛的价值。
第五讲:微分中值定理与应用一、单项选择题(每小题4分,共24分) 1、已知()(3)(4)(5)f x x x x =---,则'()0f x =有 (B )A 一个实根B 两个实根C 三个实根D 无实根解:(1)()[34]34f x Q 在,连续在(,) (3)(4)0f f ==可导且()f x ∴在[34],满足罗尔定理条件故有1'()0f ξ=(134ξ<<)(2)()[4,5]f x 同理在满足罗尔定理 22'()0,45f ξ=<ξ<有综上所述,)'()0(3,5f x =在至少有两个实根3'()0f x =()是一元二次方程,至多有两个根,故选B2.下列函数在所给区间满足罗尔定理条件的是 (D ) A 2(),[0,3]f x x x =∈B 21(),[1,1]f x x x=∈-C (),[1,1]f x x x =∈- D()[0,3]f x x =∈ 解:()[0,3]f x =连续'()f x =()f x [03](0)0f =在,可导且,(3)0f = 满足罗尔定理条件.故选 D3.设曲线33y x x =-,则其拐点坐标为(C ) A 0 B (0,1)C (0,0)D 1解:3''3,''6y x y x =-=-.令''0y =.得0x =.0,''0x y <>当有.当0x >时,''0y <.故(0,0)为曲线的拐点 C4.若()(),0f x f x =-∞且在(,+)内'()0,''()00f x f x >>-∞则在(,)必有(C )A '()0,''()0f x f x <<B '()0,''()0f x f x >>C '()0,''()0f x f x <>D '()0,''()0f x f x ><解:()0f x +∞Q 为偶函数且在(,)()f x Q 单调递增,曲线为凹弧如示意图,故有(,0),()0,''0f x f C -∞<>∴选 5.设 3ln 3f x a x bx x =+-() 在12x x ==,取得极值。
第三章微分中值定理导数的应用教学目的与要求1掌握并会应用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。
2理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。
3. 用二阶导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
4. 握用洛必达法则求未定式极限的方法。
5. 道曲率和曲率半径的概念,会计算曲率和曲率半径。
6. 了解方程近似解的二分法及切线法。
一、中值定理,泰勒公式(放入泰勒级数中讲) 1.罗尔定理如()x f满足:(1)在[]b ,a 连续.(2)在()b ,a 可导.(3)()()b f a f= 则至少存在一点()b ,a ∈ξ使()0f/=ξ例 设()()()()1x 31x 21x x x g -++=,则 在区间(-1,0)内,方程()0x g /=有2个实根;在(-1,1)内()0x g //=有2个根 例 设()x f在[0,1]可导,且()()01f 0f ==,证明存在()1,0∈η,使()()0f f /=ηη+η。
证: 设()()x xf x F=在[a,b]可导,()()1F 0F =∴ 存在()1,0∈η使()0F /=η 即()()0f f /=ηη+η例 设()x f在[0,1]可导,且()()01f 0f ==,证明存在η ()()0F F /=η+η 。
解: 设()()x f e x Fx =,且()()1F 0F = 由罗尔定理存在η 使()0F/=η 即()()0f e f e /=η+ηηη,亦即()()0f f/=η+η例 习题6设()()()x g e x f x F =(复合函数求导) 2、 拉格朗日中值定理如()x f满足:①在[a,b]连续;②在(a,b )连续,则存在()b ,a ∈ξ使()()()()a b f a f b f /-ξ=-。