第六章微波网络基础
- 格式:pdf
- 大小:5.67 MB
- 文档页数:79
《微波技术基础》期末复习题第2章 传输线理论1. 微波的频率范围和波长范围频率范围 300MHz ~ 3000 GHz 波长范围 1.0 m ~ 0.1mm ;2. 微波的特点⑴ 拟光性和拟声性;⑵ 频率高、频带宽、信息量大;⑶ 穿透性强;⑷ 微波沿直线传播;3. 传输线的特性参数⑴ 特性阻抗的概念和表达公式特性阻抗=传输线上行波的电压/传输线上行波的电流 1101R j L Z G j C ⑵ 传输线的传播常数传播常数 j γαβ=+的意义,包括对幅度和相位的影响。
4. 传输线的分布参数:⑴ 分布参数阻抗的概念和定义⑵ 传输线分布参数阻抗具有的特性()()()in V d Z d I d =00ch sh sh ch L L L L V d I Z d V d I d Z γγγγ+=+000th th L L Z Z d Z Z Z d γγ+=+① 传输线上任意一点 d 的阻抗与该点的位置d 和负载阻抗Z L 有关; ② d 点的阻抗可看成由该点向负载看去的输入阻抗;③ 传输线段具有阻抗变换作用;由公式 ()in Z d 000th th L L Z Z d Z Z Z dγγ+=+ 可以看到这一点。
④ 无损线的阻抗呈周期性变化,具有λ/4的变换性和 λ/2重复性; ⑤ 微波频率下,传输线上的电压和电流缺乏明确的物理意义,不能直接测量;⑶ 反射参量① 反射系数的概念、定义和轨迹;② 对无损线,其反射系数的轨迹?;③ 阻抗与反射系数的关系;in ()1()()()1()V d d Z d I d d 01()1()d Z d ⑷ 驻波参量① 传输线上驻波形成的原因?② 为什么要提出驻波参量?③ 阻抗与驻波参量的关系;5. 无耗传输线的概念和无耗工作状态分析⑴ 行波状态的条件、特性分析和特点;⑵ 全反射状态的条件、特性分析和特点;⑶ 行驻波状态的条件、特性分析和特点;6. 有耗传输线的特点、损耗对导行波的主要影响和次要影响7. 引入史密斯圆图的意义、圆图的构成;8. 阻抗匹配的概念、重要性9. 阻抗匹配的方式及解决的问题⑴ 负载 — 传输线的匹配⑵ 信号源 — 传输线的匹配⑶ 信号源的共轭匹配10. 负载阻抗匹配方法⑴ λ/4阻抗匹配器⑵ 并联支节调配器⑶ 串联支节调配器第3章 规则金属波导1. 矩形波导的结构特点、主要应用场合;2. 矩形波导中可同时存在无穷多种TE 和TM 导模;3. TE 和TM 导模的条件;TE 导模的条件:00(,,)(,)0j z z z z E H x y z H x y e β-==≠TE 导模的条件:00(,,)(,)0j z z z z H E x y z E x y e β-==≠4. 关于矩形波导的5个特点;5. 掌握矩形波导TE 10模的场结构,并在此基础上掌握TE m0模的场结构;6. 管壁电流的概念;7. 管壁电流的大小和方向;8. 矩形波导的传输特性(导模的传输条件与截止);9. 圆形波导主模TE11模的场结构。
第一章引论微波是指频率从300MHz到3000GHz范围内的电磁波,相应的波长从1m到0.1mm。
包括分米波(300MHz到3000MHz)、厘米波(3G到30G)、毫米波(30G 到300G)和亚毫米波(300G到3000G)。
微波这段电磁谱具有以下重要特点:似光性和似声性、穿透性、信息性和非电离性。
微波的传统应用是雷达和通信。
这是作为信息载体的应用。
微波具有频率高、频带宽和信息量大等特点。
强功率—微波加热弱功率—各种电量和非电量的测量导行系统:用以约束或者引导电磁波能量定向传输的结构导行系统的种类可以按传输的导行波划分为:(1)TEM(transversal Electromagnetic,横电磁波)或准TEM传输线(2)封闭金属波导(矩形或圆形,甚至椭圆或加脊波导)(3)表面波波导(或称开波导)导行波:沿导行系统定向传输的电磁波,简称导波微带、带状线,同轴线传输的导行波的电磁能量约束或限制在导体之间沿轴向传播。
是横电磁波(TEM)或准TEM波即电场或磁场沿即传播方向具有纵向电磁场分量。
开波导将电磁能量约束在波导结构的周围(波导内和波导表面附近)沿轴向传播,其导波为表面波。
导模(guided mode ):即导波的模式,又称为传输模或正规模,是能够沿导行系统独立存在的场型。
特点:(1)在导行系统横截面上的电磁场呈驻波分布,且是完全确定的,与频率以及导行系统上横截面的位置无关。
(2)模是离散的,当工作频率一定时,每个导模具有唯一的传播常数。
(3)导模之间相互正交,互不耦合。
(4)具有截止频率,截止频率和截止波长因导行系统和模式而异。
无纵向磁场的导波(即只有横向截面有磁场分量),称为横磁(TM)波或E波。
无纵向电场的导波(即只有横向截面有电场分量),称为横电(TE)波或H波。
TEM波的电场和磁场均分布在与导波传播方向垂直的横截面内。
第二章传输线理论传输线是以TEM模为导模的方式传递电磁能量或信号的导行系统,其特点是横向尺寸远小于其电磁波的工作波长。
第6讲微带元件与集中元件如今,微波集成电路在微波工程中已得到广泛应用,成为微波电路的主流。
微波集成电路的基本构成之一就是微带元件,因此,如何处理和利用微带不连续是设计微带电路的关键。
微带是半开放结构且由多层媒层(至少两层)构成,边界条件复杂,所以,理论分析与计算比较困难。
解析方法:保角变换法和波导模型法。
数值方法: 有限元法、有限差分法和矩量法等。
●保角变换法根据微带主模为准TEM模、横截面上场分布近似为静场的特性,利用复变函数的保角变换将微带变换成两侧为磁壁、上下为电壁的平板波导,然后求出微带的特征参数。
这种方法的缺点是无法处理高次模,因而很少用于分析微带不连续性。
●波导模型法将微带等效为波导,然后利用近似方法如变分法、模式匹配法等求解,这种方法在处理微带不连续上特别有效,但比保角变换法要复杂得多。
6.1微带的开路端微带的开路端并不是理想开路,因为在微带中心导带突然终断处,导带末端将出现剩余电荷,引起边缘电场效应。
微带开路端电场相对集中,可以等效为一电容。
由于一段短开路线可以等效为电容,所以微带的开路端可以用一段理想开路线等效,于是实际的开路端相比于理想开路线缩短了一小段,称为开路线缩短效应。
图6-1微带开路端及其等效电路C 开路⇔⇔一个常用的缩短长度l ∆的公式为⎪⎪⎭⎫ ⎝⎛++=∆A ctg W A W A arcctg l e e λππλ22242 (6-1) 式中,e λ为微带波导波长,2ln 2πhA =,h W 、分别为微带导带宽度和基片厚度。
实践表明,在氧化铝陶瓷基片上,阻抗为Ω50左右的开路端,h l 33.0=∆是个很好的修正项。
6.2 微带阶梯当两根中心导带宽度不等的微带线相接时,在中心导带上就出现了阶梯。
研究微带阶梯常采用对偶波导法。
第一步,将微带线及其阶梯等效平板波导。
由于阶梯宽边处相当于开路端,所以当等效磁壁金属平板波导时应延长一小端l 。
在准TEM 模假设下,微带横向场为y E 和x H 。