镁合金化学转化膜的研究进展
- 格式:pdf
- 大小:354.66 KB
- 文档页数:5
DOI: 10.19289/j.1004-227x.2020.23.008 AZ91D镁合金无铬化学转化膜的性能王向荣(上海市普陀区绥德路789号,上海200331)摘要:采用由钛盐、无机酸和有机酸组成的溶液,在AZ91D镁合金表面制备了无铬化学转化膜。
用附带能谱仪的扫描电子显微镜和X射线光电子能谱仪研究了转化膜的形貌和成分,通过极化曲线和盐雾试验评定转化膜的耐蚀性,采用划格试验检测转化膜的结合力,考察了不同pH的化学转化溶液在0 °C和40 °C条件下的稳定性。
结果表明,所得到的灰白色化学转化膜主要成分为铝、镁和钛,其耐蚀性和结合力良好,最佳的pH范围是5.5 ~ 6.5。
关键词:铸造镁合金;无铬化学转化膜;耐蚀性;结合力中图分类号:TG178 文献标志码:A 文章编号:1004 – 227X (2020) 23 – 1643 – 05 Properties of chromium-free conversion coating on AZ91D magnesium alloy // WANG XiangrongAbstract: A chromium-free chemical conversion coating was prepared on the surface of AZ91D magnesium alloy in a solution composed of titanium salt, inorganic acid, and organic acid. The morphology and composition of the conversion coating were studied by scanning electron microscope (SEM) with energy-dispersive spectrometer (EDS) and X-ray photoelectron microscope. The corrosion resistance of the conversion coating was evaluated by polarization curve measurement and salt spray tests. The adhesion strength of the conversion coating was examined by cross-cut test. The stability of the chemical conversion solution with different pHs at 0 °C and 40 °C was investigated. The results showed that the main elements of the gray-white chemical conversion coating are Al, Mg, and Ti. The corrosion resistance and adhesion strength of the coating are good. The optimal pH range of the chemical conversion solution is 5.5 to 6.5.Keywords: die-cast magnesium alloy; chromium-free chemical conversion coating; corrosion resistance; adhesion Author’s address: No.789 Suide Road, Putuo District, Shanghai 200331, China由于镁在地球上的含量丰富,而且镁在工程金属中最显著的特点是质量轻,还具有比强度高、比刚度高、减震性能好、抗辐射能力强等一系列优点,因此开发利用镁合金产品是当今世界发展的潮流。
镁合金化学转化膜成膜机理及其载波改性的研究的开题报告一、选题背景和意义随着现代工业技术的发展,轻量化、高强度、耐腐蚀等性能需求日益突出,镁合金作为新型轻质材料在航空、汽车、船舶、电子等领域有着广泛的应用前景。
但是,由于镁合金表面活泼,易氧化,加之镁合金特有的晶格结构和物理化学性质,导致在镁合金的加工、表面涂装等过程中,常常会出现膜层附着不牢固、生产效率低下、耐腐蚀性差等问题。
针对镁合金表面化学转化膜的形成机理及其性能改善问题,国内外研究者已经展开了广泛的研究。
目前已经发现了阴离子转化、阳离子转化、微电弧氧化等多种化学转化方法,并且取得了一定的进展。
然而,现有的化学转化方法存在着成膜速度慢、成膜温度高、成膜均匀性差等问题,限制了这些技术的实际应用效果。
因此,本文选取镁合金的化学转化膜成膜机理及其载波改性作为研究对象,旨在探究化学转化膜成膜机理及其存在的问题,进一步寻找优化方案,提高成膜速度、降低成膜温度、提高成膜均匀性,以提高材料的实用价值。
二、研究内容和方法研究内容:基于镁合金表面化学转化膜的成膜机理及其存在问题,对化学转化膜的成膜速度、成膜温度、成膜均匀性等进行研究,并探究表面载波对成膜性能的影响。
研究方法:1.采用SEM、AFM等表征技术对样品表面形貌、成分等进行分析。
2.采用电化学测试技术对样品表面性能进行评估。
3.采用复合载波技术及其他改良方案提高化学转化膜的成膜速度、降低成膜温度、提高成膜均匀性。
三、预期研究结果1.在化学转化膜成膜机理方面,进一步探究和发现镁合金表面化学转化膜的形成机理,揭示成膜过程中表面活性位点和离子交换机制的作用。
2.在化学转化膜改性方面,通过载波改性及其他改良方法,提高化学转化膜的成膜速度、降低成膜温度、提高成膜均匀性等性能,改善镁合金在工业应用中的使用效果。
3.本研究的成果将为解决目前化学转化膜技术在工业应用中存在的问题提供新思路和方案,具有一定的理论与实用价值。
镁合金表面化学转化膜研究进展摘要:总结镁合金表面化学转化膜的研究现状,介绍铬酸盐转化膜、锡酸盐转化膜、磷酸盐/高锰酸盐转化膜、稀土转化膜、植酸转化膜和钥酸转化膜的处理工艺,讨论磷酸盐/高锰酸盐转化膜的成膜机理,分析各种化学转化膜的优缺点,展望今后镁合金表面化学转化膜的发展方向。
关键词:镁合金;化学转化膜;腐蚀防护;磷酸盐0引言镁合金具有密度小、比能量大、强度高和电磁屏蔽性能好等优点,广泛用于汽车、航天电子通信和工程结构材料等领域[1]。
但纯镁的标准电极电位非常负(-2.37 V,vs SHE),其腐蚀电位因介质而异,一般在-1.65~+0.5V之间[2]。
大部分镁合金性质活泼,容易在各种使用环境中被腐蚀,极大地限制了镁合金的开发与应用。
适当的表面处理能够极大地改变镁合金的耐腐蚀性能,扩大镁合金的使用范围[3]。
镁合金的表面处理方法很多,如电镀或者化学镀、金属涂层、阳极氧化、化学转化膜处理、激光处理和离子注入等[4-6]。
镁性质活泼,MgO会在合金表面迅速形成,阻碍沉积金属与基底形成金属键;基底的空隙和夹杂会成为镀层空隙的来源,使得金属涂层质量欠佳:镁在普通镀液中与其他金属离子的置换反应十分强烈,导致置换层松散无力[3]。
激光处理和离子注入等制备的涂层耐蚀性能优越,但生产设备昂贵,成本过高,工件形状尺寸受到限制[2]。
阳极氧化或微弧氧化膜具有很高的硬度和良好的耐蚀性,但设备占地大,投资较大,能耗高,膜层空隙率高,难以大规模推广应用。
化学转化膜法也称为化学氧化法,是使金属工件表面与处理液发生化学反应,生成一层保护性钝化层,化学氧化法生成的氧化膜比自然形成的保护膜有更好的保护效果,是提高镁合金防蚀性能最常用、最有效的方法。
与阳极氧化处理工艺相比,化学转化膜比较薄(0.5~3.0rtm),可用于保护涂料的基底,尤其适用于在特定环境下的防护,比如运输或储存过程中镁的防护和镁合金机械加工件表面的长期防护;而且化学转化膜工艺设备简单,投资少,处理成本低,并能够显著提高镁合金的腐蚀抗力,在镁合金表面处理中占较大比例[5-6]。
镁合金表面化学转化膜研究进展作者:宋婷婷李旭赵旭鹏来源:《硅谷》2011年第10期摘要:综述镁及镁合金的各种化学转化方法,包括铬酸盐转化膜、磷酸,高锰酸钾转化膜、锡酸盐转化膜、稀土转化膜、钴酸盐转化膜、氟锆酸盐转化膜等。
总结镁合金防护中化学转化膜的发展趋势。
关键词:镁合金;转化膜;腐蚀中图分类号:TG174 文献标识码:A 文章编号:1671-7597(2011)0520007-011 绪论作为地球上最轻的金属结构材料,镁及其合金具有许多优良的特性。
镁的比强度很高,密度约为铝的2/3,铁的1/4;镁还具有良好的导热、导电性、尺寸稳定性、电磁屏蔽性、机加工性能以及再循环利用的性能。
这些特性使其成为汽车工业、航空工业及电子工业中首选的结构材料。
然而,镁及其合金的耐腐蚀性能较差一定程度上限制了它的应用。
因此提高镁及镁合金的抗腐蚀性显得至关重要。
目前,提高镁及其合金的耐蚀性主要有以下几种方法:通过降低镁合金中的“危害元素”铁、镍、铜、钴等的含量;采用快速凝固技术,增加有害杂质的固溶极限,使表面的成分均匀化,从而减少局部微电偶电池的活性,同时还能形成玻璃态的氧化膜。
对镁合金进行表面涂层处理,利用涂层在基体和外界环境之间形成的屏障,抑制和缓解镁合金材料的腐蚀。
其中第三种是防止镁及镁合金最简便有效的方法。
为了确保涂层能附着良好且具有自修复能力,必须在涂层前进行预处理,使涂层和基体具有较好的附着力。
而化学转化膜是涂层前预处理的一项重要手段,可以增强镁合金表面涂层处理时的附着力。
2 盐类化学转化膜镁及镁合金的化学转化膜中以无机盐类居多,目前国内外应用的主要有铬酸盐转化膜、磷酸盐转化膜、稀土金属盐转化膜、锡酸盐转化膜以及高锰酸钾转化膜,他们各自具有自己的优缺点,工业上通常根据他们的特点,选择转化膜种类。
1)铬酸盐转化膜。
进行铬酸盐处理的镁合金在表面形成可形成铬基体金属的混合氧化物膜层,可以得到白、金黄、棕和黑色的铬酸盐膜。
镁合金黑色化学转化膜工艺研究论文摘要:通过正交试验,优化得出镁合金黑色化学转化膜最佳工艺配方参数为:Na Cr2O 2H O150g/l;MgSO 7H O 75g/l; MnSO 5H O 75 g /l;添加剂20 g/l,操作条件:温度85—100℃时间10—20min,找出配方中各成分对镁合金黑色化学转化膜耐腐蚀性、附着强度的影响,提升了镁合金表面处理质量,为镁合金表面处理实际生产提供了参考。
论文关键词:镁合金,黑色转化膜,正交试验1、前言自20世纪90中期以来,随着能源价格的不断上涨以及可持续发展要求的提高,资源和环境已成为人类可持续发展的首要问题,新型轻型合金材料的研究越来越受到重视,镁合金凭借其优良的性能受到许多国内外专家的关注,但是,镁合金同时也存在耐腐蚀性及附着强度差、易燃、室温塑性变形困难等缺点,使得镁合金的应用受到了很大的限制,因此,需进行有效的防护处理才能发挥其优良性能。
目前,为了提高镁合金的耐腐蚀性,通常需对其进行表面改性处理,主要有阳极氧化、微弧氧化、化学镀、化学转化、有机涂层等;其中化学转化处理以其工艺简单、成本低廉被广泛采用。
我公司镁合金零件产品因技术要求,需将镁合金零件表面处理成黑色膜层,该膜层被广泛用于光学仪器消光、涂装底层及保护镁合金之用,这就要求膜层具有极好的附着强度和在大气中的耐腐蚀性,根据公司军民品生产的产品品种、规格、零件大小、数量、技术要求等情况,结合公司现有设备及生产条件,在众多的镁合金表面处理方法中,我们采用化学转化膜处理。
通过一段时间的现行生产,镁合金黑色化学转化膜处理存在的主要问题有(1)膜层外观、附着强度差;用脱脂棉可轻松擦去膜层,(2)膜层抗腐蚀性能差。
这些问题已经成了镁合金表面处理瓶颈问题,必需尽快加以解决。
特别对于我们这样的公司,光学结构件、军品结构件近年来大量使用到了镁合金材料,表面处理质量的好坏直接决定了产品质量的优劣,并且决定了产品投入成本的大小,做好镁合金表面处理生产,是降低军民品生产成本,避免损失,挽救制品的最有效途径,意义相当重大。
•26 •【化学转化膜】镁合金表面草酸盐化学转化膜的性能研究蒋永锋*,周海涛,曾苏民(中南大学材料科学与工程学院,湖南 长沙 410083)摘 要:给出了镁合金表面处理的工艺配方,研究了草酸盐化学转化膜的微观形貌、结合力、导电性及抗蚀性。
结果表明,转化膜由均匀细小、比较致密的颗粒构成,擦拭试验超过50次无颜色变化,试样表面的电阻率小于0.1 Ω·cm ,盐雾试验超24 h ,性能达到使用标准。
关键词:镁合金;草酸盐;转化膜;微观形貌;结合力;导电性;抗蚀性;擦拭试验 中图分类号:TG178文献标志码:A文章编号:1004 – 227X (2009) 11 – 0026 – 03Performance study of oxalate chemical conversion coating on magnesium alloy surface // JIANG Yong-feng*, ZHOU Hai-tao, ZENG Su-minAbstract: The process formulation of magnesium alloy surface treatment was presented, and the micro-morphology, adhesion strength, conductivity and corrosion resistance of oxalate chemical conversion coating were studied. The results showed that the conversion coating is constituted by fine, uniform and compact grains, the wiping test exceeds 50 times with no color changes, the resistivity of sample surface is lower than 0.1 Ω·cm, and the salt spray test time is more than 24 h. The performance of conversion coating reaches application standard.Keywords: magnesium alloy; oxalate; conversion coating; micro-morphology; adhesion strength; conductivity; corrosion resistance; wiping testAuthor’s address: School of Materials and Engineering, Central South University, Changsha 410083, China1 前言镁合金密度小,比强度、比刚度高,阻尼系数小,电磁屏蔽、铸造性能优良,已在汽车、航空航天、通讯电子、军事等领域广泛应用[1-8],将成为本世纪最有发展潜力的金属材料之一。
镁合金黑色化学转化膜工艺研究前言镁合金具有许多优良的性能,如良好的耐腐蚀、高比强度和良好的可塑性等。
近年来,镁合金在汽车、电子设备和航空航天等领域得到了广泛的应用。
然而,镁合金的表面易受到氧化和腐蚀的影响,因此需要进行表面处理。
其中一种常见的方式是进行化学转化,将其表面转化为致密的氧化膜,以保护其表面。
本文将探讨一种新型的工艺——镁合金黑色化学转化膜工艺。
工艺概述镁合金黑色化学转化膜工艺是一种利用化学反应,使镁合金表面形成一种黑色的转化膜的工艺。
该工艺可以改善其表面耐蚀性,并赋予其良好的观感。
该工艺的具体步骤如下:1.预处理:将镁合金表面进行脱脂、除磷和酸洗处理,以去除表面的油污和氧化物等杂质,确保表面干净。
2.转化处理:将经过预处理的镁合金表面浸入含有盐酸、硫酸、氯离子、硝酸铜和锌离子的处理液中,利用反应使镁合金表面上生成一层黑色的转化膜,然后用蒸馏水冲洗干净。
3.密封处理:将转化处理后的镁合金表面涂上一层具有密封性的有机物质,使其密封并改善其耐蚀性。
工艺优点镁合金黑色化学转化膜工艺具有以下优点:1.环保:该工艺使用的化学品少,几乎不会对环境造成影响。
2.经济:该工艺的成本相对较低,不需要采用成本高昂的涂层技术。
3.耐腐蚀性和观感:该工艺制成的镁合金表面具有致密的黑色转化膜,能很好地保护表面,并且观感良好。
工艺影响因素1.处理液配方:处理液的配方是影响该工艺的关键因素之一。
处理液中盐酸、硫酸、氯离子、硝酸铜和锌离子的浓度可以影响制备过程的速度和黑色转化膜的均匀性。
2.处理温度:处理温度影响转化膜的生成速度和质量。
较低的处理温度可能会延长转化时间。
较高的处理温度可能会导致转化膜质量下降。
3.处理时间:处理时间也是影响转化膜生成的重要因素。
过短的处理时间可能不足以使表面完全转化,而过长的处理时间则会浪费材料。
工艺缺陷与展望目前该工艺还存在一些缺陷和不足之处。
其中,制备的黑色转化膜的均匀性有待提高。