全国2007年7月高等教育自学考试线性代数试题
- 格式:doc
- 大小:58.50 KB
- 文档页数:3
重庆大学线性代数(Ⅱ)课程试卷2006~2007学年 第2学期一、 填空题(3分/每小题,共30分) ⒈517924的逆序数为 7 ;⒉ A 为3阶方阵,且A =-2,A =123A A A ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则312123A A A A -= 6 ;⒊若向量⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4321α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=t 876β相互正交,则t =__-11______;⒋ A 为3阶方阵,且A =2,则()=+-*122A A 16729;5.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--330204212的秩为 2 ;6.齐次线性方程021=+++n x x x 的基础解系的向量个数是 N-1 ;7. A 为4阶方阵,B 为7阶方阵,且2,3A B ==-则=BO OA -6 ;8. 已知123,,ααα 线性无关,则133221,,αααααα+++线性 无关 ;9.非齐次线性方程组m n A x β⨯=有解的充分必要条件为)()(β A R A R =;10.当λ为 大于5 取值范围时, 二次型2332223121213216242),,(x x x x x x x x x x x x f λ+++++= 为正定.二、 简答题(4分/每小题,共8分)⒈若n 阶方阵A 有O A =2,问是否O A =成立?为什么?不成立(2分),可取多个反例(2分) ⒉,A B 为n 阶方阵且相似,问,A B 是否等价?为什么?成立(2分),因为,A B 为n 阶方阵且相似,则存在C ,使得B AC C =-1,而C 可逆,则可表示初等方阵的乘积,于是,A B 等价(2分)。
三、 计算题(一)(8分/每小题,共24分)1. 计算四阶行列式.5021*********321---=D 解504173012107222.1730012107022204321.5021011321014321=-------=-------=---=D有过程但结果错误得一半的分数。
全国2007年7月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 是3阶方阵,且|A |=21-,则|A -1|=( A ) A .-2 B .21- C .21 D .22.设A 为n 阶方阵,λ为实数,则=||A λ( C )A .||A λB .||||A λC .||A n λD .||||A n λ 3.设A 为n 阶方阵,令方阵B =A +A T ,则必有( A ) A .B T =B B .B =2A C .B B T -= D .B =04.矩阵A =⎪⎪⎭⎫ ⎝⎛--1111的伴随矩阵A *=( D ) A .⎪⎪⎭⎫ ⎝⎛--1111 B .⎪⎪⎭⎫ ⎝⎛--1111 C .⎪⎪⎭⎫ ⎝⎛--1111 D .⎪⎪⎭⎫ ⎝⎛--1111 5.下列矩阵中,是初等矩阵的为( C )A .⎪⎪⎭⎫ ⎝⎛0001B .⎪⎪⎪⎭⎫ ⎝⎛--100101110C .⎪⎪⎪⎭⎫ ⎝⎛101010001D .⎪⎪⎪⎭⎫ ⎝⎛001300010 6.若向量组)0,1,1(1+=t α,)0,2,1(2=α,)1,0,0(23+=t α线性相关,则实数t =( B )A .0B .1C .2D .3A .A 中的4阶子式都不为0B .A 中存在不为0的4阶子式C .A 中的3阶子式都不为0D .A 中存在不为0的3阶子式8.设3阶实对称矩阵A 的特征值为021==λλ,23=λ,则秩(A )=( B )A .0B .1 C .2 D .39.设A 为n 阶正交矩阵,则行列式=||2A ( C )A .-2B .-1C .1D .210.二次型),,(y x z y x f -=的正惯性指数p 为( B )A .0B .1C .2D .3二、填空题(本大题共10小题,每小题2分,共20分) 11.设矩阵A =⎪⎪⎫ ⎛1121,则行列式=||T AA __1__.13.设矩阵A =⎪⎪⎭⎫ ⎝⎛21,B =⎪⎪⎭⎫ ⎝⎛21,则=B A T __5__. 32112=3α⎪⎭⎫ ⎝⎛-211,1,1. 15.矩阵A =⎪⎪⎪⎭⎫ ⎝⎛6131的行向量组的秩=__2__.16.已知向量组)1,1,1(1=α,)0,2,1(2=α,)0,0,3(3=α是R 的一组基,则向量)3,7,8(=β在这组基下的坐标是)1,2,3(.17.已知方程组⎩⎨⎧=+-022121tx x 存在非零解,则常数t =__2__. 18.已知3维向量)1,3,1(-=α,)4,2,1(-=β,则内积=),(βα__1__.19.已知矩阵A =⎪⎪⎪⎭⎫ ⎝⎛x 01010101的一个特征值为0,则x =__1__.20.二次型323121232221321822532),,(x x x x x x x x x x x x f +-+++=的矩阵是⎪⎪⎪⎭⎝-541431.三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D=210121012的值.解:4)26(2123210121230210121012=+--=---=--=. 22.设矩阵A =⎪⎪⎭⎫ ⎝⎛3512,B =⎪⎪⎭⎫ ⎝⎛0231,求矩阵方程XA =B 的解X .解:⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛=252610022501101220016101210013512),(E A⎪⎪⎭⎫ ⎝⎛--→25131001,⎪⎪⎭⎫ ⎝⎛--=-25131A ,⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛==-26512251302311BA X . 23.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛---a 363124843121,问a 为何值时,(1)秩(A )=1;(2)秩(A )=2.解:⎪⎪⎪⎭⎫ ⎝⎛---a 363124843121→⎪⎪⎪⎭⎫ ⎝⎛--900000003121a →⎪⎪⎪⎭⎫ ⎝⎛--000090003121a .(1)9=a 时,秩(A )=1;(2)9≠a 时,秩(A )=2.24.求向量组1α=⎪⎪⎪⎭⎫ ⎝⎛-111,2α=⎪⎪⎪⎭⎫ ⎝⎛531,3α=⎪⎪⎪⎭⎫ ⎝⎛626,4α=⎪⎪⎪⎭⎫ ⎝⎛-542的秩与一个极大线性无关组. 解:=),,,(4321αααα⎪⎪⎪⎭⎫ ⎝⎛--565142312611→⎪⎪⎪⎭⎫ ⎝⎛--3126028402611→⎪⎪⎪⎭⎫ ⎝⎛--142014202611→⎪⎪⎪⎭⎫ ⎝⎛--000014202611→⎪⎪⎪⎭⎫ ⎝⎛--0000142041222→⎪⎪⎪⎭⎫ ⎝⎛-000014205802→⎪⎪⎪⎭⎫ ⎝⎛-00002/12102/5401, 秩为2,1α,2α是一个极大线性无关组.25.求线性方程组⎪⎩⎪⎨⎧=++=+=++362232234232132321x x x x x x x x 的通解.解:⎪⎪⎪⎭⎫ ⎝⎛=362232203421),(b A →⎪⎪⎪⎭⎫ ⎝⎛---322032203421→⎪⎪⎪⎭⎫ ⎝⎛000032203421→⎪⎪⎪⎭⎫ ⎝⎛000032200201→⎪⎪⎪⎭⎫ ⎝⎛00002/31100201,⎪⎪⎩⎪⎪⎨⎧=-=-=333231232x x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛11202/30k .26.设矩阵⎪⎪⎪⎭⎫ ⎝⎛--=1630310104A ,求可逆矩阵P 及对角矩阵D ,使得D AP P =-1. 解:2)1)(2(31104)1(1630310104||-+=--+-=-----+=-λλλλλλλλλA E , 特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-----=-00013050300013001531300000511210510513630510102A E λ ⎪⎪⎪⎭⎫ ⎝⎛-→0003/1103/501,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=3332313135x x x x x x ,基础解系为 ⎪⎪⎪⎭⎫ ⎝⎛-=13/13/51α; 对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛----=-0000000210210210210630210105A E λ,⎪⎩⎪⎨⎧==-=3322212x x x x x x ,基础解系为 ⎪⎪⎪⎭⎫ ⎝⎛-=0122α,⎪⎪⎪⎭⎫ ⎝⎛=1003α.令⎪⎪⎪⎭⎫ ⎝⎛--=101013/1023/5P ,⎪⎪⎪⎭⎫ ⎝⎛-=100010002D ,则P 是可逆矩阵,使D AP P =-1. 四、证明题(本大题6分)27.设向量组1α,2α线性无关,证明向量组211ααβ+=,212ααβ-=也线性无关. 证:设02211=+ββk k ,即0)()(212211=-++ααααk k ,0)()(221121=-++ααk k k k .由1α,2α线性无关,得⎩⎨⎧=-=+002121k k k k ,因为021111≠-=-,方程组只有零解,所以1β,2β线性无关.本资料由广州自考网收集整理,更多自考资料请登录 下载考试必看:自考一次通过的秘诀!。
全国2012年10月自学考试线性代数试题请考生按规定用笔将所有试题的答案涂、写在答题纸上。
说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,A表示方阵A 的行列式,r(A )表示矩阵A 的秩。
选择题部分一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题 纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设行列式1122=1a b a b ,11221a c a c -=--,则行列式111222=a b c a b c -- A .-1 B .0C .1D .22.设矩阵123456709⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则*A 中位于第2行第3列的元素是A .-14B .-6C .6D .143.设A 是n 阶矩阵,O 是n 阶零矩阵,且2-=A E O ,则必有 A .1-=A A B .=-A E C .=A ED .1=A4.已知4×3矩阵A 的列向量组线性无关,则r (A T )= A .1 B .2 C .3 D .45.设向量组T T12(2,0,0),(0,0,-1)αα==,则下列向量中可以由12,αα线性表示的是A .(-1,-1,-1)TB .(0,-1,-1)TC .(-1,-1,0)TD .(-1,0,-1)T6.齐次线性方程组134234020x x x x x x ++=⎧⎨-+=⎩的基础解系所含解向量的个数为A.1B.2C.3D.47.设12,αα是非齐次线性方程组Ax =b 的两个解向量,则下列向量中为方程组解的是A .12αα-B .12αα+C .1212αα+D .121122αα+8.若矩阵A 与对角矩阵111-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭D 相似,则A 2= A.EB.AC.-ED.2E9.设3阶矩阵A 的一个特征值为-3,则-A 2必有一个特征值为 A.-9 B.-3 C.3 D.910.二次型222123123121323(,,)222f x x x x x x x x x x x x =+++++的规范形为A .2212z z -B .2212z z + C .21zD .222123z z z ++二、填空题(本大题共10小题,每小题2分,共20分)11.行列式123111321的值为______. 12.设矩阵011001000⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则A 2=______.13.若线性方程组12323323122(1)x x x x x x λλ++=⎧⎪-+=-⎨⎪+=-⎩无解,则数λ=______.14.设矩阵43012110⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,=A P ,则PAP 2=______.15.向量组T T 12,-2,2,(4,8,8)k αα==-()线性相关,则数k =______. 16.已知A 为3阶矩阵,12,ξξ为齐次线性方程组Ax =0的基础解系,则=A ______. 17.若A 为3阶矩阵,且19=A ,则-1(3)A =______. 18.设B 是3阶矩阵,O 是3阶零矩阵,r (B )=1,则分块矩阵⎛⎫⎪⎝⎭E O B B 的秩为______.19.已知矩阵211121322⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,向量11k ⎛⎫ ⎪= ⎪ ⎪⎝⎭α是A 的属于特征值1的特征向量,则数k =______.20.二次型1212(,)6f x x x x =的正惯性指数为______. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式a ba b D a a b b aba b+=++的值.22.设矩阵100112210,022222046A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求满足方程AX =B T 的矩阵X .23.设向量组123411212142,,,30614431αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,求该向量组的秩和一个极大线性无关组.24.求解非齐次线性方程组123412341234124436x x x x x x x x x x x x +--=⎧⎪+++=⎨⎪+--=⎩.(要求用它的一个特解和导出组的基础解系表示).25.求矩阵200020002⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的全部特征值和特征向量.26.确定a ,b 的值,使二次型22212312313(,,)222f x x x ax x x bx x =+-+的矩阵A 的特征值之和为1,特征值之积为-12. 四、证明题(本题6分)27.设矩阵A 可逆,证明:A *可逆,且*11*--=()()A A .全国2012年7月高等教育自学考试一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 为三阶矩阵,且13A -=,则 3A -( )A.-9B.-1C.1D.92.设[]123,,A a a a =,其中 (1,2,3)i a i = 是三维列向量,若1A =,则[]11234,23,a a a a - ( )A.-24B.-12C.12D.243.设A 、B 均为方阵,则下列结论中正确的是( ) A.若AB =0,则A=0或B=0 B. 若AB =0,则A =0或B =0 C .若AB=0,则A=0或B=0 D. 若AB ≠0,则A ≠0或B ≠04. 设A 、B 为n 阶可逆阵,则下列等式成立的是( ) A. 111()AB A B ---=B. 111()A B A B ---+=+ C .11()AB AB-= D. 111()A B A B ---+=+5. 设A 为m ×n 矩阵,且m <n ,则齐次方程AX=0必 ( ) A.无解B.只有唯一解 C .有无穷解 D.不能确定6. 设12311102103A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦则()r A = A.1 B.2 C.3 D.47. 若A 为正交矩阵,则下列矩阵中不是正交阵的是( ) A. 1A -B.2A C .A ²D. T A8.设三阶矩阵A有特征值0、1、2,其对应特征向量分别为123ξξξ、、,令[]312,,2P ξξξ= 则1P AP -=( ) A. 200010000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ B. 200000001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C .000010004⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ D. 200000002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦9.设A 、B 为同阶方阵,且()()r A r B =,则( ) A.A 与B 等阶 B. A 与B 合同 C .A B =D. A 与B 相似10.设二次型22212312123(,,)22f x x x x x x x x =+-+则f 是( ) A.负定 B.正定 C .半正定 D.不定二、填空题(本大题共10小题,每小题2分,共20分) 11.设A 、B 为三阶方阵,A =4,B =5, 则2AB = 12.设121310A ⎡⎤=⎢⎥⎣⎦ , 120101B ⎡⎤=⎢⎥⎣⎦ ,则TA B 13.设120010002A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦则1A - =14.若22112414A t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦且()2r A =,则t= 15.设1231120,2,2110a a a -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦则由 123,,a a a 生成的线性空间123(,,)L a a a的维数是16. 设A 为三阶方阵,其特征值分别为1、2、3,则1A E --=17.设111,21t a β-⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,且a 与β正交,则t = 18.方程1231x x x +-=的通解是19.二次型212341223344(,,,)5f x x x x x x x x x x x =+++所对应的对称矩阵是20.若00100A x =⎢⎥⎢⎥⎥⎥⎦是正交矩阵,则x =三、计算题 (本大题共6小题,每小题9分,共54分)21.计算行列式1112112112112111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 22.设010111101A ⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦= 112053-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦B = ,且X 满足X=AX+B,求X23.求线性方程组的123412345221.53223x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩12x x 的通解,24.求向量组 (2,4,2),(1,1,0),(2,3,1),(3,5,2)====1234a a a a 的一个极大线性无关组,并把其余向量用该极大线性无关组表示。
全国2018年7月自学考试线性代数试题课程代码:02198试题符号说明:A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 表示单位矩阵,|A|表示方阵A的行列式,A -1表示矩阵A 的逆矩阵,秩(A )表示矩阵A 的秩.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ,B ,C 是三个n 阶方阵,若AB =AC ,则必有( )A .A =0B .B =C C .|B|=|C|D .|AB|=|AC|2.设A ,B 都是n 阶方阵,且|A|=-2,|B|=1,则|A T B -1|=( )A .-2B .-21 C .21 D .23.设A 为4×5矩阵,若矩阵A 的秩为3,则秩(-3A T )为( )A .1B .2C .3D .44.设向量α=(-1,2,-2,4),则下列向量是单位向量的是( )A .31α B .51α C .91α D .251α 5.二次型22212143x x )x ,x (f +=的规范形是( )A .2221y y -B .2221y y --C .2221y y +-D .2221y y + 6.设A 为5阶方阵,若秩(A )=4,则齐次线性方程组A x =0的基础解系中包含的解向量的个数是( )A .1B .2C .3D .4 7.向量空间W ={(x 1,x 2,0,x 4)|x 1+x 2=0}的维数是( )A .1B .2C .3D .4 8.设矩阵A =⎪⎭⎫ ⎝⎛--4321,则矩阵A 的伴随矩阵A *=( ) A .⎪⎭⎫ ⎝⎛--1324 B .⎪⎭⎫ ⎝⎛1324 C .⎪⎭⎫ ⎝⎛--1234 D .⎪⎭⎫ ⎝⎛12349.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛4000330022201111,则A 的线性无关的特征向量的个数是( ) A .1B .2C .3D .410.设A 、B 分别为m×n 和m ×k 矩阵,向量组(Ⅰ)是由A 的行向量构成的向量组,向量组(Ⅱ)是由(A ,B )的行向量构成的向量组,则必有( )A .若(Ⅱ)线性无关,则(Ⅰ)线性无关B .若(Ⅰ)线性无关,则(Ⅱ)线性相关C .若(Ⅰ)线性无关,则(Ⅱ)线性无关D .若(Ⅱ)线性无关,则(Ⅰ)线性相关二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
全国2007年4月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 为3阶方阵,且2||=A ,则=-|2|1A ( D ) A .-4 B .-1 C .1D .44218||2|2|131=⨯==--A A. 2.设矩阵A =(1,2),B =⎪⎪⎭⎫⎝⎛4321,C =⎪⎪⎭⎫ ⎝⎛654321,则下列矩阵运算中有意义的是( B ) A .ACBB .ABC C .BACD .CBA3.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( B ) A .A +A TB .A -A TC .AA TD .A T A)()()(TTTTTTTA A A AA AA A --=-=-=-,所以A -A T为反对称矩阵.4.设2阶矩阵A =⎪⎪⎭⎫ ⎝⎛d cb a ,则A *=( A ) A .⎪⎪⎭⎫⎝⎛--a cb dB .⎪⎪⎭⎫⎝⎛--a b c dC .⎪⎪⎭⎫⎝⎛--a c b dD .⎪⎪⎭⎫⎝⎛--a b c d 5.矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( C ) A .⎪⎪⎭⎫⎝⎛-3310B .⎪⎪⎭⎫ ⎝⎛-3130C .⎪⎪⎭⎫ ⎝⎛-13110D .⎪⎪⎪⎭⎫⎝⎛-01311 6.设矩阵A =⎪⎪⎪⎭⎫⎝⎛--50043200101,则A 中( D ) A .所有2阶子式都不为零 B .所有2阶子式都为零 C .所有3阶子式都不为零D .存在一个3阶子式不为零7.设A 为m×n 矩阵,齐次线性方程组Ax =0有非零解的充分必要条件是( A ) A .A 的列向量组线性相关 B .A 的列向量组线性无关 C .A 的行向量组线性相关D .A 的行向量组线性无关Ax =0有非零解⇔n A r <)(⇔ A 的列向量组线性相关.8.设3元非齐次线性方程组Ax=b 的两个解为T )2,0,1(=α,T )3,1,1(-=β,且系数矩阵A 的秩r(A )=2,则对于任意常数k , k 1, k 2,方程组的通解可表为( C ) A .k 1(1,0,2)T+k 2(1,-1,3)TB .(1,0,2)T +k (1,-1,3)TC .(1,0,2)T+k (0,1,-1)TD .(1,0,2)T+k (2,-1,5)TT )2,0,1(=α是Ax=b 的特解,T)1,1,0(-=-βα是Ax =0的基础解系,所以Ax=b 的通解可表为=-+)(βααk (1,0,2)T +k (0,1,-1)T .9.矩阵A =⎪⎪⎪⎭⎫⎝⎛111111111的非零特征值为( B ) A .4B .3C .2D .1111111111)3(111111333111111111||-------=---------=---------=-λλλλλλλλλλλλA E)3(000111)3(2-=-=λλλλλ,非零特征值为3=λ.10.4元二次型413121214321222),,,(x x x x x x x x x x x f +++=的秩为( C ) A .4B .3C .2D .1⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=000000011100001000000000011110001000100011111A ,秩为2. 二、填空题(本大题共10小题,每小题2分,共20分)11.若,3,2,1,0=≠i b a i i 则行列式332313322212312111b a b a b a b a b a b a b a b a b a =__0__. 行成比例值为零. 12.设矩阵A =⎪⎪⎭⎫⎝⎛4321,则行列式|A TA |=__4__.4)2(4321||||||||222=-====A A AA A TT .13.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000333232131323222121313212111x a x a x a x a x a x a x a x a x a 有非零解,则其系数行列式的值为__0__.14.设矩阵A =⎪⎪⎪⎭⎫⎝⎛100020101,矩阵E A B -=,则矩阵B 的秩r(B )= __2__. E A B -==⎪⎪⎪⎭⎫⎝⎛000010100,r(B )=2. 15.向量空间V={x =(x 1,x 2,0)|x 1,x 2为实数}的维数为__2__.16.设向量)3,2,1(=α,)1,2,3(=β,则向量α,β的内积),(βα=__10__.17.设A 是4×3矩阵,若齐次线性方程组Ax =0只有零解,则矩阵A 的秩r(A )= __3__. 18.已知某个3元非齐次线性方程组Ax =b 的增广矩阵A 经初等行变换化为:⎪⎪⎪⎭⎫⎝⎛-----→1)1(0021201321a a a A ,若方程组无解,则a 的取值为__0__. 0=a 时,2)(=A r ,3)(=A r .19.设3元实二次型),,(321x x x f 的秩为3,正惯性指数为2,则此二次型的规范形是232221y y y -+.秩3=r ,正惯性指数2=k ,则负惯性指数123=-=-k r .规范形是232221y y y -+. 20.设矩阵A =⎪⎪⎪⎭⎫⎝⎛-300021011a 为正定矩阵,则a 的取值范围是1<a . 011>=∆,0121112>-=-=∆a a,0)1(33021113>-=-=∆a a ⇒1<a .三、计算题(本大题共6小题,每小题9分,共54分)21.计算3阶行列式767367949249323123. 解:0760300940200320100767367949249323123==. 22.设A = ⎪⎪⎪⎭⎫⎝⎛--523012101,求1-A . 解: ⎪⎪⎪⎭⎫⎝⎛--100010001523012101→ ⎪⎪⎪⎭⎫ ⎝⎛---103012001220210101→ ⎪⎪⎪⎭⎫ ⎝⎛---127012001200210101 → ⎪⎪⎪⎭⎫ ⎝⎛---12701200220210202→ ⎪⎪⎪⎭⎫⎝⎛----127115125200010002→ ⎪⎪⎪⎭⎫⎝⎛----2/112/71152/112/510010001, =-1A⎪⎪⎪⎭⎫⎝⎛----2/112/71152/112/5. 23.设向量组T )1,2,1,1(1-α,T )2,4,2,2(2--α,T )1,6,0,3(3-α,T )4,0,3,0(4-α. (1)求向量组的一个极大线性无关组;(2)将其余向量表为该极大线性无关组的线性组合.解:=),,,(4321αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛-----4121064230210321→⎪⎪⎪⎪⎪⎭⎫⎝⎛---4440000033000321 →⎪⎪⎪⎪⎪⎭⎫⎝⎛---000330044400321→⎪⎪⎪⎪⎪⎭⎫⎝⎛000110011100321→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000110000103021→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000110000103001. (1)321,,ααα是一个极大线性无关组;(2)=4α32103ααα++-.24.求齐次线性方程组 ⎪⎩⎪⎨⎧=++=-+=++000543321521x x x x x x x x x 的基础解系及通解.解:⎪⎪⎪⎭⎫⎝⎛-=11100011110011A →⎪⎪⎪⎭⎫ ⎝⎛--11101010010011→⎪⎪⎪⎭⎫⎝⎛--0101010010011→⎪⎪⎪⎭⎫ ⎝⎛0101010010011,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==--=55453225210x x x x x x x x x x , 基础解系为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00011,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10101,通解为TTk k )1,0,1,0,1()0,0,0,1,1(21--+-=η.25.设矩阵A =⎪⎪⎭⎫⎝⎛1221,求正交矩阵P ,使AP P 1-为对角矩阵. 解:)3)(1(324)1(1221||22-+=--=--=----=-λλλλλλλλA E ,特征值11-=λ,32=λ.对于11-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛----=-00112222A E λ,⎩⎨⎧=-=2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛-=111α,单位化为 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-==21211121||1111ααβ; 对于32=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛--=-00112222A E λ,⎩⎨⎧==2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛=112α,单位化为 ⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛==21211121||1222ααβ.令⎪⎪⎪⎪⎭⎫⎝⎛-=21212121P ,则P 是正交矩阵,使⎪⎪⎭⎫⎝⎛-=-30011AP P . 26.利用施密特正交化方法,将下列向量组化为正交的单位向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00111α, ⎪⎪⎪⎪⎪⎭⎫⎝⎛=01012α.解:正交化,得正交的向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==001111αβ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-=012/12/10011210101||),(1211222βββααβ; 单位化,得正交的单位向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==002/12/1001121||1111ββp ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==06/26/16/1012/12/162||1222ββp . 四、证明题(本大题6分)27.证明:若A 为3阶可逆的上三角矩阵,则1-A 也是上三角矩阵.证:设⎪⎪⎪⎭⎫⎝⎛=33232213121100a a a a a a A ,则⎪⎪⎪⎭⎫⎝⎛==*-3323133222123121111||1||1A A A A A A A A A A A A A , 其中000332312=-=a a A ,0002213=-=a A ,00121123=-=a a A ,所以⎪⎪⎪⎭⎫⎝⎛=-333222312111100||1A A A A A A A A 是上三角矩阵. 全国2007年7月高等教育自学考试线性代数(经管类)试题答案 课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 是3阶方阵,且|A |=21-,则|A -1|=( A )A .-2B .21-C .21 D .22.设A 为n 阶方阵,λ为实数,则=||A λ( C ) A .||A λB .||||A λC .||A n λD .||||A n λ3.设A 为n 阶方阵,令方阵B =A +A T,则必有( A ) A .B T =B B .B =2A C .B B T -=D .B =0B AA A AA AA A BTTTT TTT T=+=+=+=+=)()(.4.矩阵A =⎪⎪⎭⎫⎝⎛--1111的伴随矩阵A *=( D ) A .⎪⎪⎭⎫⎝⎛--1111B .⎪⎪⎭⎫⎝⎛--1111C .⎪⎪⎭⎫⎝⎛--1111D .⎪⎪⎭⎫⎝⎛--1111 5.下列矩阵中,是初等矩阵的为( C ) A .⎪⎪⎭⎫⎝⎛0001B .⎪⎪⎪⎭⎫ ⎝⎛--100101110C .⎪⎪⎪⎭⎫ ⎝⎛101010001D .⎪⎪⎪⎭⎫ ⎝⎛0013000106.若向量组)0,1,1(1+=t α,)0,2,1(2=α,)1,0,0(23+=t α线性相关,则实数t =( B )A .0B .1C .2D .30)1)(1(2111)1(1021011222=-+=++=++t tt ttt ⇒1=t .7.设A 是4×5矩阵,秩(A )=3,则( D ) A .A 中的4阶子式都不为0 B .A 中存在不为0的4阶子式 C .A 中的3阶子式都不为0D .A 中存在不为0的3阶子式8.设3阶实对称矩阵A 的特征值为021==λλ,23=λ,则秩(A )=( B ) A .0 B .1 C .2 D .3A 相似于⎪⎪⎪⎭⎫⎝⎛=200000000D ,秩(A )= 秩(D )=1. 9.设A 为n 阶正交矩阵,则行列式=||2A ( C ) A .-2B .-1C .1D .2A 为正交矩阵,则E A A T =,==22||||A A 1||||||==A A A A T T .10.二次型2.2),,(y x z y x f -=的正惯性指数p 为( B ) A .0 B .1 C .2 D .3二、填空题(本大题共10小题,每小题2分,共20分) 11.设矩阵A =⎪⎪⎭⎫⎝⎛1121,则行列式=||TAA __1__. 1)1(1121||||||||22=-====A AA AATT.12.行列式1694432111中)2,3(元素的代数余子式=32A __-2__.2421132-=-=A .13.设矩阵A =⎪⎪⎭⎫ ⎝⎛21,B =⎪⎪⎭⎫ ⎝⎛21,则=B A T__5__.521)2,1(=⎪⎪⎭⎫ ⎝⎛=B A T.14.已知βααα=+-32125,其中)1,4,3(1-=α,)3,0,1(2=α,)5,2,0(-=β,则=3α⎪⎭⎫ ⎝⎛-211,1,1. ⎪⎭⎫ ⎝⎛-=-=+---=211,1,1)11,2,2(21)]3,0,1(5)1,4,3()5,2,0[(213α 15.矩阵A =⎪⎪⎪⎭⎫⎝⎛-613101的行向量组的秩=__2__. ⎪⎪⎪⎭⎫ ⎝⎛-613101→⎪⎪⎪⎭⎫ ⎝⎛-603001→⎪⎪⎪⎭⎫⎝⎛-003001,秩=2. 16.已知向量组)1,1,1(1=α,)0,2,1(2=α,)0,0,3(3=α是3R 的一组基,则向量)3,7,8(=β在这组基下的坐标是)1,2,3(.设332211αααβx x x ++=,即)0,0,3()0,2,1()1,1,1()3,7,8(321x x x ++=,得⎪⎩⎪⎨⎧==+=++37283121321x x x x x x ,解得⎪⎩⎪⎨⎧===123321x x x . 17.已知方程组⎩⎨⎧=+-=-0202121tx x x x 存在非零解,则常数t =__2__.02211=-=--t t,2=t .18.已知3维向量T )1,3,1(-=α,T )4,2,1(-=β,则内积=),(βα__1__.19.已知矩阵A =⎪⎪⎪⎭⎫⎝⎛x 01010101的一个特征值为0,则x =__1__. 0|0|=-A E ,所以0||=A ,即0111101010101=-==x xx,1=x .20.二次型323121232221321822532),,(x x x x x x x x x x x x f +-+++=的矩阵是⎪⎪⎪⎭⎫⎝⎛--541431112. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D=2112112的值. 解:4)26(2123211212302112112=+--=---=--=.22.设矩阵A =⎪⎪⎭⎫ ⎝⎛3512,B =⎪⎪⎭⎫⎝⎛0231,求矩阵方程XA =B 的解X . 解:⎪⎪⎭⎫⎝⎛--→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫⎝⎛=252610022501101220016101210013512),(E A ⎪⎪⎭⎫ ⎝⎛--→25131001,⎪⎪⎭⎫ ⎝⎛--=-25131A ,⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛==-26512251302311BA X .23.设矩阵A =⎪⎪⎪⎭⎫⎝⎛---a 363124843121,问a 为何值时,(1)秩(A )=1;(2)秩(A )=2. 解:⎪⎪⎪⎭⎫ ⎝⎛---a 363124843121→⎪⎪⎪⎭⎫ ⎝⎛--90000003121a →⎪⎪⎪⎭⎫⎝⎛--00090003121a . (1)9=a 时,秩(A )=1;(2)9≠a 时,秩(A )=2.24.求向量组1α=⎪⎪⎪⎭⎫ ⎝⎛-111,2α=⎪⎪⎪⎭⎫ ⎝⎛531,3α=⎪⎪⎪⎭⎫ ⎝⎛626,4α=⎪⎪⎪⎭⎫⎝⎛-542的秩与一个极大线性无关组.解:⎪⎪⎪⎭⎫ ⎝⎛--565142312611→⎪⎪⎪⎭⎫ ⎝⎛--3126028402611→⎪⎪⎪⎭⎫ ⎝⎛--142014202611→⎪⎪⎪⎭⎫⎝⎛--00014202611, 秩为2,1α,2α是一个极大线性无关组.25.求线性方程组⎪⎩⎪⎨⎧=++=+=++362232234232132321x x x x x x x x 的通解.解:⎪⎪⎪⎭⎫⎝⎛=362232203421A →⎪⎪⎪⎭⎫ ⎝⎛---322032203421→⎪⎪⎪⎭⎫ ⎝⎛00032203421→⎪⎪⎪⎭⎫⎝⎛00032200201→⎪⎪⎪⎭⎫ ⎝⎛0002/31100201,⎪⎪⎩⎪⎪⎨⎧=-=-=333231232x x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛11202/30k .26.设矩阵⎪⎪⎪⎭⎫⎝⎛--=1630310104A ,求可逆矩阵P 及对角矩阵D ,使得D AP P =-1. 解:2)1)(2(31104)1(163310104||-+=--+-=-----+=-λλλλλλλλλA E ,特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫⎝⎛-----=-00013050300013001531300000511210510513630510102A E λ ⎪⎪⎪⎭⎫ ⎝⎛-→0003/1103/501,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=3332313135x x x x x x ,基础解系为 ⎪⎪⎪⎭⎫ ⎝⎛-=13/13/51α;对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫⎝⎛----=-0000000210210210210630210105A E λ,⎪⎩⎪⎨⎧==-=3322212x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=0122α,⎪⎪⎪⎭⎫⎝⎛=1003α. 令⎪⎪⎪⎭⎫⎝⎛--=101013/1023/5P ,⎪⎪⎪⎭⎫⎝⎛-=100010002D ,则P 是可逆矩阵,使D AP P =-1. 四、证明题(本大题6分)27.设向量组1α,2α线性无关,证明向量组211ααβ+=,212ααβ-=也线性无关. 证:设02211=+ββk k ,即0)()(212211=-++ααααk k ,0)()(221121=-++ααk k k k .由1α,2α线性无关,得⎩⎨⎧=-=+002121k k k k ,因为021111≠-=-,方程组只有零解,所以1β,2β线性无关.全国2007年10月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a ++=( D )A .-3B .-1C .1D .3222111c b a c b a ++=2211b a b a +2211c a c a =1+2=3.2.设A 为3阶方阵,且已知2|2|=-A ,则=||A ( B ) A .-1B .41-C .41 D .12|2|=-A ,2||)2(3=-A ,41||-=A .3.设矩阵A ,B ,C 为同阶方阵,则=T ABC )(( B ) A .A T B T C TB .C T B T A TC .C T A T B TD .A T C T B T4.设A 为2阶可逆矩阵,且已知⎪⎪⎭⎫⎝⎛=-4321)2(1A ,则A =( D ) A .2⎪⎪⎭⎫ ⎝⎛4321B .⎪⎪⎭⎫⎝⎛432121C .214321-⎪⎪⎭⎫⎝⎛D .1432121-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=-4321)2(1A ,143212-⎪⎪⎭⎫ ⎝⎛=A ,1432121-⎪⎪⎭⎫⎝⎛=A .5.设向量组s ααα,,,21 线性相关,则必可推出( C ) A .s ααα,,,21 中至少有一个向量为零向量 B .s ααα,,,21 中至少有两个向量成比例C .s ααα,,,21 中至少有一个向量可以表示为其余向量的线性组合D .s ααα,,,21 中每一个向量都可以表示为其余向量的线性组合6.设A 为m×n 矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件是( A ) A .A 的列向量组线性无关 B .A 的列向量组线性相关 C .A 的行向量组线性无关D .A 的行向量组线性相关Ax=0仅有零解⇔n A r =)(⇔ A 的列向量组线性无关.7.已知21,ββ是非齐次线性方程组Ax =b 的两个不同的解,21,αα是其导出组Ax =0的一个基础解系,21,C C 为任意常数,则方程组Ax =b 的通解可以表为( A ) A .)()(212121121ααC αC ββ++++B .)()(212121121ααC αC ββ+++-C .)()(212121121ββC αC ββ-+++D .)()(212121121ββC αC ββ+++-)(2121ββ+是Ax =b 的特解,211,ααα+是Ax =0的基础解系.8.设3阶矩阵A 与B 相似,且已知A 的特征值为2,2,3,则=-||1B ( A ) A .121B .71C .7D .12B 相似于⎪⎪⎪⎭⎫⎝⎛300020002,1230020002||==B ,121||||11==--B B .9.设A 为3阶矩阵,且已知0|23|=+E A ,则A 必有一个特征值为( B ) A .23-B .32-C .32D .230|23|=+E A ⇒032=--A E ⇒A 必有一个特征值为32-.10.二次型312123222132142),,(x x x x x x x x x x f ++++=的矩阵为( C )A .⎪⎪⎪⎭⎫ ⎝⎛104012421B .⎪⎪⎪⎭⎫ ⎝⎛100010421C .⎪⎪⎪⎭⎫ ⎝⎛102011211D .⎪⎪⎪⎭⎫ ⎝⎛120211011二、填空题(本大题共10小题,每小题2分,共20分)11.设矩阵A =⎪⎪⎪⎭⎫⎝⎛100012021,B =⎪⎪⎪⎭⎫ ⎝⎛310120001,则A+2B =⎪⎪⎪⎭⎫⎝⎛720252023. 12.设3阶矩阵A =⎪⎪⎪⎭⎫⎝⎛002520310,则=-1)(T A ⎪⎪⎪⎭⎫⎝⎛--002/1130250. →),(E A T⎪⎪⎪⎭⎫ ⎝⎛10010*********200→⎪⎪⎪⎭⎫ ⎝⎛001100010200053021→⎪⎪⎪⎭⎫⎝⎛--00113001020010021→⎪⎪⎪⎭⎫ ⎝⎛---00113025020010001→⎪⎪⎪⎭⎫ ⎝⎛--002/1130250100010001,=-1)(T A ⎪⎪⎪⎭⎫ ⎝⎛--002/1130250.13.设3阶矩阵A =⎪⎪⎪⎭⎫⎝⎛333022001,则A *A =⎪⎪⎪⎭⎫⎝⎛600060006. ==*E A A A ||⎪⎪⎪⎭⎫⎝⎛==6000600066333022001E E . 14.设A 为m ×n 矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,则矩阵B =AC 的秩为__r__. B =AC ,其中C 可逆,则A 经过有限次初等变换得到B ,它们的秩相等. 15.设向量)1,1,1(=α,则它的单位化向量为⎪⎪⎭⎫⎝⎛31,31,31. 16.设向量T )1,1,1(1=α,T )0,1,1(2=α,T )0,0,1(3=α,T )1,1,0(=β,则β由321,,ααα线性表出的表示式为3210αααβ-+=.设332211αααβk k k ++=,即⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001011111110321k k k ,⎪⎩⎪⎨⎧==+=++110121321k k k k k k , ⎪⎩⎪⎨⎧-===101321k k k .17.已知3元齐次线性方程组⎪⎩⎪⎨⎧=++=++=-+0320320321321321x x x ax x x x x x 有非零解,则a =__2__.02412141121200132132111=-=+=+=-a a a a ,2=a .18.设A 为n 阶可逆矩阵,已知A 有一个特征值为2,则1)2(-A 必有一个特征值为41.2=λ是A 的特征值,则41)2(1=-λ是1)2(-A 的特征值.19.若实对称矩阵A =⎪⎪⎪⎭⎫⎝⎛a aa 000103为正定矩阵,则a 的取值应满足30<<a .031>=∆,031322>-==∆aaa ,0)3(00010323>-==∆a a aaa ⇒30<<a .20.二次型2221212122),(x x x x x x f -+=的秩为__2__.⎪⎪⎭⎫⎝⎛-→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛-=301112111112A ,秩为2. 三、计算题(本大题共6小题,每小题9分,共54分)21.求4阶行列式1111112113114111的值.解:630102010011000100010011020130011111112113114111===.22.设向量)4,3,2,1(=α,)0,2,1,1(-=β,求(1)矩阵βαT ;(2)向量α与β的内积),(βα.解:(1)()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=-⎪⎪⎪⎪⎪⎭⎫⎝⎛=08440633042202110,2,1,14321βαT ;(2)50621),(=++-=βα. 23.设2阶矩阵A 可逆,且⎪⎪⎭⎫ ⎝⎛=-21211b ba a A ,对于矩阵⎪⎪⎭⎫⎝⎛=10211P ,⎪⎪⎭⎫⎝⎛=01102P ,令21AP P B =,求1-B.解:⎪⎪⎭⎫ ⎝⎛-=-102111P ,⎪⎪⎭⎫⎝⎛=-011012P , 111121----=P AP B=⎪⎪⎭⎫ ⎝⎛0110⎪⎪⎭⎫ ⎝⎛2121b b a a ⎪⎪⎭⎫ ⎝⎛-1021=⎪⎪⎭⎫⎝⎛2121a ab b ⎪⎪⎭⎫ ⎝⎛-1021=⎪⎪⎭⎫⎝⎛--12112122a a a b b b .24.求向量组T )3,1,1,1(1=α,T )1,5,3,1(2--=α,T )4,1,2,3(3-=α,T )2,10,6,2(4--=α的秩和一个极大线性无关组.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛-----24131015162312311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------85401246041202311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------070070041202311→⎪⎪⎪⎪⎪⎭⎫⎝⎛------000070041202311, 秩为3,321,,ααα是一个极大线性无关组.25.给定线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321ax x x x ax x a x x x .(1)问a 为何值时,方程组有无穷多个解;(2)当方程组有无穷多个解时,求出其通解(用一个特解和导出组的基础解系表示).解:(1)⎪⎪⎪⎭⎫⎝⎛---=2112113111aa a A →⎪⎪⎪⎭⎫⎝⎛-----a a a a a 11010103111,1=a 时,方程组有无穷多解;(2)1=a 时,A →⎪⎪⎪⎭⎫⎝⎛-00000002111,⎪⎩⎪⎨⎧==---=33223212x x x x x x x ,通解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-10101100221k k . 26.求矩阵A =⎪⎪⎪⎭⎫⎝⎛------011101110的全部特征值及对应的全部特征向量. 解:10010111)2(1111111)2(1212112111111||--+=+=+++==-λλλλλλλλλλλλλλλA E)2()1(2+-=λλ,特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫⎝⎛---=-000330211330330211112121211211121112A E λ ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--→000110101000110211,⎪⎩⎪⎨⎧===333231x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛=111α,对应的全部特征向量为αk (k 是任意非零常数);对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-000000111111111111A E λ,⎪⎩⎪⎨⎧==--=3322321x x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=0111α,⎪⎪⎪⎭⎫⎝⎛-=1012α,对应的全部特征向量为2211ααk k +(21,k k 是不全为零的任意常数). 四、证明题(本大题6分)27.设A 是n 阶方阵,且0)(2=+E A ,证明A 可逆.证:由0)(2=+E A ,得022=++E A A ,E A A =+-)2(2,E A E A =+-)2(.所以A 可逆,且)2(1E A A +-=-.全国2008年1月自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
全国2007年4月高等教育自学考试线性代数(经管类)参考答案课程代码:-、单项选择题(本大题共 10小题,每小题2分,共20分) 1.设A 为3阶方阵,且|A| = 2,则|2A 」卜(D ) A . -4B . -11311|2A| = 23|A| =84 .Ax=0有非零解:二r (A ) :: A 的列向量组线性相关.8 .设3元非齐次线性方程组 Ax=b 的两个解为。
=(1,0,2)T , P =(1,一1,3)T ,且系数矩阵A 的秩r (A )=2 ,意常数k, k 1, k 2,方程组的通解可表为( C ) A . k 1(1,0,2)T +k 2(1,-1,3)TB . (1,0,2)T +k (1,-1,3)T041842 .设矩阵 A= (1, 2), B=A . ACBB . ABC(1 I 42323,则下列矩阵运算中有意义的是(5 6C . BACCBA3.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是(TTTA . A + AB . A - AC . AA■a b )*设2阶矩阵A= I ,则 A = ( A)l c d丿(d—b \f-d c 、(-d b 、(d —c \iB .C .D .i<_c a丿b~aJ< c~a)(—ba丿3 -10 -n i-3"i巾-1 'A''1、1 - A .B .C .14 D .33丿I 13丿G 1丿I-1 0 丿设矩阵A=-2A .所有2阶子式都不为零B .所有 2阶子式都为零C .所有3阶子式都不为零D .存在一个3阶子式不为零7 .设A 为mxn 矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是A . A 的列向量组线性相关B . A 的列向量组线性无关C . A 的行向量组线性相关D . A 的行向量组线性无关则对于任(A-A T )T 二A T -(A T )T 二 A T — A = -(A-A T ),所以 A - A T 为反对称矩阵.A.)矩阵4 .3的逆矩阵是(1 -1精品文档C . (1,0,2)T +k (0,1,-1)TD . (1,0,2)T +k (2,-1,5)T为鳥 k(: - 一)=(1,0,2)T +k (0,1,-1)T .行成比例值为零.:-(1,0,2)T 是 Ax=b 的特解,:•---(0,1,-1)T 是 Ax=0 的基础解系,所以 Ax=b 的通解可表A . 4B . 3C . 2D . 1人-1-1 -1 3 九一3九一31 1 1| ZE — A|=-1 Z-1 -1=-1 九-1 -1 =仏—3) —1^—1 -1-1-1人—1-1-1 K-1-1 -1 丸—1I 1 11 1 11 1 1 1、■0 1 1 1、1 0 0 0、1 0 0 0 T 1 0 0 0T 0 1 1 1 1 0 0 00 0 0 00 0 0 00 0 0丿e 0 0 °」<00 0丿 C . B . 3 2,秩为2. A 二10小题,每小题(本大题共1、1的非零特征值为(19 .矩阵A= =(九一3)-3),非零特征值为 ■ =3 .10. 4元二次型 f (X 1,X 2,X 3,X 4)-2x 1x 2 - 2x 1x 3 - 2x 1x 4 的秩为共20分)二、填空题 11 .若 a i b i -0,i =1,2,3,则行列式a 1b 1 a 2b 1a 3b 1 a 1b 2 a 2b 2&3匕ag a 2b 3 &3匕12•设矩阵A=则行列式 |AT A|=__4__. |A TA 円 A T ||A 冃 A| 2*2)2 =4 .13.若齐次线性方程组811X 1 ' 812X 2 ' 813X 3 — 072^+822X2+823X 3=0有非零解,则其系数行列式的值为 031x 1+a 32x 2 +a 33x3 =°14.设矩阵A=10,矩阵B=A —E ,则矩阵B 的秩r (B )= 1」15 .向量空间 V={ X=(X 1,X 2,0)|X 1,X 2为实数}的维数为__2__ .16•设向量 a =(1,2,3) , P =(3,2,1),则向量 J B 的内积(a ,B )= _10_ 17 •设A 是4X 3矩阵,若齐次线性方程组 Ax=0只有零解,则矩阵 A 的秩18 .已知某个3元非齐次线性方程组 Ax=b 的增广矩阵A 经初等行变换化为:广0 B=A —E = 0 <0 0 1 ?1 0 , r(B)=2.0 0』r(A)= __3_-2-1,若a(a -1) 方程组无解,则 a 的取值为_0_.a =0时,r(A) =2 ,r(A) =3 .19 .设3元实二次型 f (X 1 , X 2 , X 3 )的秩为3,正惯性指数为2,则此二次型的规范形是 2-y 3.秩r =3,正惯性指数k =2,则负惯性指数r -k =3-2 =1 '1120.设矩阵A= 12 —a e 00、0为正定矩阵,则a 的取值范围是 .3丿 —-1 =1 0,-212 —a1 02 — a 0 =3(1 -a)>0 二 av1 .3三、计算题(本大题共 6小题,每小题9分,共54 分)123 23 321 .计算3阶行列式 249 49 9367 677123 23 3解: 249 49 9 =367 67 7「1 0 1 1 0 0『11 1 00 '「10 1 1 0 0210 0 1 0 T 01 -2 -2 1 0 T 0 1 -2 -2 1 0 L3 2 -5 0 0 h<0 2 -2 3 0 h27-2 b'20 2 2 00、'2 0 0-5 2 -1、 1 0 0 —5/2 1-1/2"T 0 1-2 -2 1 0 T 0 1 0 5 -1 1 T 0 1 0 5 -1 127-2 1」Q 0 27-21」0 1 7/2 -1 1/2丿100 20 3 200 40 9 =0 .300 60 71 022. 设A=-3 2 -5求A ,解:解: ■ -1I 入E — A|=-2-2咒T -(咒_^1) ―'4= ■ $ - 2咒―3 = '_1)^ ―3),特征值,1 = -1 ,对于‘1 =「1,解齐次线性方程组(E - A )x =0 :足一A =「2 一2}]1* ,1—2 -2丿 e 0 丿,X"| =_X 2X 2 =X2'基础解系为单位化为二k 1(-1,1,0,0,0)T k 2(-1,0,-1,0,1)T •25•设矩阵A 」1 2求正交矩阵P ,使P’AP 为对角矩阵.€ 1丿广_5/2 1 —1/2 A 」= 5 -1 1 7/2-11/223•设向量组:1(1,一1,2,1)丁 , :- 2(2,一2,4,一2)丁 , : 3(1)求向量组的一个极大线性无关组;(2)将其余向量表为该极大线性无关组的线性组合.<12 3 0、「1 23 0、 -1 -2 03T0 0 332460 0 0 0 0-2 -1 -4>e-4-4 一4丿1 2 3 0、巾 2 3 0、广1 2 0 -3"1广10 0 -3"0 -4 -4 -4T11 1T0 1 0 0 T0 1 00 0 0 3 30 0 1 1 0 0 110 0 1 1e 0丿1° 0 0 0丿1° 0 0」<0 0 0丿24 •求齐次线性方程组X 1 x 2X 1 X 2 - X 3X 3 X 5 =0=0的基础解系及通解.=01 1 0 0 1、1 10 0 1、1 10 0 1、 解:A = 1 1 -1 0 0 T0 0 -1 0 -1 T 0 0 -1 0 -1e 011 b<0 0 1 11>1。
全国2010年7月高等教育自学考试线性代数(经管类)试题课程代码:04184试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;r (A )表示矩阵A 的秩;| A |表示A 的行列式;E 表示单位矩阵。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设3阶方阵A =(α1,α2,α3),其中αi (i =1,2,3)为A 的列向量,若| B |=|(α1+2α2,α2,α3)|=6,则| A |=( ) A.-12 B.-6 C.6D.122.计算行列式32 3 20 2 0 0 0 5 10 20 2 0 3 ----=( )A.-180B.-120C.120D.1803.若A 为3阶方阵且| A -1 |=2,则| 2A |=( ) A.21B.2C.4D.84.设α1,α2,α3,α4都是3维向量,则必有( ) A.α1,α2,α3,α4线性无关 B.α1,α2,α3,α4线性相关 C.α1可由α2,α3,α4线性表示D.α1不可由α2,α3,α4线性表示5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则r (A )=( ) A.2 B.3 C.4D.56.设A 、B 为同阶方阵,且r (A )=r (B ),则( ) A.A 与B 相似 B.| A |=| B | C.A 与B 等价D.A 与B 合同7.设A 为3阶方阵,其特征值分别为2,1,0则| A +2E |=( ) A.0 B.2 C.3D.248.若A 、B 相似,则下列说法错误..的是( )A.A 与B 等价B.A 与B 合同C.| A |=| B |D.A 与B 有相同特征值9.若向量α=(1,-2,1)与β=(2,3,t )正交,则t =( ) A.-2 B.0 C.2D.410.设3阶实对称矩阵A 的特征值分别为2,1,0,则( ) A.A 正定 B.A 半正定 C.A 负定 D.A 半负定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
全国 2010 年 7 月高等教育自学考试试卷说明:在本卷中,A T 表示矩阵 A 的转置矩阵; A * 表示 A 的陪伴矩阵; R(A)表示矩阵 A 的秩; |A|表示 A 的行列式; E 表示单位矩阵。
1.设 3 阶方阵 A=[ α 1, α 2, α 3] ,此中 α i (i= 1,2,3) 为 A 的列向量, 若 |B |=|[α 1 +2α 2, α 2, α 3]|=6 ,则 |A|=()A.-12B.-6C.6D.123 0 2 02.计算队列式2 105 0 )D.1800 02 (2 3233.设 A= 12,则 |2A *|=()D.83 44.设 α 1,α 2 ,α 3, α 4 都是 3 维向量,则必有A. α , α , α , α 线性没关B. α ,α , α , α 线性有关12341 2 34C. α 1 可由 α 2,α 3 , α 4 线性表示D. α 1 不行由 α 2 ,α 3, α 4 线性表示 5.若 6.设7.设8.若A 为 6 阶方阵,齐次线性方程组Ax=0 的基础解系中解向量的个数为2,则 R(A)=( ) A . 2A 、B 为同阶矩阵,且 R(A )=R(B),则( ) A . A 与 B 相像 B . |A |=|B |C . A 与 B 等价A 为 3 阶方阵,其特点值分别为 2,l ,0 则 |A +2E |=( ) A . 0B . 2C . 3D . 24 A 、 B 相像,则以下说法错误 的是( )A .A 与 B 等价 B . A 与 B 合同 C .|A |=|B | D .A 与..B 3C . 4D .5D .A 与 B 合同B 有同样特点9.若向量 α =(1, -2,1) 与β = (2 , 3, t)正交,则 t=( )A .-2 B .0C .2D .410.设 3 阶实对称矩阵 A 的特点值分别为 2, l , 0,则()A .A 正定B .A 半正定C .A 负定D .A 半负定二、填空题 (本大题共 10 小题 ,每题 2 分,共 20 分 )请在每题的空格中填上正确答案。
2007 04184 10 20 A 2|| A |2|1A D-4B -1C 1D 44218||2|2|131 A A A B = 4321 C =654321 BACB ABC BACCBAA n BA A TA A T AA TA T A )()()(T T T T T T T A A A A A A A A A A T 4 A =d c b a A * Aa cb d B a bcd Ca cb d Da b c d0133 C3310 B 3130 C 13110 D01311 A =500043200101 A D BDA m×n Ax =0 A AB A A D AAx =0 n A r )( AAx=b T )2,0,1(T )3,1,1( A r(A )=2k , k 1, k 2 Ck 1(1,0,2)T +k 2(1,-1,3)T B (1,0,2)T +k (1,-1,3)T (1,0,2)T +k (0,1,-1)T D (1,0,2)T +k (2,-1,5)TT )2,0,1( Ax=b T )1,1,0( Ax =0 Ax=b )( k (1,0,2)T +k (0,1,-1)TA =111111111 B4B 3C 2D 1111111111)3(111111333111111111||A El i w.t r a c k e r -s o f tw a r e C ck t o b u y NOW !w w.co m10 413121214321222),,,(x x x x x x x x x x x f C4B 3C 2D 1000000001110000100000000000111100001000100011111A10 2011 ,3,2,1,0 i b a i i 332313322212312111b a b a b a b a b a b a b a b a b a =__0__ 12 A =4321 |A T A |=__4__ 4)2(4321||||||||222A A A A A T T1300333232131323222121313212111x a x a x a x a x a x a x a x a x a __0__14 A =100020101E A B B r(B )= __2__ E A B =000010100 r(B )=215 V={x =(x 1,x 2,0)|x 1,x 2 __2__ 16 )3,2,1()1,2,3( ),( =__10__17 A 4×3 Ax =0 A r(A )= __3__18 Ax =b A1)1(0021201321a a a A a __0__0 a 2)( A r 3)( A r19 ),,(321x x x f 232221y y y3 r 2 k 123 k r 232221y y y20 A =300021011a a 1 a54217673679492493231230760300940200320100767367949249323123 22 A =523012101 1A100010001523012101103012001220210101127012001200210101 127012002200210202 1271151252000100022/112/71152/112/5100010001 1A2/112/71152/112/5 23 T )1,2,1,1(1 T )2,4,2,2(2 T )1,6,0,3(3 T)4,0,3,0(4),,,(4321 41210642302103214440000033000321 0000330044400321 0000110011100321 00001100001030210000110000103001321,, 4 321032400543321521x x x x x x x x x111000*********A 11100101001001101000101001001101000101001001155453225210x x x x x x x x x x 0001110101T T k k )1,0,1,0,1()0,0,0,1,1(2125 A =1221 P AP P 1)3)(1(324)1(1221||22A E11 3211 0)( x A E00112222A E 2221x x x x11121211121||1111 32 0)( x A E00112222A E 2221x x x x11221211121||122221212121P P30011AP P 26 0011101012001111012/12/10011210101||),(1211222l i w.t r a ck e r -s o f t w a r e C ckt o b u y NOW !w w.co m00 0027 A 1A332322131211000a a a a a a A3323133222123121111||1||1A A A A A A A A A A A A A 000332312a a A 00002213 a A 000121123 a a A3332223121111||1A A A A A A A A 2007 10 0418410 20 2211b a b a =1 2211c a c a =2 222111c b a c b a D -3B -1C 1D 3222111c b a c b a =2211b a b a +2211c a c a =1+2=3 A 2|2| A ||A B -1B 41C41 D 12|2| A 2||)2(3 A 41|| AA B C TABC )( B A T B T C T B C T B T A T C T A T B T D A T C T B TA4321)2(1A A D 2 4321B 432121C 214321 D 14321214321)2(1A 143212 A 1432121A s ,,,21 C s ,,,21 s ,,,21s ,,,21 s ,,,21A m×n Ax= A AB AA D AAx= n A r )( A21, Ax =b 21, Ax =0 1,C Ax =b A)()(212121121 C C B )()(212121121 C C )()(212121121 C C D )()(212121121 C C)(2121 Ax =b 211, Ax =0 A B A 2,2,3 ||1B A121B 71C 7D 12B300020002 12300020002|| B 121||||11 B BA 0|23| E A AB 23B 32C 32D 230|23| E A 032 A E A 3210312123222132142),,(x x x x x x x x x x f C104012421 B 100010421 C 102011211 D 12021101110 2011 A = 100012021 B = 310120001 A+2B =72025202312 A =002520310 1)(T A 002/1130250 ),(E A T10001000105302120000110001020*******001130010200010021001130250200010001002/1130250100010001 1)(T A002/1130250 13 A = 333022001 A *A =600060006l i w.t ra ck e r -s o f t w ar eC c k t ob uy NOW !w w .co m14 A m ×n C n A B =AC __r__B =AC C A B15 )1,1,1(31,31,31 16 T )1,1,1(1T )0,1,1(2 T )0,0,1(3 T )1,1,0( 321,,3210332211 k k k 001011111110321k k k110121321k k k k k k101321k k k 17320320321321321x x x ax x x x x x a =__2__02412141121200132132111a a a a 2 a18 A n A 1)2( A41 2 A 41)2(11)2( A 19 A =a a a 000103 a 30 a031 031322a a a0)3(00010323 a a aa a 30 a 202221212122),(x x x x x x f __2__301112111112A54211111112113114111630010201001100010001001102013001111111211311411122 )4,3,2,1()0,2,1,1( T ),(08440633042202110,2,1,14321 T50621),(23 A 21211b b a a A10211P 01102P 21AP P B 1B102111P011012P 111121P A P B =0110 2121b b a a 1021=2121a a b b 1021=12112122a a a b b b 24 T )3,1,1,1(1 T )1,5,3,1(2 T )4,1,2,3(3 T )2,10,6,2(4),,,(432124131015162312311 854012460412023110700070041202311 0000070041202311 0000010041202311 000001004020201100000100201020110000010020100001 321,,25223321321321ax x x x ax x a x x xa2112113111),(a a a b Aa a a a a 110010103111 1 a1 a ),(b A 00000000211133223212x x x x x x x10101100221k kl i w.t r a ck e r -s o f t w a r e C ckt ob uy NOW !w w.c o m26 A =011101110 110111)2(1111111)2(1212112111111||A E)2()1(221 132 21 0)( x A E000330211330330211112121211211121112A E000110101000110211333231xx x x x x 111 k k132 0)( x A E000000111111111111A E3322321x x x x x x x0111 10122211 k k 21,k k27 A n 0)(2 E A A0)(2E A 022 E A A E A A )2(2 E A E A )2(A )2(1E A A2007 0418410 20A |A |=21|A -1|= A -2 B 21 C21D 2A n ||A C||AB ||||AC ||A nD ||||A nA nB =A +A T A B T =BB B =2AB BTD B =0B A A A A A A A A B T T T T T T T T )()(A =1111 A * D1111 B 1111 C 1111 D 1111 Cl i w.t r a ck e r -s o f t w ar e C ckt o b u y NOW !w w.co m0001 B100101110 C101010001 D001300010)0,1,1(1 t )0,2,1(2 )1,0,0(23 ttBB 1C 2D 30)1)(1(2111)1(1021011222 t t t t t t 1 tA 4×5 (A )=3 DA 0B A A 0 D A A 021 23 (A )= B 0B 1C 2D 3A200000000D (A )= (D )=1 A n ||2A C -2B -1C 1D 2A E A A T22||||A A 1|||||| A A A A TT10 2.2),,(y x z y x f p BB 1C 2D 310 20 11 A =1121 ||TAA __1__ 1)1(1121||||||||22A A A AA T T121694432111 )2,3( 32A __-2__2421132A13 A =21 B =21 B A T__5__ 521)2,1(B A T1432125 )1,4,3(1 )3,0,1(2 )5,2,0( 3211,1,1211,1,1)11,2,2(21)]3,0,1(5)1,4,3()5,2,0[(213 l i w.t r a c k e r -s o f t w a r e C ck t o b u y NOW !w w.co m15 A =613101 =__2__ 613101 603001003001 =2 16 )1,1,1(1 )0,2,1(2 )0,0,3(3 3R )3,7,8()1,2,3(332211 x x x )0,0,3()0,2,1()1,1,1()3,7,8(321x x x37283121321x x x x x x123321x x x 170202121tx x x x t =__2__02211 t t2 t18 T )1,3,1(T )4,2,1( ),( __1__19 A =x 01010101 x =__1__A 0|| A 0111101010101 x xx1 x20 323121232221321822532),,(x x x x x x x x x x x x f541431112 5421 D=2101210124)26(21232112123021012101222 A = 3512 B =0231 XA =B X252610022501101220016101210013512),(E A25131001 25131A 26512251302311BA X l i w.t r a ck e r -s o f t w ar e C ckt o b u y NOW !w w.co m23 A =a 363124843121 a (A )=1 (A )=2 a 363124843121 900000003121a000090003121a 9 a (A )=1 9 a (A )=224 1 = 111 2 = 531 3 = 626 4 =542),,,(4321 565142312611 3126028402611142014202611000014202611 0000142041222 00001420580200002/12102/5401 1 ,225362232234232132321x x x x x x x x 362232203421),(b A 322032203421 000032203421000032200201 00002/31100201 333231232x x x x x x11202/30k261630310104A P D D AP P 1 2)1)(2(31104)1(1630310104|| A E21 13221 0)( x A E00013050300013001531300000511210510513630510102A El i w.t r a ck e r -s o f t w ar e C ckt o b u y NOW !w w.co m000333x x 1 132 0)( x A E0000000210210210210630210105A E3322212x x x x x x0122 1003101013/1023/5P 100010002D P D AP P 127 1 ,2 211 21202211 k k 0)()(212211 k k 0)()(221121 k k k k1 ,2002121k k k k 021111 1 ,2365, !2008 0418410 201. ,2 AA A T 3 D A.-108 B.-12 C.12 D.1082.0404033232321kx x x x x kx x k= B A.-2 B.-1 C.1 D.23. DA.AB=BAB.111B A B AC.BA B A D.T T T B A B A4.,2 A*A C A.2 B.4 C.8 D.125.1 =2 = ( B )A. B. -3 C. D. 0,-1,06. 1 2 s s(s 2 C A. 1 2 s B. 1 … sC. 1 …D. 1 … s7. m n AX=0 C A.A B.A C.A D.A8. D A.BA B.C. P-1AP=BD. E-A= E-B9. A=200010001 A A.100020001 B.200010011 C.200011001 D. 100020101 10.,x x x )x ,x ,x (f 232221321 )x ,x ,x (f 321 C A. B. C. D.10 2011.,0211k k=_______1/2____.12. A=411023,B=,010201 AB=___326010142________.13. A=220010002, A-1=2110010002114. 33 A x=0 (A)= _____1______. 15. -2, B=A 2+2E ___6_________.l i w.t r a ck e r -s o f t w ar e C ck t o b u y NOW !w w.co m16. 0x x x 321 _____ __ c 1 011_+__ c 2 _101_.17. 1 =(1,0,0) 2 =(1,1,0), 3 =(-5,2,0) _______2____.18. A=200020002 112233c c c . 19. -2,1,1,B2=__-16_________.20. A= 3010121212221231213342x x x x x x x . 5421.1002210002100021 .1002210002100021=151500021000210002122. A=101111123 A 1 . A1=211211102112123. A=200200011,B=300220011 A,B,X (E-B 1 A).E X B T T X,X .1 (E-B1A).E X B T T()T TB A E X X= ()T TB A 1 =10021002001l i w.t ra ck e r -s o f t w ar eC ck t ob uy NOW !w w .co mX 1 =()T T B A =20002000124. 1 =(1,-1,2,4) 2 =(0,3,1,2), 3 =(3,0,7,14), 4 =(2,1,5,6), 5 =(1,-1,2,0) .10321103011301101101217520001142146000001 2 425.12x x 3x 3x 4x 523x 6x 2x 2x 2x 3x x x 2x 37x x x x x 54321543254321543211111171001516321132000000012262301026235433112001000145245351623260X X X X X X X12(16,23,0,0,0)(15,21,0,1,0)(11,17,0,0,1)T T T k k26. A=020212022 AP P 1 . AP P 1 =400010002 P=122212221 1 P =T P 122212221,627. 3 A x =0 . 1+ 1 + 2 + Ax =02008 0418410 20l i w.t r a ck e r -s o f t w a r e C ckt o b u y NOW !w w.co mD 1=620222555333231232221131211333131232121131111D a a a a a a a a a a a a a a a a a ad b a 04=32c b a C 3,1,1,3 d c b aB 3,1,3,1 d c b a 3,0,1,3 d c b aD 3,0,3,1 d c b a 3,0,4,2 d c b a b a 3,0,1,3 d c b aA A B000000111 B 000110111 C 000222111 D 333222111A n 2 n |5|A A||)5(A n||5A C ||5A ||5A nA = 4321||A B -4B -2C 2D 424321||||||121A A A ns ,,,21 2 s D s ,,,21 s ,,,21s ,,,21 1 ss ,,,21 1 s b Ax A 1 ,2 ,3 T )4,0,2(21 T )1,2,1(31k b Ax D T T k )1,2,1()2,0,1(B T Tk )4,0,2()1,2,1(T Tk )1,2,1()4,0,2( D TT k )3,2,1()2,0,1(b Ax T)2,0,1()(21210 Ax T )3,2,1()()(312132 A 2,1,1 D A E B A E C A E 2D A E 2 2 A 0|2| A E A E 2=2 A 12)( A A41 B21C 2D 41B 2C 3D 400001100001000011100110000100001A10 2011332313322212312111b a b a b a b a b a b a b a b a b a =__0__ 12 A =4321 P = 1011 T AP4723 T AP 43211101=4723 13 A =111110100 1A 001011110100010001111110100 001010100100110111 001011101100010011001011110100010001 14 A =54332221t Ax =0 t =__2__02121412014022154332221|| t t t t A 2 t15 2111 1212113t t =__-2__11212111t 123013011t t t 20013011t t t 2 t 16 T )3,0,1,2(T k ),1,2,1( k =322),( 23022 k 3/2 k17 Tb21,21, b =__0__18 =0 A =222222A __4__ 021 220321 4319 32212322213212452),,(x x x x x x x x x x f510122021 20232221321)2()1()1(),,(x k x k x k x x x f k 2 k020101k k k211k k k 2 k 5421 D =400103010021111122021*******11122002100111011113110121011101111400103010021111122 A = 210011101 B =410011103A 1A B AX100010001210011101 100011001210110101111011001100110101111122112100010001 111122112100010001 1 A =111122112B A X 1111122112 410011103=322234225 23 )1,1,1,1( )1,1,1,1( TA 2ATA =)1,1,1,1(1111 11111111111111112A = 111111*********1 1111111111111111=4444444444444444 24 T)4,2,1,1(1 T )2,1,3,0(2 T )14,7,0,3(3 T )0,2,1,1(401424271210311301),,,(4321 42200110033013012110011001101301 200000000110130110000000011013010000100001101301 421,, 34210325ax x x x x x x x 32132131522312a),(b A a 51223111201 211011101201a300011101201a 3 a 3 a3 a ),(b A 000011101201333231121x x x x x x 112011k26 A =2178 A A P AP P 1)9)(1(9102178||2A E 11 92 11 0)( x A E00111177A E 2221x x x x11111 k 1k92 0)( x A E00717171A E 22217x x x x17222 k 2k1171P 9001 P AP P 1l i w.t r a c k e r -s o f t wa r e C ck t o b u y NOW !w w.co m27 n A A A 2A E 2 A E A E 2)2(1A A2E A A E A A E A E A E 4444)2)(2(2 A E 2A E A E 2)2(12008 0418410 20 ],,[321 A i 3,2,1 i A 2|| A|],,3[|||3221 B C -2B 0C 2D 6333231232221131211||a a a a a a a a a A 2||333||333232312322222113121211A a a a a a a a a a a a aB 02121x kx x x k A-1B 0C 1D 201111||k k A 1 k A B C ||||||B A AB B 111)( A B AB 111)(B A B A D T T TA B AB )(1001A 1001B A 2|| A |)(|1A A41 B 1C 2D 441||1||1||1|)(|211 A A A A nA 4321,,, 432,,B 4321,,, B 4321,,, 1 432,, D 43,s ,,,21 r s r C s ,,,21 B s ,,,21 r s ,,,21 r +1 D s ,,,21 r -1 A B DA ,B B A ,B E B E A D ||||B A21, b Ax 0 Ax B 1 0Ax B )(21 0 Ax 21 b Ax D 21 b Ax 00)]([2121 b b A A A A )1,1,1( D l i w.t ra ck e r -s o f t w ar eC ck t ob uy NOW !w w .c o m)1,1,1(1 B )1,1,1(2C )1,1,1(3D )1,1,0(40110),(4 102111A Ax x x x f T),(21 B B C D2111A 011 0121112A A10 2011 A 3||A |2|A __24__2438||2|2|3 A A12 )3,2,1(|| T __0__963642321)3,2,1(321 T || T 096364232113 200030021AA300020046 6200311A 0200012 A 0003013 A4200221 A 2200122 A 0002123 A0030231A 0000132 A 3302133A 14 A 4×5 (A )=2 0 Ax __3__ 325 r n15 )2,0,1(1 )7,0,3(2 )6,0,2(3 321,, __2__0001002011001002011000130020160270320116 1321 x x x T T Tk k )1,0,1()0,1,1()0,0,1(2133223211x x x x x x x 10101100121k k 17 A 032A A E 1A )(31E A032 A A E E A E A )(31 1A )(31E A18 A 3,2,1 ||E A __24__A 3,2,1 E A 4,3,2 ||E A 2443219 2),(2 ),2( __-8__8222||||),(2),(),2(),2(22l i w.t r a ck e r -s o f t w ar eC c k t ob uy NOW !w w .co m20221201113A 323121232132142223),,(x x x x x x x x x x x f 542110020001000000100020010000000300002110200010000001000200100000003000021 4102000100020100000030002141200210000030021 21202100023 *******2216223152A3421B 2512C X C B AX X10013152],[E A 01105231 211010312153100121531001 1A 2153BC 2512 3421= 1111 )(1B C A X 21531111=3182 23 )3,1,2,1(1 )6,5,1,4(2 )7,4,3,1(3),,(321TT T763451312141 10180590590141000000590141 0000005909369 00000059011090000009/5109/1101 21,24 b a ,3)2(321132132321b x a x x x x x x xl i w.t r a c k e r -s o f t w ar e C ckt o b u y NOW !w w.co m),(b A 323211101111b a 11011101111b ab a 10011101111 0,1 b a),(b A 000011101111 00001110020133323112x x x x x x 112010k2511713A)10)(4(401411713||2A E41 10241 0)( x A E00117711A E 2221x x x x11111 k 1k102 0)( x A E007/1100171717A E222171x x x x 17/1222 k 2k 262112A nA )3)(1(342112||2A E 11 32 11 0)( x A E001100111111A E 2221x x x x111 32 0)( x A E00111111A E 2221x x x x 1121111P 3001D111121212121211P D AP P 1 1 PDP A 1111)())(( P PD PDP PDP PDP A n n111121n 3001 1111n n 313121 1111n n n n 313131312127 0 Ax b Ax 0 b021 k k 0)(21 k k A 021 A k A k 0021 b k k 02 k 01 k 0 01 k l i w.t r a ck e r -s o f t w ar e C ckt o b u y NOW !w w.co m-9B -3C -1D 93131 A 31||313A 9|| A AB n 22B A DB AB B AC ||||B AD 22||||B AA = 1011B =1101 BA AB A1201B 1011 C1001D0000 BA AB 10111101 1101 1011= 11120111= 1201A A D0000 B 0001 C 0011D 1011 ),,(),,,(22221111c b a c b a ),,,(),,,,(2222211111d c b a d c b aB21, 21, 21, 21, 21, 21, 21, 21,132,121 Ax =0 A A)1,3,5( B112135 C 712321 D135221121 )1,3,5( 0121)1,3,5( 0132m ×n A r (A )=n -3 n >3 ,, Ax =0Ax =0 D,, B ,, C ,, D ,,,,A D =100010001 2A C AB DED EP D AP P11 PDP A E PP PEP P PD A 11122 A =001010100 A D0 B -1 1 C 1 D -1 -1)1()1()1)(1(11)1(0101010||22A E10 A n 2 n E A 2CA 1B A EA nD A 11||2 A 0|| A A n10 2011011103212 aa =__3__ 0)3(3323111103203111103212a a a a 3 a1202022121kx x x x k = __4__04221 k k4 k 13 A = 311102 B =753240 B A T19119753333 B A T311012753240= 19119753333 144212,0510,2001321t t =__3__000300110201000250110201402250110201t t t 3 t 15 )1,21,1,2( __5/2__16 )3,2,1(1 )6,5,4(2 )3,3,3(3 321,, 321,,__2__ l i w.t r a ck e r -s o f t w a r e C ckt o b u y NOW !w w.co m000630321630630321333654321 17 A 3,2,1||A __36__||A 36)321(||||221 A A n18 A 0,3321 r (A )= __2__A000030003 r (A )=219 A = 314122421 f =32312123222128432x x x x x x x x x 20 A =1002 Ax x T 2221y y222122212y y x x Ax x T 21x y 122x y5421 D =50210113210143219325310027126412227121641300012221502101132101432124)1527(29353222 A =2141 B = 1102 C =1013 X AXB =C X ),(E A 10012141 11016041 110360123112160036/16/13/23/16001 1A6/16/13/23/1)(E B 10011102 20012202 2101200212/102/11001 1B12/102/1 11CB A X6/16/13/23/1 1013 12/102/1= 114212110132101 = 03661212101= 031212121=04/111 l i w.t r a ck e r -s o f t w ar e C ck t o b u y NOW !w w.co m23 T )2,1,3( T )2,1,1(1 T )1,3,1(2 T )1,1,1(3332211 x x x T T T Tx x x )1,1,1()1,3,1()2,1,1()2,1,3(32122133321321321x x x x x x x x x A 211211313111413040403111413010103111 110010103111 110010103111110010102011110010101001 11 x 12 x 13 x321,, )1,1,1( 32124 321,, 311 32222 3213352321,, 0332211 k k k0)352()22()(3213322311 k k k 0)32()52()2(3321232131 k k k k k k k 321,,32052023213231k k k k k k k05252321520520321520201 321,,25322321321321 x x x x x x x x x),(b A 3112112113311001102112)1(3)2)(1(0001102112 2 1 11 ),(b A 00000000211133223212x x x x x x x10101100221k k l i w .t ra ck e r -s o f t w ar eC ck t ob uy NOW !w w .co m26 A = 111111111 P AP P 1111111111)3(113113113111111111|| A E)3(010101)3(2021 33021 0)( x A E000000111111111111A E3322321x x x x x x x0111 10121011112/12/101121101||),(1211222 02/12/101121||1111 6/26/16/112/12/162||122233 0)( x A E000330112330330112422242112211121112A E000110101000110202000110112333231x x x x x x 11133/13/13/111131||13333/16/203/16/12/13/16/12/1P300000000 P AP P 127 Ax =b r ,,,21 Ax =0r ,,,,2102211 r r k k k k 0)(2211 r r k k k k A 02211 r r A k A k A k kA 000021 r k k k kb 0 kbl i w.t r a ck e r -s o f t w ar e C ckt o b u y NOW !w w.co m0 b0 k ---------------------------------02211 r r k k k r ,,,21021 r k k k -------------- r ,,,,212009 0418410 204284103520z y x z y x z y x A2,0,2 z y x B 0,2,2 z y x 2,2,0 z y x D 1,0,1 z y x42841035201112100001020013421A A A B1423 B 1423 C 1243 D 1243 A 45 A =4 TA 5 C2B 3C 4D 5B A , n m k m A ),(B A CB DA A =3 0 Ax A 2B 3C 4D 55 n A 3 r 2 r nn m A 1 n 21, 0 Ax 0 AxD1 k R k B2 k R k C 21 k R k D )(21 k R k0 Ax21, 21 )(21 k R k b x A n m A =r r =m b Ax B r =n b Ax m =n b Ax D r <n b Ax r =m m A r b A r )(),( b Ax3000130011201111A A Cl i w.t ra ck e r -s o f t w ar eC c k t ob uy NOW !w w .co m1B 2C 3D 411 22343 11 22 343 0)( x A EA E0000100011101112 134 r n )2,2,1,4( B31B 51C 91D2515|||| 51||||110 22212135),(x x x x f D2221y y B 2221y y C 2221y y D 2221y y10 2011313522001_______________ 1315231352200112 )0,1,3( A530412B AB _______________AB )3,2(13 A 2||T A |3|A _______________|3|A 54227||27||)3(3 T A A14 )9,7,5,3( )0,2,5,1( _______________ )9,5,0,4()9,7,5,3()0,2,5,1(15333231232221131211a a a a a a a a a A000333232131323222121313212111x a x a x a x a x a x a x a x a x a_______________0|| A 0 Ax 0321 x x x16 b Ax642002101012001 _______________ ),(b A 321002*********4443424123221x x x x x x x x TT k )1,2,1,2()0,3,2,1( l i w .t ra ck e r -s o f t w ar e C ck t ob uy NOW !w w .c o m18 )1,2,1( ),1,0(y y _______________ 0),( 02 y 2 y19 ),,,(4321x x x x f 2423222123x x x x _______________20 ),,(321x x x f 32312123222142244x x x x x x x x x_______________4212411 A 011 D 0)2)(2(44122D 3122)2(322)2)(2(3224011421241123D0)1)(2(4 0)1)(2(0)2)(2(1222 125421 5333353333533335D112814200002000020333114533143531433514333145333353333533335D222/100110011A 011021B B AX X 1000100012/100110011).(E A 200010001100110011200210001100010011 200210211100010001200210211100010001 2002102111AB A X 1 20021021101102102123123100042853A030095201201B AB024253100042853||A AB AB24 )2,3,4,1(1 )1,4,5,2(2 )3,7,9,3(3379314522341321 323032302341000032302341 321,,25553204420432143214321x x x x x x x x x x x x553244211111A 331033101111 00003310111100003310220144334324313322x x x x x x x x x x 0132110322 26210120001A P AP P 1A||A E )34)(1(2112)1(2101200012)3()1(2121 33121 0)( x A EA E 110110000 000000110333211x x x x x x 0011p 1102p33 0)( x A EA E 110110002 000110001333210xx x x x 1103p110110001P P3000100011AP Pl i w.t r a ck e r -s o f t w ar e C ck t o b u y NOW !w w.co m27 321,, 211 322 133 321,0332211 k k k0)()()(133322211 k k k 0)()()(332221131 k k k k k k 321,,000322131k k k k k k021111110110101110011101||A0321 k k k 321,, 2009 10 2011101110|| ij a 21a 21A C 2B 1C 1D 21011121A22211211a a a a A121112221121a a a a a a B01101P 11012P A B A P P 21 B B A P P 12 C B P AP 21 D B P AP 12 1101011021A P P22211211222112110111a a a a a a a a B a a a a a a121112221121 n A B C E ABC 1B D11CA B 11A CC ACD CAE ABC E A B C 111CA B 1000100010A 2A BB 1C 2D 32A000000100000100010000100010 2A4321,,, 4 321,, 4321,,, C1B 2C 3D 4321,, 4321,,, 4321,,, 4321,,, Ali w.t ra ck e r -s o f t w ar e C ck t ob uy NOW!w w .c o m321,, 0 Ax B 2121,,B 133221,, 2121,,D 133221,,133221,,A3202B E A E C4101 B 4101 C 4201 D 4201 B A B AP P 1 B E P A E P )(14201B E A E120240002A Ax x x x x f T),,(321 D232221z z z B 232221z z z C 2221z z D 2221z z232212332222123322221)2(2)44(2442x x x x x x x x x x x x x 2221z z 10 )(ij a A A D0 B 1 C 2D 310 2011 696364232333231232221131211a a a a a a a a a 333231232221131211a a a a a a a a a _______________ 632323232323296364232333231232221131211333231232221131211333231232221131211 a a a a a a a a a a a a a a a a a a a a a a a a a a a 61333231232221131211 a a a a a a a a a 12 3D 3,2,11,2,3 3D _______________ 4132)2()3(12323222221213 A a A a A a D130121A E A A 22_______________112211201120)(222E A E A A14 A A 24321B A _____ B41125A l i w.t r a c k e r -s o f t wa r e C ckt o b u y NOW !w w.co m15333220100A 1A _______________001012103100020033001010100100220333100010001333220100),(E A00102/113/12/1010001001001012230100020006001012206100020066 1A00102/113/12/10 16 )1,1,(1a )1,2,1(2 )2,1,1(3 a ___________0363213103210311121112111 a a a a a aa 2 a17 T x )1,0,1(1T x )5,4,3(2 b Ax0 Ax _______________T x x )6,4,2(1218 A 2,1 T )1,1(1 T k ),1(2k ______________1 2 0),(21 01 k 1 k 19 A 3,2,0 B A ||E B _______________ E B 4,1,1 44)1(1|| E B20232221321)()(),,(x x x x x x x f A _______________2332222121321222),,(x x x x x x x x x x f110121011A5421 ||ija 4150231xx 12a 812 A21a 21A 8445012x x A 2 x 5)38(413221 A220111A 2011B X X B AX X X B AX B X A E )(13/113/1313131201121113120111112)(11B A E X23 T )3,1,1,1(1 T )1,5,3,1(2 T )4,1,2,3(3 T)2,10,6,2(4l i w.t r a ck e r -s o f t w ar e C ck t o b u y NOW !w w.co m。
全国2007年7月高等教育自学考试
线性代数试题
课程代码:02198
试卷说明:A T 表示矩阵A 的转置矩阵,E 表示单位矩阵,|A |表示方阵A 的行列式,在A 可逆时,A -1表示A 的逆矩
阵,||α||表示向量α的长度。
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设abc ≠0,则三阶行列式0
000
0d c b a 的值是( )
A .a
B .-b
C .0
D .abc
2.若三阶方阵A 等价于矩阵⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡100000020,则A 的秩是( )
A .0
B .1
C .2
D .3
3.设A 为n 阶方阵,且A 3=E ,则以下结论一定正确的是( )
A .A =E
B .A 不可逆
C .A 可逆,且A -1=A
D .A 可逆,且A -1=A 2
4.设A 为3阶矩阵,若|A |=k ,则|-k A |是( )
A .-k 4
B .-3k
C .-k
D .k 3
5.设α1,α2,α3线性相关,则以下结论正确的是( )
A .α1,α2一定线性相关
B .α1,α3一定线性相关
C .α1,α2一定线性无关
D .存在不全为零的数k 1,k 2,k 3使k 1α1+k 2α2+k 3α3=0
6.设u 1, u 2是非齐次线性方程组Ax =b 的两个解,则以下结论正确的是(
)
A .u 1+ u 2是Ax =b 的解
B .u 1- u 2是Ax =b 的解
C .k u 1是Ax =b 的解(这里k ≠1)
D .u 1- u 2是Ax =0的解
7.设3阶矩阵A 的特征值为1,3,5,则A 的行列式|A |等于( )
A .3
B .4
C .9
D .15
8.设矩阵A =⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡-21232321,则A 是( ) A .正交矩阵
B .正定矩阵
C .对称矩阵
D .反对称矩阵
9.二次型f(x 1, x 2)=2221214x x 6x x ++的矩阵是( )
A .⎥⎦
⎤⎢⎣⎡4421 B .⎥⎦⎤⎢⎣⎡4331 C .⎥⎦⎤⎢⎣⎡4061 D .⎥⎦
⎤⎢⎣⎡4151 10.设ξ1,ξ
2是矩阵A 的属于特征值λ的特征向量,则以下结论正确的是( ) A .ξ1+ξ
2是λ对应的特征向量 B .2ξ1是λ对应的特征向量 C .ξ1,ξ2一定线性相关 D .ξ1,ξ2一定线性无关
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
11.矩阵A =⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-2110154214321的秩为_____________.
12.排列12453的逆序数为_____________.
13.设A ,B 为3阶方阵,且|A |=9,|B |=3,则|-2AB -1|=_____________.
14.矩阵A 满足A 3=0,则(E -A )-1=_____________.
15.已知向量α1=[3,5,8,8],α2=[-1,5,2,0],则=-)53(2
112αα_____________. 16.设A 为m ×n 矩阵,且A 的n 个列向量线性无关,则矩阵A T 的秩为_____________.
17.设A 是秩为2的4×5矩阵,则齐次线性方程组Ax =0的解集合中线性无关的解向量个数为_____________.
18.设P 为n 阶正交矩阵,x 是一个n 维列向量,且||x ||=3,则||Px ||=_____________.
19.设A 为3阶实对称矩阵,α=[1,1,3]T ,β=[4,5,a]T 分别是属于A 的相异特征值λ
1与λ2的特征向量,则
a=_____________.
20.设二次型f(x 1, x 2, x 3)=31232221x 2x x 2x x ++-的正惯性指数为p,负惯性指数为q ,则p-q=_____________. 三、计算题(本大题共6小题,每小题8分,共48分)
21.计算行列式4
3210321
31001011
-
22.设A =⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡714131,B 为3阶矩阵,且它们满足A -1B =6E +B ,求B . 23.求向量组α1=[2,1,1],α2=[4,2,1],α3=[5,2,1],α4=[1,0,1]的一个最大线性无关组,并将其它向量
用此最大线性无关组线性表示.
24.求下列齐次线性方程组的一个基础解系,并以此写出其结构式通解.
⎪⎪⎩
⎪⎪⎨⎧=+-+=++-=+-+=-+-07930830320543214321
43214321x x x x x x x x x x x x x x x x 25.设3阶矩阵A 的特征值为1,2,3,相应的特征向量为⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡212,122,221,求A .
26.已知二次型32312123222132166255),,(x x x x x x ax x x x x x f -+-++=的秩是2.
(1)求参数a. (2)将),,(321x x x f 化为规范形.
四、证明题(本大题共2小题,每小题6分,共12分)
27.设向量组α1,α2,α3线性无关,证明2α1+3α2,α2+4α3,5α3+α1线性无关.
28.设A 为n 阶正定矩阵,B 是与A 合同的n 阶矩阵,证明B 也是正定矩阵.。