高考数学大二轮总复习 增分策略 专题七 概率与统计 第3讲 统计与统计案例课件
- 格式:ppt
- 大小:1.43 MB
- 文档页数:61
高考数学概率与统计的复习策略高考数学中,概率与统计是重要的组成部分,在实际生活和科学研究中都有着广泛的应用。
对于考生来说,掌握这部分内容不仅有助于提高数学成绩,还能培养逻辑思维和解决实际问题的能力。
以下是一些针对高考数学概率与统计的复习策略,希望能对同学们有所帮助。
一、深入理解基本概念概率与统计涉及到众多的概念,如随机事件、概率、频率、样本空间、抽样方法、统计量等等。
只有对这些概念有清晰、准确的理解,才能在解题时做出正确的判断。
以概率的概念为例,要明确概率是指某个事件在大量重复试验中发生的频率的稳定值。
不能将概率简单地理解为随机事件发生的可能性大小,而要从数学定义的角度去把握。
再比如抽样方法,要清楚简单随机抽样、分层抽样和系统抽样的特点和适用场景,以及它们在保证样本代表性方面的作用。
在复习过程中,可以通过举例、对比等方式加深对概念的理解。
比如,将简单随机抽样和分层抽样的实例进行对比,分析它们在不同情况下的优劣,从而更好地掌握抽样方法的应用。
二、熟练掌握基本公式和定理概率与统计中有许多重要的公式和定理,如古典概型概率公式、互斥事件概率加法公式、独立事件概率乘法公式、二项分布概率公式、正态分布的性质等等。
这些公式和定理是解题的基础,必须熟练掌握。
在记忆公式时,要理解其推导过程和适用条件,不能死记硬背。
比如,对于二项分布概率公式$P(X=k)=C_{n}^kp^k(1-p)^{nk}$,要明白其中的$n$、$k$、$p$分别代表什么,以及在什么情况下可以使用这个公式。
同时,要通过大量的练习来巩固对公式和定理的应用。
在练习中,注意总结解题的思路和方法,提高解题的准确性和速度。
三、注重知识的联系与整合概率与统计不是孤立的知识点,它们与其他数学知识有着密切的联系。
例如,概率的计算可能会涉及到排列组合的知识,统计中的数据分析可能会用到函数的知识。
在复习时,要注重知识的横向和纵向联系,将概率与统计的知识与其他数学知识整合起来,形成一个完整的知识体系。
高三数学第二轮专题讲座复习:概率与统计高考要求概率是高考的重点内容之一,尤其是新增的随机变量这部分内容要充分注意一些重要概念的实际意义,理解概率处理问题的基本思想方法重难点归纳本章内容分为概率初步和随机变量两部分第一部分包括等可能事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率和独立重复实验第二部分包括随机变量、离散型随机变量的期望与方差涉及的思维方法观察与试验、分析与综合、一般化与特殊化主要思维形式有逻辑思维、聚合思维、形象思维和创造性思维典型题例示范讲解例1有一容量为50的样本,数据的分组及各组的频率数如下[10,15]4 [30,35)9 [15,20)5 [35,40)8[20,25)10 [40,45)3 [25,30)11(1)列出样本的频率分布表(含累积频率);(2)画出频率分布直方图和累积频率的分布图命题意图本题主要考查频率分布表,频率分布直方图和累积频率的分布图的画法知识依托频率、累积频率的概念以及频率分布表、直方图和累积频率分布图的画法错解分析解答本题时,计算容易出现失误,且要注意频率分布与累积频率分布的区别技巧与方法本题关键在于掌握三种表格的区别与联系解(1)由所给数据,计算得如下频率分布表数据段频数频率累积频率[10,15) 4 0.08 0.08[15,20) 5 0.10 0.18[20,25)10 0.20 0.38[25,30)11 0.22 0.60[30,35)9 0.18 0.78[35,40)8 0.16 0.94[40,45) 3 0.06 1总计50 1(2)频率分布直方图与累积频率分布图如下例2袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i )求恰好摸5次停止的概率;(ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布率及数学期望E ξ. (Ⅱ) 若A 、B 两个袋子中的球数之比为12,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值. 命题意图本题考查利用概率知识和期望的计算方法 知识依托概率的计算及期望的概念的有关知识错解分析在本题中,随机变量的确定,稍有不慎,就将产生失误 技巧与方法 可借助n 次独立重复试验概率公式计算概率解 (Ⅰ)(i )2224121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ii)随机变量ξ的取值为0,1,2,3,;由n 次独立重复试验概率公式()()1n kk kn n P k C p p -=-,得()50513*******P C ξ⎛⎫==⨯-= ⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-= ⎪⎝⎭()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭()323511173133243P C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是ξ0 1 2 3P32243 80243 80243 17243ξ的数学期望是 32808017131012324324324324381E ξ=⨯+⨯+⨯+⨯=(Ⅱ)设袋子A 中有m 个球,则袋子B 中有2m 个球由122335m mpm +=,得1330p = 例3如图,用A 、B 、C 三类不同的元件连接成两个系统N 1、N 2,当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作 已知元件A 、B 、C 正常工作的概率依次为0.80,0.90,0.90,分别求系统N 1,N 2正常工作的概率P 1、P 2(N 2)AB C(N 1)CB A解 记元件A 、B 、C 正常工作的事件分别为A 、B 、C , 由已知条件P (A )=0.80, P (B )=0.90,P (C )=0.90(1)因为事件A 、B 、C 是相互独立的,所以,系统N 1正常工作的概率P 1=P (A ·B ·C )=P (A )P (B )P (C )=0.648,故系统N 1正常工作的概率为0.648(2)系统N 2正常工作的概率P 2=P (A )·[1-P (C B ⋅)]=P (A )·[1-P (B )P (C )] =0 80×[1-(1-0 90)(1-0 90)]=0 792 故系统N 2正常工作的概率为0 792 学生巩固练习1 甲射击命中目标的概率是21,乙命中目标的概率是31,41现在三人同时射击目标,则目标被击中的概率为( )107 D. 54C. 32 B. 43A. 2 已知随机变量ζ的分布列为 P (ζ=k )=31,k =1,2,3,则P (3ζ+5)等于A 6B 9C 3D 43 1盒中有9个正品和3个废品,每次取1个产品,取出后不再放回,在取得正品前已取出的废品数ζ的期望E ζ=_________4 某班有52人,男女各半,男女各自平均分成两组,从这个班中选出4人参加某项活动,这4人恰好来自不同组别的概率是_________5 甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.6,计算 (1)两人都击中目标的概率;(2)其中恰有一人击中目标的概率; (3)至少有一人击中目标的概率6 已知连续型随机变量ζ的概率密度函数f (x )=⎪⎩⎪⎨⎧≥<≤-≤2 021 1 0x x a x x(1)求常数a 的值,并画出ζ的概率密度曲线; (2)求P (1<ζ<23) 参考答案:1 解析 设甲命中目标为事件A ,乙命中目标为事件B ,丙命中目标为事件C ,则目标被击中的事件可以表示为A+B+C ,即击中目标表示事件A 、B 、C 中至少有一个发生.41)411)(311)(211()](1[)](1[)](1[)()()()(=---=-⋅-⋅-=⋅⋅=⋅⋅∴C P B P A P C P B P A P C B A P故目标被击中的概率为1-P (A ·B ·C )=1-4341= 答案 A 2 解析 E ξ=(1+2+3)·31=2,E ξ2=(12+22+32)·31=314∴D ξ=E ξ2-(E ξ)2=314-2232∴D (3ξ+5)=9E ξ=6答案 A3 解析 由条件知,ξ的取值为0,1,2,3,并且有P (ξ=0)=43C C 11219=,3.02201322092449143022012C C C )3(,22092C C C )2(,4492C C C )1(412193331219232121913=⨯+⨯+⨯+⨯=ξ∴===ξ=⋅==ξ===ξE P P P 答案 0.34 解析 因为每组人数为13,因此,每组选1人有C 113种方法,所以所求概率为P 4524113)C ( 答案 4524113C )C ( 5 解 (1)我们把“甲射击一次击中目标”叫做事件A ,“乙射击一次击中目标”叫做事件B 显然事件A 、B 相互独立,所以两人各射击一次都击中目标的概率是P (A ·B ) =P (A )·P (B )=0.6×0.6=0.36答 两人都击中目标的概率是0.36(2)同理,两人各射击一次,甲击中、乙未击中的概率是P (A ·B )=P (A )·P (B )=0.6×(1-0.6)=0.6×0.4=0.24甲未击中、乙击中的概率是P (A ·B)=P (A )P (B )=0.24,显然,“甲击中、乙未击中”和“甲未击中、乙击中”是不可能同时发生,即事件A ·B 与A ·B 互斥,所以恰有一人击中目标的概率是P (A ·B )+P (A ·B )=0.24+0.24=0.48(2)两人各射击一次,至少有一人击中目标的概率P =P (A ·B )+[P (A ·B )+P (A )·B ]=0.36+0.48=0.84答 至少有一人击中目标的概率是0.846 解 (1)因为ξ所在区间上的概率总和为1,所以21 (1-a +2-a )·1=1,∴a =21概率密度曲线如图 (2)P (1<ξ<23)=9323)121(21=⋅+⋅。