高考数学(理)(新课标版)考前冲刺复习课时作业:第2部分专题5第1讲直线与圆 Word版含答案
- 格式:doc
- 大小:76.00 KB
- 文档页数:5
专题五 解析几何第1讲 直线与圆(推荐时间:60分钟)一、填空题1.(2011·浙江)若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =________.2.已知直线l 1的方向向量a =(1,3),直线l 2的方向向量b =(-1,k ).若直线l 2经过点(0,5)且l 1⊥l 2,则直线l 2的方程为______________.3.若0≤θ≤π2,当点(1,cos θ)到直线x sin θ+y cos θ-1=0的距离是14时,这条直线的斜率为________.4.(2011·辽宁)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为______________.5.若某圆的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是______________.6.已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|kx -y -2≤0},其中x ,y ∈R .若A ⊆B ,则实数k 的取值范围是______________.7.设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是方程x 2+x +c =0的两个实根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别是____________. 8.已知圆C :(x -2)2+(y +1)2=2,过原点的直线l 与圆C 相切,则所有切线的斜率之和为________.9.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为________.10.直线x +a 2y +1=0与直线(a 2+1)x -by +3=0互相垂直,a 、b ∈R 且ab ≠0,则|ab |的最小值为________.11.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20 (m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.12.若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.二、解答题13.在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)判断两圆的位置关系,并求连心线的方程;(2)求直线m 的方程,使直线m 被圆C 1截得的弦长为4,被圆C 2截得的弦长为2.14.已知圆C :x 2+y 2+x -6y +m =0与直线l :x +2y -3=0.(1)若直线l 与圆C 没有公共点,求m 的取值范围;(2)若直线l 与圆C 相交于P 、Q 两点,O 为原点,且OP ⊥OQ ,求实数m 的值.15.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若OM =ON ,求圆C 的方程;(3)在(2)的条件下,设P 、Q 分别是直线l :x +y +2=0和圆C 的动点,求PB +PQ 的最小值及此时点P 的坐标.答 案1.1 2. x +3y -15=0 3.-334.(x -2)2+y 2=10 5.(x -2)2+(y -1)2=16.[-3,3] 7. 22,128.-2 9. 12 10.2 11.4 12.2 313.解 (1)圆C 1的圆心C 1(-3,1),半径r 1=2;圆C 2的圆心C 2(4,5),半径r 2=2.∴C 1C 2=72+42=65>r 1+r 2,∴两圆相离,连心线所在直线方程为:4x -7y +19=0.(2)直线m 的斜率显然存在.∵直线m 被圆C 1截得弦长为4.∴直线m 过圆C 1的圆心C 1(-3,1).∴设直线m 的方程为y -1=k (x +3).∴C 2(4,5)到直线m 的距离:d =|7k -4|k 2+1=3,∴k =28±18646. ∴直线方程为y -1=28±18646(x +3).14.解 (1)将圆的方程配方,得⎝⎛⎭⎫x +122+(y -3)2=37-4m4,故有37-4m4>0,解得m <374.将直线l 的方程与圆C 的方程组成方程组,得⎩⎪⎨⎪⎧ x +2y -3=0,x 2+y 2+x -6y +m =0,消去y ,得x 2+⎝ ⎛⎭⎪⎫3-x 22+x -6×3-x2+m =0,整理,得5x 2+10x +4m -27=0,① ∵直线l 与圆C 没有公共点,∴方程①无解,故有Δ=102-4×5(4m -27)<0,解得m >8.∴m 的取值范围是⎝⎛⎭⎫8,374. (2)设P (x 1,y 1),Q (x 2,y 2),由OP ⊥OQ ,得OP →·OQ →=0,即x 1x 2+y 1y 2=0,②由(1)及根与系数的关系,得x 1+x 2=-2,x 1·x 2=4m -275, ③ 又∵P 、Q 在直线x +2y -3=0上,∴y 1·y 2=3-x 12·3-x 22=14[9-3(x 1+x 2)+x 1·x 2], 将③代入上式,得y 1·y 2=m +125,④ 将③④代入②得x 1·x 2+y 1·y 2=4m -275+m +125=0,解得m =3. 代入方程①检验得Δ>0成立,∴m =3.15.(1)证明 由题设知,圆C 的方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2, 化简得x 2-2tx +y 2-4ty =0, 当y =0时,x =0或2t ,则A (2t,0);当x =0时,y =0或4t,则B ⎝⎛⎭⎫0,4t , ∴S △AOB =12OA ·OB =12|2t |·⎪⎪⎪⎪4t =4为定值. (2)解 ∵OM =ON ,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t 2=12, ∴t =2或t =-2.∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.(3)解 点B (0,2)关于直线x +y +2=0的对称点为B ′ (-4,-2),则PB +PQ =PB ′+PQ ≥B ′Q ,又B ′到圆上点Q 的最短距离为B ′C -r =(-6)2+32-5=35-5=2 5.所以PB +PQ 的最小值为25,直线B ′C 的方程为y =12x ,则直线B ′C 与直线x +y +2=0的交点P 的坐标为⎝⎛⎭⎫-43,-23.。
第1讲 直线与圆一、选择题1.(2017·日照二模)已知命题p :“m =-1”,命题q :“直线x -y =0与直线x +m 2y =0互相垂直”,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要解析:“直线x -y =0与直线x +m 2y =0互相垂直”的充要条件是1×1+(-1)·m 2=0⇔m =±1.所以命题p 是命题q 的充分不必要条件. 答案:A2.(2017·忻州模拟)过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=0解析:依题意,点(3,1)在圆(x -1)2+y 2=r 2上,且为切点.因为圆心(1,0)与切点(3,1)连线的斜率为12,所以切线的斜率k =-2,故圆的切线方程为y -1=-2(x -3),即2x +y -7=0.答案:B3.(2015·全国卷Ⅱ)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53 B.213C.253D.43解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0,所以⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,所以⎩⎪⎨⎪⎧D =-2,E =-433,F =1,所以△ABC 外接圆的圆心为⎝⎛⎭⎪⎫1,233,因此圆心到原点的距离d =12+⎝ ⎛⎭⎪⎫2332=213.答案:B4.(2017·济南调研)若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为( )(导学号 54850124)A .1B .-3C .1或-3D .2解析:因为圆(x -1)2+y 2=5的圆心C (1,0),半径r = 5.又直线x -y +m =0被圆截得的弦长为2 3.所以圆心C 到直线的距离d =r 2-(3)2=2, 因此|1-0+m |12+(-1)2=2,所以m =1或m =-3. 答案:C5.(2017·汉中模拟)已知过点(-2,0)的直线与圆C :x 2+y 2-4x =0相切于点P (P 在第一象限内),则过点P 且与直线3x -y =0垂直的直线l 的方程为( )A .x +3y -2=0B .x +3y -4=0 C.3x +y -2=0D .x +3y -6=0解析:圆C :x 2+y 2-4x =0的标准方程(x -2)2+y 2=4, 所以圆心C (2,0),半径r =2.又过点(-2,0)的直线与圆C 相切于第一象限, 所以易知倾斜角θ=30°,切点P (1,3), 设直线l 的方程为x +3y +c =0,把点P (1,3)代入,所以1+3+c =0,所以c =-4. 所以直线l 的方程为x +3y -4=0. 答案:B 二、填空题6.(2017·菏泽二模)已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线y =a (x -3)被圆C 截得的弦最短时,直线方程为________.解析:圆C 的标准方程为(x -4)2+(y -1)2=9,所以圆C 的圆心C (4,1),半径r =3. 又直线y =a (x -3)过定点P (3,0),则当直线y =a (x -3)与直线CP 垂直时,被圆C 截得的弦长最短. 因此a ·k CP =a ·1-04-3=-1,所以a =-1.故所求直线的方程为y =-(x -3),即x +y -3=0. 答案:x +y -3=07.(2017·北京卷)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.解析:法一 由题意知,AO →=(2,0),令P (cos α,sin α),则AP →=(cos α+2,sin α),AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6,故AO →·AP →的最大值为6. 法二 由题意知,AO →=(2,0),令P (x ,y ),-1≤x ≤1,则AO →·AP →=(2,0)·(x +2,y )=2x +4≤6,故AO →·AP →的最大值为6. 答案:68.(2016·全国卷Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.解析:由圆x 2+y 2=12知圆心O (0,0),半径r =23,所以圆心(0,0)到直线x -3y +6=0的距离d =61+3=3,|AB |=212-32=2 3.过C 作CE ⊥BD 于E .如图所示,则|CE |=|AB |=2 3. 因为直线l 的方程为x -3y +6=0,所以直线l 的倾斜角∠BPD =30°,从而∠BDP =60°,因此|CD |=|CE |sin 60°=23sin 60°=4.答案:4 三、解答题9.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5).(导学号 54850125)(1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连接OA ,OC ,求△AOC 的面积S . 解:(1)由圆C :x 2+y 2-4x -6y +12=0,配方, 得(x -2)2+(y -3)2=1,圆心C (2,3). 当斜率存在时,设过点A 的圆的切线方程为y -5=k (x -3),即kx -y +5-3k =0.由d =|2k -3+5-3k |k 2+1=1,得k =34.又斜率不存在时直线x =3也与圆相切, 故所求切线方程为x =3或3x -4y +11=0. (2)直线OA 的方程为y =53x ,即5x -3y =0,点C 到直线OA 的距离为d =|5×2-3×3|52+32=134, 又|OA |=32+52=34, 所以S =12|OA |d =12.10.(2017·天津南开中学模拟)在平面直角坐标系xOy 中,圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切.(导学号 54850126)(1)求圆C 的方程;(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程. 解:(1)将圆C :x 2+y 2+4x -2y +m =0化为(x +2)2+(y -1)2=5-m , 因为圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切, 所以圆心(-2,1)到直线x -3y +3-2=0的距离d =41+3=2=r ,所以圆C 的方程为(x +2)2+(y -1)2=4.(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,则可设直线MN 的方程为2x -y +c =0,因为|MN |=23,半径r =2,所以圆心(-2,1)到直线MN 的距离为22-(3)2=1.则|-4-1+c |5=1,所以c =5±5, 所以直线MN 的方程为2x -y +5± 5=0.11.(2016·江苏卷)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程; (3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.解:(1)圆M 的方程化为标准形式为(x -6)2+(y -7)2=25,圆心M (6,7),半径r =5, 由题意,设圆N 的方程为(x -6)2+(y -b )2=b 2(b >0),且(6-6)2+(b -7)2=b +5.解得b =1,所以圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为k OA =2,所以可设直线l 的方程为y =2x +m ,即2x -y +m =0. 又|BC |=|OA |=22+42=25,由题意,圆M 的圆心M (6,7)到直线l 的距离为d =52-⎝ ⎛⎭⎪⎫|BC |22=25-5=25,即|2×6-7+m |22+(-1)2=25,解得m =5或m =-15.所以直线l 的方程为2x -y +5=0或2x -y -15=0. (3)由TA →+TP →=TQ →,则四边形AQPT 为平行四边形, 又因为P ,Q 为圆M 上的两点, 所以|PQ |≤2r =10. 所以|TA |=|PQ |≤10, 即(t -2)2+42≤10, 解得2-221≤t ≤2+221.故所求t 的取值范围为[2-221,2+221 ].。
第二篇 专题五 第1讲一、选择题1.过点A (1,2)的直线在两坐标轴上的截距之和为零,则该直线方程为( D ) A .y -x =1B .y +x =3C .2x -y =0或x +y =3D .2x -y =0或y -x =1【解析】当直线过原点时,可得斜率为2-01-0=2,故直线方程为y =2x ,即2x -y =0, 当直线不过原点时,设方程为x a +y-a =1,代入点(1,2)可得1a -2a =1,解得a =-1,方程为x -y +1=0,故所求直线方程为2x -y =0或y -x =1.2.若直线x +(1+m )y -2=0与直线mx +2y +4=0平行,则m 的值是( A ) A .1 B .-2 C .1或-2D .-32【解析】由两直线平行的条件可得-2+m +m 2=0, ∴m =-2(舍)或m =1.3.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若|MN |=23,则k 的值是( C )A .-34B .0C .0或-34D .34【解析】 由题意,知|MN |=23,圆心为(3,2).设圆的半径为r ,则r =2, 所以圆心到直线的距离d =r 2-⎝⎛⎭⎫MN 22=4-3=1. 由点到直线的距离公式,得|3k -2+3|k 2+1=1, 解得k =0或k =-34.故选C.4.(2022·贵阳模拟)已知圆O :x 2+y 2=10,已知直线l :ax +by =2a -b (a ,b ∈R )与圆O 的交点分别M ,N ,当直线l 被圆O 截得的弦长最小时,|MN |=( C )A .352B .552C .25D .35【解析】直线方程即a (x -2)+b (y +1)=0, 则直线恒过定点(2,-1),圆心与定点之间的距离为:(2-0)2+(-1-0)2=5,结合圆的性质可知直线l 被圆O 截得的弦长最小值|MN |=210-(5)2=2 5. 故选C.5.(2020·潍坊模拟)已知直线l 过点A (a ,0)且斜率为1,若圆x 2+y 2=4上恰有3个点到l 的距离为1,则a 的值为( D )A .32B .±32C .±2D .±2 【解析】直线l 的方程为y =x -a ,即x -y -a =0.圆上恰有三个点到直线l 的距离为1,可知圆心到直线的距离等于半径的一半,即|a |2=1,a =± 2. 6.已知圆C :(x -2)2+(y -6)2=4,点M 为直线l :x -y +8=0上一个动点,过点M 作圆C 的两条切线,切点分别为A ,B ,则当四边形CAMB 周长取最小值时,四边形CAMB 的外接圆方程为( D )A .(x -7)2+(y -1)2=4B .(x -1)2+(y -7)2=4C .(x -7)2+(y -1)2=2D .(x -1)2+(y -7)2=2【解析】圆C :(x -2)2+(y -6)2=4的圆心C (2,6),半径r =2, 点C 到直线的距离d =|2-6+8|12+(-1)2=22,依题意,CA ⊥AM ,四边形CAMB 周长2|CA |+2|AM |=4+2CM 2-CA 2≥4+2d 2-4=4+2(22)2-4=8,当且仅当CM ⊥l 时取“=”,此时直线CM :x +y -8=0,由⎩⎪⎨⎪⎧x -y +8=0,x +y -8=0,得点M (0,8), 四边形CAMB 的外接圆圆心为线段CM 中点(1,7),半径2,方程为(x -1)2+(y -7)2=2.故选D.7.如图,P 为圆O :x 2+y 2=4外一动点,过点P 作圆O 的切线P A ,PB ,切点分别为A ,B ,∠APB =120°,直线OP 与AB 相交于点Q ,点M (3,3),则|MQ |的最小值为( A )A .3B .2C .332D .433【解析】过点P 作圆O 的切线P A ,PB ,切点分别为A ,B ,∠APB =120°, 由圆与切线的平面几何性质知,∠APO =60°, 又|OA |=2,则可得|OP |=433, 由平面几何知识可得|OQ |=3,∴Q 点的轨迹是以O 为圆心,3为半径的圆,方程为x 2+y 2=3; |MQ |的最小值即为|OM |-r =9+3-3=23-3= 3. 故选A.8.(2020·辽宁省大连模拟)已知圆C :x 2+y 2=4,直线l :x -y +6=0,在直线l 上任取一点P 向圆C 作切线,切点为A ,B ,连接AB ,则直线AB 一定过定点( A )A .⎝⎛⎭⎫-23,23 B .(1,2) C .(-2,3)D .⎝⎛⎭⎫-43,43 【解析】设点P (x 0,y 0),则x 0-y 0+6=0.过点P 向圆C 作切线,切点为A ,B ,连接AB ,以CP 为直径的圆的方程为x (x -x 0)+y (y -y 0)=0,又圆C :x 2+y 2=4,作差可得直线AB 的方程为xx 0+yy 0=4,将y 0=x 0+6, 代入可得(x +y )x 0+6y -4=0,满足⎩⎪⎨⎪⎧x +y =0,6y -4=0,⇒⎩⎨⎧x =-23,y =23,故直线AB 过定点⎝⎛⎭⎫-23,23. 9.已知P (3,4-22),过点P 作圆C :(x -a )2+(y -a -1)2=1(a 为参数,且a ∈R )的两条切线分别切圆C 于点A 、B ,则sin ∠APB 的最大值为( C )A .1B .12C .32D .64【解析】圆心C (a ,a +1),半径为1,圆心C 在直线y =x +1上运动,设∠APC =θ,则∠APB =2θ, 由圆的几何性质可知tan θ=|AC ||P A |=1|P A |, 所以sin ∠APB =sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=2tan θ+1tan θ=21|P A |+|P A |, 当直线PC 与直线y =x +1垂直时,|PC |取最小值, 则|P A |=|PC |2-1取最小值, 且|PC |min =|3-(4-22)+1|2=2,则|P A |min =22-1=3,则|P A |≥3,由对勾函数的单调性可知,函数y =x +1x 在[3,+∞)上为增函数,且y =x +1x >0,故函数f (x )=2x +1x 在[3,+∞)上为减函数,故当|P A |=3时,sin ∠APB 取得最大值234=32.故选C. 二、填空题10.已知直线l 1:kx -y +4=0与直线l 2:x +ky -3=0(k ≠0)分别过定点A ,B ,又l 1,l 2相交于点M ,则|MA |·|MB |的最大值为__252__.【解析】由题意可知,直线l 1:kx -y +4=0经过定点A (0,4), 直线l 2:x +ky -3=0经过定点B (3,0).易知直线l 1:kx -y +4=0和直线l 2:x +ky -3=0始终垂直,又M 是两条直线的交点,所以MA ⊥MB ,所以|MA |2+|MB |2=|AB |2=25, 故|MA |·|MB |≤252⎝⎛⎭⎫当且仅当|MA |=|MB |=522时取“=”.11.已知A ,B 分别是双曲线C :x 2m -y 22=1的左、右顶点,P (3,4)为C 上一点,则△P AB的外接圆的标准方程为__x 2+(y -3)2=10__.【解析】∵P (3,4)为C 上一点,∴9m -162=1,解得m =1,则B (1,0),∴k PB =42=2,PB 的中点坐标为(2,2),PB 的中垂线方程为y =-12(x -2)+2,令x =0,则y =3, 设外接圆圆心为M (0,t ),则M (0,3),r =|MB |=1+32=10, ∴△P AB 外接圆的标准方程为x 2+(y -3)2=10.12.已知⊙O :x 2+y 2=1.若直线y =kx +2上总存在点P ,使得过点P 的⊙O 的两条切线互相垂直,则实数k 的取值范围是__(-∞,-1]∪[1,+∞)__.【解析】∵⊙O 的圆心为(0,0),半径r =1, 设两个切点分别为A ,B ,则由题意可得四边形P AOB 为正方形, 故有|PO |=2r =2,∴圆心O 到直线y =kx +2的距离d ≤2, 即|2|1+k 2≤2, 即1+k 2≥2,解得k ≥1或k ≤-1. 三、解答题13.设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【解析】 (1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k 2.由题设知4k 2+4k 2=8,解得k =-1(舍去)或k =1.因此l 的方程为y =x -1.(2)由(1)得,AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0), 则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16,解得⎩⎪⎨⎪⎧ x 0=3,y 0=2,或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.。
(新课标)高考数学二轮复习专题五解析几何第1讲直线与圆学案理新人教A 版第1讲 直线与圆[做真题]题型一 圆的方程1.(2016·高考全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C . 3D .2解析:选A .由题可知,圆心为(1,4),结合题意得|a +4-1|a 2+1=1,解得a =-43.2.(2015·高考全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析:由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2,(4-m )2=r 2,解得⎩⎪⎨⎪⎧m =32,r 2=254.所以圆的标准方程为(x -32)2+y 2=254.答案:(x -32)2+y 2=2543.(2018·高考全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16, 解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6. 因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144. 题型二 直线与圆、圆与圆的位置关系1.(2018·高考全国卷Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]解析:选A .圆心(2,0)到直线的距离d =|2+0+2|2=22,所以点P 到直线的距离d 1∈[2,32].根据直线的方程可知A ,B 两点的坐标分别为A (-2,0),B (0,-2),所以|AB |=22,所以△ABP 的面积S =12|AB |d 1=2d 1.因为d 1∈[2,32],所以S ∈[2,6],即△ABP面积的取值范围是[2,6].2.(2015·高考全国卷Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( )A .2 6B .8C .4 6D .10解析:选C .设圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0. 解得⎩⎪⎨⎪⎧D =-2,E =4,F =-20.所以圆的方程为x 2+y 2-2x +4y -20=0. 令x =0,得y =-2+26或y =-2-26,所以M (0,-2+26),N (0,-2-26)或M (0,-2-26),N (0,-2+26),所以|MN |=46,故选C .3.(2016·高考全国卷Ⅲ)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.解析:设圆心到直线l :mx +y +3m -3=0的距离为d ,则弦长|AB |=212-d 2=23,得d =3,即||3m -3m 2+1=3,解得m =-33,则直线l :x -3y +6=0,数形结合可得|CD |=|AB |cos 30°=4.答案:4[明考情]1.近两年圆的方程成为高考全国卷命题的热点,需重点关注.此类试题难度中等偏下,多以选择题或填空题形式考查.2.直线与圆的方程偶尔单独命题,单独命题时有一定的深度,有时也会出现在压轴题的位置,难度较大,对直线与圆的方程(特别是直线)的考查主要体现在圆锥曲线的综合问题上.直线的方程 [考法全练]1.若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =( ) A .1±2或0 B .2-52或0C .2±52D .2+52或0解析:选A .因为平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,所以k AB =k AC ,即a 2+a2-1=a 3+a3-1,即a (a 2-2a -1)=0,解得a =0或a =1± 2.故选A .2.若直线mx +2y +m =0与直线3mx +(m -1)y +7=0平行,则m 的值为( ) A .7 B .0或7 C .0D .4解析:选B .因为直线mx +2y +m =0与直线3mx +(m -1)y +7=0平行,所以m (m -1)=3m ×2,所以m =0或7,经检验,都符合题意.故选B .3.已知点A (1,2),B (2,11),若直线y =⎝⎛⎭⎪⎫m -6m x +1(m ≠0)与线段AB 相交,则实数m的取值范围是( )A .[-2,0)∪[3,+∞)B .(-∞,-1]∪(0,6]C .[-2,-1]∪[3,6]D .[-2,0)∪(0,6]解析:选C .由题意得,两点A (1,2),B (2,11)分布在直线y =⎝⎛⎭⎪⎫m -6m x +1(m ≠0)的两侧(或其中一点在直线上),所以⎝⎛⎭⎪⎫m -6m-2+1⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫m -6m -11+1≤0,解得-2≤m ≤-1或3≤m ≤6,故选C .4.已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则直线l 的方程为__________________.解析:由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2,所以直线l 1与l 2的交点为(1,2).显然直线x =1不符合,即所求直线的斜率存在,设所求直线的方程为y -2=k (x -1),即kx -y +2-k =0,因为P (0,4)到直线l 的距离为2,所以|-4+2-k |1+k 2=2,所以k =0或k =43.所以直线l 的方程为y =2或4x -3y +2=0.答案:y =2或4x -3y +2=05.(一题多解)已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于直线l 对称,则直线l 2的方程是________.解析:法一:l 1与l 2关于l 对称,则l 1上任意一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上的一点,设其关于l 的对称点为(x ,y ),则⎩⎪⎨⎪⎧x 2-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1. 即(1,0),(-1,-1)为l 2上两点,故可得l 2的方程为x -2y -1=0.法二:设l 2上任一点为(x ,y ),其关于l 的对称点为(x 1,y 1),则由对称性可知⎩⎪⎨⎪⎧x +x 12-y +y 12-1=0,y -y1x -x 1×1=-1,解得⎩⎪⎨⎪⎧x 1=y +1,y 1=x -1.因为(x1,y 1)在l1上,所以2(y+1)-(x-1)-2=0,即l2的方程为x-2y-1=0.答案:x-2y-1=0(1)两直线的位置关系问题的解题策略求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即斜率相等且纵截距不相等或斜率互为负倒数.若出现斜率不存在的情况,可考虑用数形结合的方法去研究或直接用直线的一般式方程判断.(2)轴对称问题的两种类型及求解方法点关于直线的对称若两点P1(x1,y1)与P2(x2,y2)关于直线l:Ax+By+C=0对称,则线段P1P2的中点在对称轴l上,而且连接P1,P2的直线垂直于对称轴l.由方程组⎩⎪⎨⎪⎧A·x1+x22+B·y1+y22+C=0.y2-y1x2-x1·⎝⎛⎭⎪⎫-AB=-1,可得到点P1关于l对称的点P2的坐标(x2,y2)(其中B≠0,x1≠x2)直线关于直线的对称有两种情况,一是已知直线与对称轴相交;二是已知直线与对称轴平行.一般转化为点关于直线的对称来解决圆的方程[典型例题]在平面直角坐标系xOy中,曲线Γ:y=x2-mx+2m(m∈R)与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由.(2)求证:过A,B,C三点的圆过定点.【解】由曲线Γ:y=x2-mx+2m(m∈R),令y=0,得x2-mx+2m=0.设A(x1,0),B(x2,0),则可得Δ=m2-8m>0,x1+x2=m,x1x2=2m.令x=0,得y=2m,即C(0,2m).(1)若存在以AB为直径的圆过点C,则AC→·BC→=0,得x1x2+4m2=0,即2m+4m2=0,所以m=0或m=-12.由Δ>0得m<0或m>8,所以m=-12,此时C (0,-1),AB 的中点M ⎝ ⎛⎭⎪⎫-14,0即圆心,半径r =|CM |=174, 故所求圆的方程为⎝ ⎛⎭⎪⎫x +142+y 2=1716.(2)证明:设过A ,B 两点的圆的方程为x 2+y 2-mx +Ey +2m =0, 将点C (0,2m )代入可得E =-1-2m ,所以过A ,B ,C 三点的圆的方程为x 2+y 2-mx -(1+2m )y +2m =0, 整理得x 2+y 2-y -m (x +2y -2)=0. 令⎩⎪⎨⎪⎧x 2+y 2-y =0,x +2y -2=0,可得⎩⎪⎨⎪⎧x =0,y =1或⎩⎪⎨⎪⎧x =25,y =45,故过A ,B ,C 三点的圆过定点(0,1)和⎝ ⎛⎭⎪⎫25,45.求圆的方程的2种方法几何法 通过研究圆的性质、直线和圆、圆与圆的位置关系,从而求得圆的基本量和方程 代数法用待定系数法先设出圆的方程,再由条件求得各系数,从而求得圆的方程1.若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则实数a 的取值范围是( ) A .(-∞,-2) B .⎝ ⎛⎭⎪⎫-23,0 C .(-2,0)D .⎝⎛⎭⎪⎫-2,23 解析:选D .若方程表示圆,则a 2+(2a )2-4(2a 2+a -1)>0,化简得3a 2+4a -4<0,解得-2<a <23.2.经过原点且与直线x +y -2=0相切于点(2,0)的圆的标准方程是( ) A .(x -1)2+(y +1)2=2 B .(x +1)2+(y -1)2=2 C .(x -1)2+(y +1)2=4 D .(x +1)2+(y -1)2=4解析:选A .设圆心的坐标为(a ,b ),则a 2+b 2=r 2①,(a -2)2+b 2=r 2②,ba -2=1③,联立①②③解得a =1,b =-1,r 2=2.故所求圆的标准方程是(x -1)2+(y +1)2=2.故选A .3.(2019·安徽合肥模拟)已知圆M :x 2+y 2-2x +a =0,若AB 为圆M 的任意一条直径,且OA →·OB →=-6(其中O 为坐标原点),则圆M 的半径为( )A . 5B . 6C .7D .2 2解析:选C .圆M 的标准方程为(x -1)2+y 2=1-a (a <1),圆心M (1,0),则|OM |=1,因为AB 为圆M 的任意一条直径,所以MA →=-MB →,且|MA →|=|MB →|=r ,则OA →·OB →=(OM →+MA →)·(OM →+MB →)=(OM →-MB →)·(OM →+MB →)=OM →2-MB →2=1-r 2=-6,所以r 2=7,得r =7,所以圆的半径为7,故选C .直线与圆、圆与圆的综合问题[典型例题]命题角度一 切线问题已知圆O :x 2+y 2=1,点P 为直线x 4+y2=1上一动点,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,则直线AB 经过定点( )A .⎝ ⎛⎭⎪⎫12,14 B .⎝ ⎛⎭⎪⎫14,12 C .⎝⎛⎭⎪⎫34,0 D .⎝ ⎛⎭⎪⎫0,34 【解析】 因为点P 是直线x 4+y2=1上的一动点,所以设P (4-2m ,m ).因为PA ,PB 是圆x 2+y 2=1的两条切线,切点分别为A ,B ,所以OA ⊥PA ,OB ⊥PB ,所以点A ,B 在以OP 为直径的圆C 上,即弦AB 是圆O 和圆C 的公共弦.所以圆心C 的坐标是⎝ ⎛⎭⎪⎫2-m ,m 2,且半径的平方r 2=(4-2m )2+m24,所以圆C 的方程为(x -2+m )2+⎝ ⎛⎭⎪⎫y -m 22=(4-2m )2+m 24,①又x 2+y 2=1,②所以②-①得,(2m -4)x -my +1=0, 即公共弦AB所在的直线方程为(2x -y )m +(-4x +1)=0,所以由⎩⎪⎨⎪⎧-4x +1=0,2x -y =0得⎩⎪⎨⎪⎧x =14,y =12,所以直线AB 过定点⎝ ⎛⎭⎪⎫14,12.故选B .【答案】 B过一点求圆的切线方程的方法(1)过圆上一点(x 0,y 0)的圆的切线的方程的求法若切线斜率存在,则先求切点与圆心连线所在直线的斜率k (k ≠0),由垂直关系知切线斜率为-1k,由点斜式方程可求切线方程.若切线斜率不存在,则可由图形写出切线方程x =x 0.(2)过圆外一点(x 0,y 0)的圆的切线的方程的求法当切线斜率存在时,设切线斜率为k ,切线方程为y -y 0=k (x -x 0),即kx -y +y 0-kx 0=0.由圆心到直线的距离等于半径,即可得出切线方程.当切线斜率不存在时要加以验证.命题角度二 弦长问题已知圆C 经过点A (-2,0),B (0,2),且圆心C 在直线y =x 上,又直线l :y =kx+1与圆C 相交于P ,Q 两点.(1)求圆C 的方程;(2)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M ,N 两点,求四边形PMQN 面积的最大值.【解】 (1)设圆心C (a ,a ),半径为r ,因为圆C 经过点A (-2,0),B (0,2),所以|AC |=|BC |=r ,即(a +2)2+(a -0)2=(a -0)2+(a -2)2=r ,解得a =0,r =2,故所求圆C 的方程为x 2+y 2=4.(2)设圆心C 到直线l ,l 1的距离分别为d ,d 1,四边形PMQN 的面积为S . 因为直线l ,l 1都经过点(0,1),且l 1⊥l ,根据勾股定理,有d 21+d 2=1. 又|PQ |=2×4-d 2,|MN |=2×4-d 21, 所以S =12|PQ |·|MN |=12×2×4-d 2×2×4-d 21=216-4(d 21+d 2)+d 21d 2 =212+d 21d 2≤212+⎝ ⎛⎭⎪⎫d 21+d 222=212+14=7,当且仅当d 1=d 时,等号成立, 所以四边形PMQN 面积的最大值为7.求解圆的弦长的3种方法关系法根据半径,弦心距,弦长构成的直角三角形,构成三者间的关系r 2=d 2+l 24(其中l 为弦长,r 为圆的半径,d 为圆心到直线的距离)公式法根据公式l =1+k 2|x 1-x 2|求解(其中l 为弦长,x 1,x 2为直线与圆相交所得交点的横坐标,k 为直线的斜率)距离法 联立直线与圆的方程,解方程组求出两交点坐标,用两点间距离公式求解 已知圆C 经过点A (0,2),B (2,0),圆C 的圆心在圆x 2+y 2=2的内部,且直线3x+4y +5=0被圆C 所截得的弦长为2 3.点P 为圆C 上异于A ,B 的任意一点,直线PA 与x 轴交于点M ,直线PB 与y 轴交于点N .(1)求圆C 的方程;(2)若直线y =x +1与圆C 交于A 1,A 2两点,求BA 1→·BA 2→; (3)求证:|AN |·|BM |为定值.【解】 (1)易知圆心C 在线段AB 的中垂线y =x 上, 故可设C (a ,a ),圆C 的半径为r .因为直线3x +4y +5=0被圆C 所截得的弦长为23,且r =a 2+(a -2)2, 所以C (a ,a )到直线3x +4y +5=0的距离d =|7a +5|5=r 2-3=2a 2-4a +1,所以a =0或a =170.又圆C 的圆心在圆x 2+y 2=2的内部,所以a =0,此时r =2,所以圆C 的方程为x 2+y 2=4. (2)将y =x +1代入x 2+y 2=4得2x 2+2x -3=0. 设A 1(x 1,y 1),A 2(x 2,y 2), 则x 1+x 2=-1,x 1x 2=-32.所以BA 1→·BA 2→=(x 1-2)(x 2-2)+y 1y 2=x 1x 2-2(x 1+x 2)+4+(x 1+1)(x 2+1)=2x 1x 2-(x 1+x 2)+5=-3+1+5=3.(3)证明:当直线PA 的斜率不存在时,|AN |·|BM |=8. 当直线PA 与直线PB 的斜率都存在时,设P (x 0,y 0), 直线PA 的方程为y =y 0-2x 0x +2,令y =0得M ⎝ ⎛⎭⎪⎫2x 02-y 0,0.直线PB 的方程为y =y 0x 0-2(x -2),令x =0得N ⎝ ⎛⎭⎪⎫0,2y 02-x 0. 所以|AN |·|BM |=⎝ ⎛⎭⎪⎫2-2y 02-x 0⎝ ⎛⎭⎪⎫2-2x 02-y 0=4+4⎣⎢⎡⎦⎥⎤y 0x 0-2+x 0y 0-2+x 0y 0(x 0-2)(y 0-2)=4+4×y 20-2y 0+x 20-2x 0+x 0y 0(x 0-2)(y 0-2)=4+4×4-2y 0-2x 0+x 0y 0(x 0-2)(y 0-2)=4+4×4-2y 0-2x 0+x 0y 04-2y 0-2x 0+x 0y 0=8,综上,|AN |·|BM |为定值8.讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.[对点训练]1.自圆C :(x -3)2+(y +4)2=4外一点P (x ,y )引该圆的一条切线,切点为Q ,PQ 的长度等于点P 到原点O 的距离,则点P 的轨迹方程为( )A .8x -6y -21=0B .8x +6y -21=0C .6x +8y -21=0D .6x -8y -21=0解析:选D .由题意得,圆心C 的坐标为(3,-4),半径r =2,如图.因为|PQ |=|PO |,且PQ ⊥CQ , 所以|PO |2+r 2=|PC |2,所以x 2+y 2+4=(x -3)2+(y +4)2,即6x -8y -21=0,所以点P 的轨迹方程为6x -8y -21=0,故选D .2.已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点,若|MN |=255,则直线l 的方程为________.解析:直线l 的方程为y =kx +1,圆心C (2,3)到直线l 的距离d =|2k -3+1|k 2+1=|2k -2|k 2+1,由R 2=d 2+⎝ ⎛⎭⎪⎫|MN |22,得1=(2k -2)2k 2+1+15,解得k =2或12,故所求直线l 的方程为y =2x +1或y =12x +1.答案:y =2x +1或y =12x +13.在平面直角坐标系xOy 中,已知圆C 与y 轴相切,且过点M (1,3),N (1,-3). (1)求圆C 的方程;(2)已知直线l 与圆C 交于A ,B 两点,且直线OA 与直线OB 的斜率之积为-2.求证:直线l 恒过定点,并求出定点的坐标.解:(1)因为圆C 过点M (1,3),N (1,-3), 所以圆心C 在线段MN 的垂直平分线上,即在x 轴上, 故设圆心为C (a ,0),易知a >0, 又圆C 与y 轴相切, 所以圆C 的半径r =a ,所以圆C 的方程为(x -a )2+y 2=a 2. 因为点M (1,3)在圆C 上, 所以(1-a )2+(3)2=a 2,解得a =2. 所以圆C 的方程为(x -2)2+y 2=4. (2)记直线OA 的斜率为k (k ≠0), 则其方程为y =kx .联立⎩⎪⎨⎪⎧(x -2)2+y 2=4,y =kx ,消去y ,得(k 2+1)x 2-4x =0,解得x 1=0,x 2=4k 2+1. 所以A ⎝⎛⎭⎪⎫4k 2+1,4k k 2+1.由k ·k OB =-2,得k OB =-2k,直线OB 的方程为y =-2kx , 在点A 的坐标中用-2k 代替k ,得B ⎝ ⎛⎭⎪⎫4k2k 2+4,-8k k 2+4.当直线l 的斜率不存在时,4k 2+1=4k 2k 2+4,得k 2=2,此时直线l 的方程为x =43.当直线l的斜率存在时,4k2+1≠4k2k2+4,即k2≠2.则直线l的斜率为4kk2+1--8kk2+44k2+1-4k2k2+4=4k(k2+4)+8k(k2+1)4(k2+4)-4k2(k2+1)=3k(k2+2)4-k4=3k2-k2.故直线l的方程为y-4kk2+1=3k2-k2⎝⎛⎭⎪⎫x-4k2+1.即y=3k2-k2⎝⎛⎭⎪⎫x-43,所以直线l过定点⎝⎛⎭⎪⎫43,0.综上,直线l恒过定点,定点坐标为⎝⎛⎭⎪⎫43,0.一、选择题1.已知直线l1过点(-2,0)且倾斜角为30°,直线l2过点(2,0)且与直线l1垂直,则直线l1与直线l2的交点坐标为( )A.(3,3) B.(2,3)C.(1,3) D.⎝⎛⎭⎪⎫1,32解析:选C.直线l1的斜率k1=tan 30°=33,因为直线l2与直线l1垂直,所以直线l2的斜率k2=-1k1=-3,所以直线l1的方程为y=33(x+2),直线l2的方程为y=-3(x-2),联立⎩⎪⎨⎪⎧y=33(x+2),y=-3(x-2),解得⎩⎨⎧x=1,y=3,即直线l1与直线l2的交点坐标为(1,3).2.圆C与x轴相切于T(1,0),与y轴正半轴交于A、B两点,且|AB|=2,则圆C的标准方程为( )A.(x-1)2+(y-2)2=2B.(x-1)2+(y-2)2=2C.(x+1)2+(y+2)2=4D.(x-1)2+(y-2)2=4解析:选A.由题意得,圆C的半径为1+1=2,圆心坐标为(1,2),所以圆C的标准方程为(x-1)2+(y-2)2=2,故选A.3.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离解析:选B .圆M :x 2+y 2-2ay =0(a >0)可化为x 2+(y -a )2=a 2,由题意,M (0,a )到直线x +y =0的距离d =a2,所以a 2=a 22+2,解得a =2.所以圆M :x 2+(y -2)2=4,所以两圆的圆心距为2,半径和为3,半径差为1,故两圆相交.4.(2019·皖南八校联考)圆C 与直线2x +y -11=0相切,且圆心C 的坐标为(2,2),设点P 的坐标为(-1,y 0).若在圆C 上存在一点Q ,使得∠CPQ =30°,则y 0的取值范围是( )A .[-12,92]B .[-1,5]C .[2-11,2+11]D .[2-23,2+23]解析:选C .由点C (2,2)到直线2x +y -11=0的距离为|4+2-11|5=5,可得圆C 的方程为(x -2)2+(y -2)2=5.若存在这样的点Q ,当PQ 与圆C 相切时,∠CPQ ≥30°,可得sin ∠CPQ =CQ CP=5CP≥sin 30°,即CP ≤25,则9+(y 0-2)2≤25,解得2-11≤y 0≤2+11.故选C .5.在平面直角坐标系内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2=( )A .102B .10C .5D .10解析:选D .由题意知P (0,1),Q (-3,0),因为过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,所以MP ⊥MQ ,所以|MP |2+|MQ |2=|PQ |2=9+1=10,故选D .6.(一题多解)(2019·河南郑州模拟)在平面直角坐标系中,O 为坐标原点,直线x -ky +1=0与圆C :x 2+y 2=4相交于A ,B 两点,OM →=OA →+OB →,若点M 在圆C 上,则实数k 的值为( )A .-2B .-1C .0D .1解析:选C .法一:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x -ky +1=0,x 2+y 2=4得(k 2+1)y 2-2ky -3=0,则Δ=4k 2+12(k 2+1)>0,y 1+y 2=2k k 2+1,x 1+x 2=k (y 1+y 2)-2=-2k 2+1,因为OM →=OA →+OB →,故M ⎝ ⎛⎭⎪⎫-2k 2+1,2k k 2+1,又点M 在圆C 上,故4(k 2+1)2+4k 2(k 2+1)2=4,解得k =0.法二:由直线与圆相交于A ,B 两点,OM →=OA →+OB →,且点M 在圆C 上,得圆心C (0,0)到直线x -ky +1=0的距离为半径的一半,为1,即d =11+k2=1,解得k =0.二、填空题7.过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.解析:令P (2,0),如图,易知|OA |=|OB |=1,所以S △AOB =12|OA |·|OB |·sin ∠AOB =12sin ∠AOB ≤12,当∠AOB =90°时,△AOB 的面积取得最大值,此时过点O 作OH ⊥AB 于点H , 则|OH |=22, 于是sin ∠OPH =|OH ||OP |=222=12,易知∠OPH 为锐角,所以∠OPH =30°,则直线AB 的倾斜角为150°,故直线AB 的斜率为tan 150°=-33. 答案:-338.已知圆O :x 2+y 2=4到直线l :x +y =a 的距离等于1的点至少有2个,则实数a 的取值范围为________.解析:由圆的方程可知圆心为(0,0),半径为2.因为圆O 到直线l 的距离等于1的点至少有2个,所以圆心到直线l 的距离d <r +1=2+1,即d =|-a |12+12=|a |2<3,解得a ∈(-32,32).答案:(-32,32)9.(2019·高考浙江卷)已知圆C 的圆心坐标是(0,m ),半径长是r .若直线2x -y +3=0与圆C 相切于点A (-2,-1),则m =________,r =________.解析:法一:设过点A (-2,-1)且与直线2x -y +3=0垂直的直线方程为l :x +2y +t=0,所以-2-2+t =0,所以t =4,所以l :x +2y +4=0.令x =0,得m =-2,则r =(-2-0)2+(-1+2)2= 5.法二:因为直线2x -y +3=0与以点(0,m )为圆心的圆相切,且切点为A (-2,-1),所以m +10-(-2)×2=-1,所以m =-2,r =(-2-0)2+(-1+2)2= 5.答案:-2 5三、解答题10.已知点M (-1,0),N (1,0),曲线E 上任意一点到点M 的距离均是到点N 的距离的3倍.(1)求曲线E 的方程;(2)已知m ≠0,设直线l 1:x -my -1=0交曲线E 于A ,C 两点,直线l 2:mx +y -m =0交曲线E 于B ,D 两点.当CD 的斜率为-1时,求直线CD 的方程.解:(1)设曲线E 上任意一点的坐标为(x ,y ), 由题意得(x +1)2+y 2=3·(x -1)2+y 2, 整理得x 2+y 2-4x +1=0,即(x -2)2+y 2=3为所求.(2)由题意知l 1⊥l 2,且两条直线均恒过点N (1,0).设曲线E 的圆心为E ,则E (2,0),设线段CD 的中点为P ,连接EP ,ED ,NP ,则直线EP :y =x -2.设直线CD :y =-x +t ,由⎩⎪⎨⎪⎧y =x -2,y =-x +t ,解得点P ⎝ ⎛⎭⎪⎫t +22,t -22, 由圆的几何性质,知|NP |=12|CD |=|ED |2-|EP |2,而|NP |2=⎝ ⎛⎭⎪⎫t +22-12+⎝ ⎛⎭⎪⎫t -222,|ED |2=3,|EP |2=⎝ ⎛⎭⎪⎫|2-t |22,所以⎝ ⎛⎭⎪⎫t 22+⎝ ⎛⎭⎪⎫t -222=3-(t -2)22,整理得t 2-3t =0,解得t =0或t =3, 所以直线CD 的方程为y =-x 或y =-x +3.11.在平面直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0,所以x 1x 2=-2.又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC的情况.(2)证明:BC 的中点坐标为(x 22,12),可得BC 的中垂线方程为y -12=x 2(x -x 22).由(1)可得x 1+x 2=-m ,所以AB 的中垂线方程为x =-m2.联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2(x -x 22),又x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为(-m2,-12),半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-(m2)2=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.12.在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在直线l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.解:(1)因为圆心在直线l :y =2x -4上,也在直线y =x -1上,所以解方程组⎩⎪⎨⎪⎧y =2x -4,y =x -1,得圆心C (3,2),又因为圆C 的半径为1,所以圆C 的方程为(x -3)2+(y -2)2=1,又因为点A (0,3),显然过点A ,圆C 的切线的斜率存在,设所求的切线方程为y =kx +3,即kx -y +3=0,所以|3k -2+3|k 2+12=1,解得k =0或k =-34, 所以所求切线方程为y =3或y =-34x +3,即y -3=0或3x +4y -12=0.(2)因为圆C 的圆心在直线l :y =2x -4上,所以设圆心C 为(a ,2a -4), 又因为圆C 的半径为1,则圆C 的方程为(x -a )2+(y -2a +4)2=1. 设M (x ,y ),又因为|MA |=2|MO |,则有x 2+(y -3)2=2x 2+y 2,整理得x 2+(y +1)2=4,其表示圆心为(0,-1),半径为2的圆,设为圆D ,所以点M 既在圆C 上,又在圆D 上,即圆C 与圆D 有交点,所以2-1≤a 2+(2a -4+1)2≤2+1,解得0≤a ≤125,所以圆心C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.。
课时作业1.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为( ) A.423B .4 2 C.823 D .2 2C [解析] 因为l 1∥l 2,得1a -2=a 3≠62a, 解得a =-1,所以l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0, 所以l 1与l 2的距离d =⎪⎪⎪⎪6-232=832. 2.已知圆C :x 2+y 2+mx -4=0上存在两点关于直线x -y +3=0对称,则实数m 的值为( )A .8B .-4C .6D .无法确定C [解析] 圆上存在关于直线x -y +3=0对称的两点,则x -y +3=0过圆心⎝⎛⎭⎫-m 2,0,即-m 2+3=0,所以m =6. 3.在平面直角坐标系xOy 中,设直线l :y =kx +1与圆C :x 2+y 2=4相交于A ,B 两点,以OA ,OB 为邻边作平行四边形OAMB ,若点M 在圆C 上,则实数k 等于( )A .1B .2C .-1D .0D [解析] 由题意知圆心到直线l 的距离等于12r =1(r 为圆C 的半径),所以|k ×0-0+1|k 2+1=1,解得k =0.4.(2016·石家庄第一次模考)已知直线ax +y -1=0与圆C :(x -1)2+(y +a )2=1相交于A 、B 两点,且△ABC 为等腰直角三角形,则实数a 的值为( )A.17或-1 B .-1 C .1或-1 D .1C [解析] 由题意得圆心(1,-a )到直线ax +y -1=0的距离为22,所以|a -a -1|1+a 2=22,解得a =±1,故选C.5.(2016·重庆第一次适应性测试)已知圆C :(x -1)2+(y -2)2=2与y 轴在第二象限所围区域的面积为S ,直线y =2x +b 分圆C 的内部为两部分,其中一部分的面积也为S ,则b =( )A .- 6B .±6C .- 5D .±5D [解析] 记圆C 与y 轴的两个交点分别是A ,B ,圆心C 到y 轴的距离为1,且|CA |=|CB |=2,则CA ⊥CB ,因此圆心C (1,2)到直线2x -y +b =0的距离也等于1才符合题意,于是有|2×1-2+b |5=1,解得b =±5,选D. 6.(2016·兰州模拟)在平面直角坐标系xOy 中,已知直线l :x +y +a =0与点A (0,2),若直线l 上存在点M 满足|MA |2+|MO |2=10(O 为坐标原点),则实数a 的取值范围是( ) A .(-5-1,5-1) B .[-5-1,5-1]C .(-22-1,22-1)D .[-22-1,22-1]D [解析] 设M (x ,y ),因为|MA |2+|MO |2=10,所以x 2+(y -2)2+x 2+y 2=10,即x 2+(y -1)2=4,由于点M 在直线l 上,所以直线x +y +a =0与圆x 2+(y -1)2=4相交或相切时满足题意,即|1+a |2≤2,解得-22-1≤a ≤22-1. 7.若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是________.[解析] 因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),所以设圆心为(2,m ).又因为圆与直线y =1相切,所以(4-2)2+(0-m )2=|1-m |,所以m 2+4=m 2-2m +1,解得m =-32, 所以圆的方程为(x -2)2+⎝⎛⎭⎫y +322=254. [答案] (x -2)2+⎝⎛⎭⎫y +322=254 8.(2016·高考全国卷乙)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.[解析] 圆C 的方程可化为x 2+(y -a )2=a 2+2,可得圆心的坐标为C (0,a ),半径r =a 2+2,所以圆心到直线x -y +2a =0的距离为|-a +2a |2=|a |2,所以⎝⎛⎭⎫|a |22+(3)2=(a 2+2)2,解得a 2=2,所以圆C 的半径为2,所以圆C 的面积为4π.[答案] 4π9.已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0与圆C 2:x 2+y 2+2x -2my +m 2-3=0,若圆C 1与圆C 2相外切,则实数m =________.[解析] 对于圆C 1与圆C 2的方程,配方得圆C 1:(x -m )2+(y +2)2=9,圆C 2:(x +1)2+(y -m )2=4,则圆C 1的圆心C 1(m ,-2),半径r 1=3,圆C 2的圆心C 2(-1,m ),半径r 2=2.如果圆C 1与圆C 2相外切,那么有|C 1C 2|=r 1+r 2,即(m +1)2+(m +2)2=5,则m 2+3m -10=0,解得m =-5或m =2,所以当m =-5或m =2时,圆C 1与圆C 2相外切.[答案] -5或210.已知圆x 2+y 2-2x -4y +a -5=0上有且仅有两个点到直线3x -4y -15=0的距离为1,则实数a 的取值范围为________.[解析] 圆的标准方程为(x -1)2+(y -2)2=10-a ,故10-a >0,即a <10.圆心(1,2)到直线3x -4y -15=0的距离为4.数形结合可得,当圆x 2+y 2-2x -4y +a -5=0上有且仅有两个点到直线3x -4y -15=0的距离为1时,圆的半径r 满足3<r <5,即3<10-a <5,即-15<a <1.[答案] (-15,1)11.已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点.(1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程.[解] (1)设圆A 的半径为R .因为圆A 与直线l 1:x +2y +7=0相切,所以R =|-1+4+7|5=2 5. 所以圆A 的方程为(x +1)2+(y -2)2=20.(2)当直线l 与x 轴垂直时,易知x =-2符合题意;当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +2),即kx -y +2k =0,由于|MN |=219,于是 (|-k -2+2k |k 2+1)2+(19)2=(25)2⇒k =34, 此时,直线l 的方程为3x -4y +6=0,所以所求直线l 的方程为x =-2或3x -4y +6=0.12.已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ →·MQ →的最小值.[解] (1)设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0. 则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2,故圆C 的方程为x 2+y 2=2.(2)设Q (x ,y ),则x 2+y 2=2,且PQ →·MQ →=(x -1,y -1)·(x +2,y +2)=x 2+y 2+x +y -4=x +y -2,令x =2cos θ,y =2sin θ,则PQ →·MQ →=x +y -2=2(sin θ+cos θ)-2=2sin ⎝⎛⎭⎫θ+π4-2. 所以PQ →·MQ →的最小值为-4.13.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.[解] (1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x ,2-y ).由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上.又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13, 故l 的方程为y =-13x +83. 又|OM |=|OP |=22,O 到l 的距离为4105,|PM |=4105,所以△POM 的面积为165.14.(2016·湖南省东部六校联考)已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.[解] (1)设圆心C (a ,0)⎝⎛⎭⎫a >-52,则|4a +10|5=2⇒a =0或a =-5(舍). 所以圆C :x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t ,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4y =k (x -1)得,(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t=0⇒k (x 1-1)x 1-t +k (x 2-1)x 2-t =0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.。