地下水除铁除锰技术
- 格式:ppt
- 大小:1.86 MB
- 文档页数:27
一. 工程概况地下水含有大量泥沙、胶体、腐植酸等杂质,另外豫东地区地下水含盐量较高,大多含铁量超标,浅层井原水水质较复杂,并且水质不稳定,(GB5749-85)《生活饮用水卫生标准》规定,铁、锰浓度分别不得超过0.3mg/L和0.1mg/L。
针对贵单位情况,我们建议采用机械过滤器过滤水中杂质,并且去掉水中铁锰。
水中含铁量较高时,水有铁腥味,影响水的口味,作为造纸、纺织、印染、化工、医药和皮革等生产用水,会降低产品质量;含铁水可使家庭用具如瓷盆和浴缸发生锈斑,洗涤衣物会出现黄色或棕黄色斑渍;铁质沉淀物Fe2O3会滋长铁细菌,阻塞管道,有时会出现红水。
而含锰量较高的水所发生的问题与含铁量高的情况相类似,例如:使水有色、嗅、味,损害纺织、造纸、酿造、食品医药等工业产品的质量,家用器具会污染成棕色或黑色,洗涤衣物会有微黑色或浅灰色斑渍。
超过标准的原水须经除铁除锰处理,使原水水质达到国家自来水标准。
本项目采用的处理工艺如下:射流器气水混合器产品水箱曝气天然锰砂过滤除铁的工艺流程二. 曝气式锰砂过滤器工作原理针对贵公司情况,建议采用我公司生产的曝气式锰砂过滤器,该设备工作原理:利用现有深井泵余压,通过射流加气装置,让空气和水充分混合,利用空气中的氧气将水中低价铁离子和低价锰离子氧化成高价铁离子和高价锰离子,再经过吸咐过滤去除,达到降低水中铁锰含量的目地。
滤料采用精制石英砂和精制锰砂。
精制锰砂的主要成分是二氧化锰(MnO2)它是二价铁氧化成三价铁良好的催化剂。
精制锰砂中的MnO2 的含量大于35%很高,其除铁效果非常理想,含铁锰地下水的PH值大于5.5与精制锰砂接触即可将Fe2+ 氧化成Fe3+其反应如下:2Mn2+ +O2 +2H2O=2MnO2 +4H+4MnO2 +3O2 =2Mn2O7Mn2O7 +6Fe2+ +3H2O=2MnO2 +6Fe(OH)3Fe(OH)3沉淀物经精制锰砂滤层后被去除。
所以精制锰砂层起着催化和过滤双层作用。
含铁锰地下水的危害及除铁锰技术饮用含铁地下水对人体健康,目前认为尚无影响,但也不能超过一定含量,而长期饮用含锰量较高的水,据医学上讲,可给一些人生理上造成一定的影响;含铁、锰的水可使白色织物变黄,给水管道堵塞,给人们日常生活带来许多不便。
饮用含铁地下水对人体健康,目前认为尚无影响,但也不能超过一定含量,而长期饮用含锰量较高的水,据医学上讲,可给一些人生理上造成一定的影响;含铁、锰的水可使白色织物变黄,给水管道堵塞,给人们日常生活带来许多不便。
一.含铁锰地下水的形成铁在地球表面分布很广,地壳中的铁质多半分散在各种晶质岩和沉积岩中,它们都是难溶性的化合物。
这些铁质大量的进入水中,一般通过以下几种途径:1.含碳酸的地下水,对岩层中二价铁的氧化物起溶解作用。
在水的循环中,部分雨水由地表渗入地下的过程中,一般都要经过富含有机物的表土层。
土壤中的有机物在微生物的作用下,被分解而产生出大量二氧化碳,这些二氧化碳溶于水中便使地下水含有大量的碳酸。
含有碳酸的地下水经过地层的渗透和过滤,能逐渐溶解岩层中二价铁的氧化物,而生成可溶于水的重碳酸亚铁:FeO+2CO2+H2O=Fe(HCO3)2当岩层中有碳酸亚铁存在时,碳酸亚铁在碳酸作用下也能生成溶解于重碳酸亚铁。
FeCO3+CO2+H2O=Fe(HCO3)22.三价铁的氧化物在还原条件下被还原而溶解于水。
在含有机质的地层中,常由于微生物的强烈作用而处在还原条件下时,水中的溶解氧被消耗殆尽,而由于有机物的分解作用,产生出相当数量的硫化氢和二氧化碳。
在这种条件下,地层中的三价铁首先被硫化氢还原生成FeS沉淀。
Fe2O3+3H2S=2FeS+3H2O+S生成的硫化铁在碳酸作用下又生成溶解于水中的Fe(HCO3)2。
FeS+2CO2+ 2H2O= Fe(HCO3)2+H2S3.有机物质对铁质的溶解作用。
有些有机酸能将岩层中的三价铁还原成为二价铁而使之溶解于水中,还有一些有机物能和铁质生成复杂的有机铁而溶于水中。
附录F(资料性附录)地下水除铁除锰技术标准F.1地下水除铁、除锰工艺流程,应根据原水水质、净化后水质要求、除铁除锰试验或参照水质相似水厂的运行经验,通过技术经济比较后确定。
a)地下水除铁,当水中的二价铁易被空气氧化时,宜采用曝气氧化法;当受硅酸盐影响或水中的二价铁空气氧化较慢时,宜采用接触氧化法。
b)地下水铁、锰含量均超标时,应根据以下条件确定除铁除锰工艺:当原水含铁量低于2.0mg/l、含锰量低于1.5mg/l时,可采用:当原水含铁量或含锰量超过上述数值且二价铁易被空气氧化时,可采用:当除铁受硅酸盐影响或二价铁空气氧化较慢时,可采用:c)曝气氧化法除铁,曝气后水的pH值宜达到7.0以上;接触氧化法除铁,曝气后水的pH值宜达到6.0以上;除锰前水的pH值宜达到7.5以上,二次接触氧化过滤除锰前水的含铁量宜控制在0.5mg/l 以下。
F.2曝气装置应根据原水水质、曝气程度要求,通过技术经济比较选定,可采用跌水、淋水、射流曝气、压缩空气、叶轮式表面曝气、板条式曝气塔或触式曝气塔等装置,并符合以下要求:a)采用跌水装置时,可采用1~3级跌水,每级跌水高度为0.5~1.0m,单宽流量为20~50m3/(h.m);b)采用淋水装置(穿孔管或莲篷头)时,孔眼直径可为4~8mm,孔眼流速为1.5~2.5m/s,距水面安装高度为1.5~2.5m,采用莲蓬头时,每个莲蓬头的服务面积为1.0~1.5m2;c)采用射流曝气装置时,其构造应根据工作水的压力、需气量和出口压力等通过计算确定,工作水可采用全部、部分原水或其它压力水;d)采用压缩空气曝气时,每立方米的需气量(以L计)宜为原水中二价铁含量(以mg/l计)的2~5倍;e)采用板条式曝气塔时,板条层数可为4~6层,层间净距为400~600mm;f)采用接触式曝气塔时,填料可采用粒径为30~50mm的焦炭块或矿渣,填料层层数可为1~3层,DB21/XX-XXXX 每层填料厚度为300~400mm,层间净距不小于600mm。
地下水除铁和除锰I 工艺流程选择9.6.1 关于地下水进行除铁和除锰处理的规定。
微量的铁和锰是人体必需的元素,但饮用水中含有超量的铁和锰,会产生异味和色度。
当水中含铁量小于 0.3mg/L 时无任何异味;含铁量为 0.5mg/L 时,色度可达 30 度以上;含铁量达 1.0mg/L 时便有明显的金属味。
水中含有超量的铁和锰,会使衣物、器具洗后染色。
含锰量大于 1.5mg/L 时会使水产生金属涩味。
锰的氧化物能在卫生洁具和管道内壁逐渐沉积,产生锰斑。
当管中水流速度和水流方向发生变化时,沉积物泛起会引起“黑水”现象。
因此,《生活饮用水卫生规范》规定,饮用水中铁的含量不应超过 0.3mg/L,锰的含量不应超过 0.1mg/L 。
生产用水,由于水的用途不同,对水中铁和锰含量的要求也不尽相同。
纺织、造纸、印染、酿造等工业企业,为保证产品质量,对水中铁和锰的含量有严格的要求。
软化、除盐系统对处理水中铁和锰的含量,亦有较严格的要求。
但有些工业企业用水对水中铁和锰含量并无严格要求或要求不一。
因此,对工业企业用水中铁、锰含量不宜作出统一的规定,设计时应根据工业用水系统的用水要求确定。
9.6.2 关于地下水除铁、除锰工艺流程选择的原则规定。
试验研究和实践经验表明,合理选择工艺流程是地下水除铁、除锰成败的关键,并将直接影响水厂的经济效益。
工艺流程选择与原水水质密切相关,而天然地下水水质又是千差万别的,这就给工艺流程选择带来很大困难。
因此,掌握较详尽的水质资料,在设计前进行除铁、除锰试验,以取得可靠的设计依据是十分必要的。
如无条件进行试验也可参照原水水质相似水厂的经验,通过技术经济比较后确定除铁、除锰工艺流程。
9.6.3 地下水除铁技术发展至今已有多种方法。
如接触过滤氧化法、曝气氧化法、药剂氧化法等等。
工程中最常用的也是最经济的工艺是接触过滤氧化法。
除铁的过程是使 Fe2+氧化生成 Fe(OH)3,再将其悬浮的 Fe(OH)3粒子从水中分离出去,进而达到除铁目的。
附录F(资料性附录)地下水除铁除锰技术标准F.1地下水除铁、除锰工艺流程,应根据原水水质、净化后水质要求、除铁除锰试验或参照水质相似水厂的运行经验,通过技术经济比较后确定。
a) 地下水除铁,当水中的二价铁易被空气氧化时,宜采用曝气氧化法;当受硅酸盐影响或水中的二价铁空气氧化较慢时,宜采用接触氧化法。
b) 地下水铁、锰含量均超标时,应根据以下条件确定除铁除锰工艺:当原水含铁量低于2.0mg/l、含锰量低于1.5mg/l时,可采用:当原水含铁量或含锰量超过上述数值且二价铁易被空气氧化时,可采用:当除铁受硅酸盐影响或二价铁空气氧化较慢时,可采用:c) 曝气氧化法除铁,曝气后水的pH值宜达到7.0以上;接触氧化法除铁,曝气后水的pH值宜达到6.0以上;除锰前水的pH值宜达到7.5以上,二次接触氧化过滤除锰前水的含铁量宜控制在0.5mg/l 以下。
F.2曝气装置应根据原水水质、曝气程度要求,通过技术经济比较选定,可采用跌水、淋水、射流曝气、压缩空气、叶轮式表面曝气、板条式曝气塔或触式曝气塔等装置,并符合以下要求:a) 采用跌水装置时,可采用1~3级跌水,每级跌水高度为0.5~1.0m,单宽流量为20~50m3/(h.m);b) 采用淋水装置(穿孔管或莲篷头)时,孔眼直径可为4~8mm,孔眼流速为1.5~2.5m/s,距水面安装高度为1.5~2.5m,采用莲蓬头时,每个莲蓬头的服务面积为1.0~1.5m2;c) 采用射流曝气装置时,其构造应根据工作水的压力、需气量和出口压力等通过计算确定,工作水可采用全部、部分原水或其它压力水;d) 采用压缩空气曝气时,每立方米的需气量(以L计)宜为原水中二价铁含量(以mg/l计)的2~5倍;e) 采用板条式曝气塔时,板条层数可为4~6层,层间净距为400~600mm;f) 采用接触式曝气塔时,填料可采用粒径为30~50mm的焦炭块或矿渣,填料层层数可为1~3层,DB21/T 3264—2020 每层填料厚度为300~400mm,层间净距不小于600mm。
地下井水铁锰超标处理办法自然氧化法自然氧化法除铁除锰就是以空气中的氧气作为氧化剂,地下水经过充分的曝气充氧后,将Fe2+氧化为Fe3+,并以氢氧化物沉淀的形式析出,再通过沉淀、过滤得以去除,自然氧化除锰时,由于Mn2+的氧化还原电位高于Fe2+,所以在pH>9.0时,氧化速率才明显加快,而一般地下水的pH值为6.O~7.5,仅靠曝气散除C02以提高pH值的常规方法很难将水的pH提高到9.O 以上,所以除锰必须另外投加碱。
自然氧化法工艺通常由曝气、反应沉淀、过滤组成,其特点是:工艺过程复杂,设备庞大,处理效果不稳定,工程投资高。
因此从60年代起逐步被接触氧化法所代替。
臭氧氧化法臭氧是一种很强的氧化剂,可以在比较低的pH(6.5以下)和无催化的条件下,使水中的二价铁和锰完全氧化。
研究表明,当地下水中含有自然有机质(NOM)腐殖质和富里酸时,会在很大程度上影响臭氧氧化效果。
并且在用臭氧进行水处理的过程中,要特别注意臭氧的投加量,若臭氧过量,会使水中的二价锰被氧化为高锰酸根而使水呈现粉红色,还需要进行还原过滤,从而增加处理难度。
另外水源中的溴化物与臭氧生成溴酸盐是危险反应,大量资料已证明溴酸盐是一种潜在的致癌物。
臭氧的主要特性是反应迅速,无持续性。
而臭氧在水中的溶解度较低,当含铁锰的地下水较为浑浊时,臭氧与水的混合如不充分,则会大大降低臭氧对铁锰的氧化作用。
另外目前臭氧发生装置昂贵、操作复杂,耗电量大,运行费用高。
二氧化氯氧化法二氧化氯氧化性远远大于氯气,对水中二价铁和二价锰能迅速氧化,形成不溶性沉淀。
一般与水接触反应5min以后,用孔径O.45um滤纸能把这些氧化物滤除99%以上。
二氧化氯在水处理过程中一般不与水中的有机物氯化形成氯代副产物(DBPs),也不与氨氮反应。
因此常用来作为水处理预氧化的首选氧化剂。
本研究也是在此基础上,以二氧化氯预氧化工艺来探讨去除水中铁锰的技术参数和控制条件。
天然锰砂滤料锰砂滤料是选用块状锰矿和天然锰砂作原料,经破碎筛选而成。
地下水除铁锰技术的现状及发展随着对铁锰氧化机理研究的不断深入,已开发出多种地下水除铁除锰技术,目前常用的主要有以下几种工艺方法。
1自然氧化法自然氧化法除铁除锰就是以空气中的氧气作为氧化剂,地下水经过充分的曝气充氧后,将Fe2+氧化为Fe3+,并以氢氧化物沉淀的形式析出,再通过沉淀、过滤得以去除,除铁氧化反应见式l—l:4Fe2++O2+2H20=4Fc3++OH-(1一1)自然氧化除锰时,由于Mn2+的氧化还原电位高于Fe2+,所以在pH>9.0时,氧化速率才明显加快,而一般地下水的pH值为6.O~7.5,仅靠曝气散除C02以提高pH值的常规方法很难将水的pH提高到9.O以上,所以除锰必须另外投加碱。
自然氧化法工艺通常由曝气、反应沉淀、过滤组成,其特点是:工艺过程复杂,设备庞大,处理效果不稳定,工程投资高。
因此从60年代起逐步被接触氧化法所代替。
2接触氧化法地下水经曝气后,直接进入滤池过滤,随着运行时间的加长,滤料上逐步被铁锰氧化物包覆而形成对地下水中Fe2+、M铲+的氧化有自催化作用的“活性滤膜”。
接触氧化法就是指通过活性滤膜的催化氧化作用将Fe2+、Mn2+氧化的工艺过程。
研究发现:对Fe2+氧化起催化作用的成分主要为Fe(0H)3•2H20,称为“铁质活性滤膜”,反应原理式见式1—2和l一3:对Mn2+氧化起自催化作用的成分主要为Mn02•xH20,反应原理式见为式1-4和1-5:Fe(OH)3•2H20+Fe2+=Fe(OH)2-(0Fe)•2H20+H+(1—2)Fe(OH)2+(OFe)•2H20+1/402+5/2H20=2Fe(OH)3•2H20+H+(1—3)Mn2++Mn02•xH20=Mn02•MnO•(x.1)H20+2H+(1一4)Mn02.MnO。
(x-1)H20+l/202+H20=2Mn02•xH20 (1—5)接触氧化法是对自然氧化法的一大改进。
简化了自然氧化法的工艺流程,提高了除铁除锰的效果和稳定性,但在实际应用中仍存在着以下一些问题:接触氧化法的活性滤膜需要在运行过程中逐步形成,一般形成周期称为“成熟期”。
我国地下水除铁锰技术发展简史我国具有丰富的地下水资源,许多城镇和工矿企业都以地下水作为水源。
但是,据不完全统计有十八个省、市的地下水中含有过量的铁和锰,不符合工业生产和人民生活的需求。
因此,地下水除铁除锰在给水处理技术中占据着重要的位置。
数十年来,我国科技工作者对地下水除铁除锰进行卓有成效的研究,使得地下水除铁除锰技术得到解决,为给水处理事业做出了贡献。
一、地下水除铁技术发展过程我国最早的地下水除铁系统始建于1936年,是日本人在黑龙江省的佳木斯市和齐齐哈尔市两地自来水厂几乎同时建造的,处理规模均为2000m3/d,其处理流程也基本相同。
含铁地下水抽取后,由空压机加气,经气水混合器混合后进入压力式滤池。
压力式滤池的上层设厚800~1000mm的焦碳层,下层为600mm厚的石英砂层(佳木斯采用KmnO4处理处理过的石英砂)。
使用的压力滤池构造较为复杂,而且佳木斯自来水厂的除铁滤池运行一段时间后尚需用KmnO4再生。
50年代初期,我国采用的地下水除铁技术是从苏联及东欧引进的。
当时采用的都是自然氧化除铁工艺,这种工艺的实质是根据地表水去除悬浮物的处理原理,首先将水中亚铁离子氧化,使之成为高铁絮状物,然后进行机械分离,其工艺流程一般由曝气、氧化反应沉淀和过滤三部分组成。
曝气是使含铁地下水与空气充分接触,让空气中的氧溶入水中,同时大量散除地下水中的CO2以提高水的PH,加快亚铁离子的氧化速实用文档度。
氧化反应沉淀是让水在反应沉淀池内停留相当长的时间,使水中的亚铁离子被溶解氧全部氧化的三价铁,并絮凝生成沉淀物。
由于地下水中的亚铁离子的氧化反应一般比较缓慢,所以要求水在池中的停留时间较长,从而需要比较庞大的反应沉淀池容积。
反应沉淀后,水中还残留着许多铁质悬浮物,需经石英砂滤池过滤。
这种由曝气、反应沉淀、石英砂过滤三级处理构筑物组成的自然氧化法除铁工艺,其系统复杂,设备庞大,由于三价铁絮状物极易破碎,穿透滤层,所以这种工艺十分难以控制,出水经常不合格。
5吨每小时井水除铁除锰技术方案井水中的铁和锰是常见的水质污染物,其含量超标会对水质造成严重影响,需要采取有效的技术手段进行除铁除锰处理。
以下是一种针对5吨每小时井水除铁除锰的技术方案。
一、水质分析与预处理在进行除铁除锰处理前,首先需要对井水中的铁和锰含量进行分析,以确定初步的水质指标。
同时,也需要对井水进行预处理,如过滤、沉淀等,以去除颗粒物等杂质,以提高后续处理效果。
二、氧化反应铁和锰大部分以二价形态存在于井水中,需要氧化为三价及四价形态,才能更易于除去。
常用的氧化剂有氯气、高锰酸钾等。
氯气可通过氯气发生器供应,高锰酸钾可通过添加高锰酸钾固体到井水中进行,具体用量需要根据实际情况进行调整,以确保充分氧化。
三、沉淀过滤经过氧化后,铁和锰以氢氧化物沉淀的形式存在。
利用沉淀过滤的方式,将沉淀物与水分离,以实现除铁除锰的目的。
沉淀过滤可采用混凝剂结合过滤介质的方式。
常用的混凝剂有聚合氯化铝、聚丙烯酰胺等。
过滤介质可选用石英砂、活性炭等,以确保沉淀物有效分离。
四、离子交换如果井水中除铁以及除锰的效果还不理想,可以考虑采用离子交换技术进行强化处理。
离子交换树脂具有高度选择性吸附一些离子的能力,可以有效去除铁和锰。
根据井水中的具体情况,选择对应的离子交换树脂进行处理,可通过多级过滤、再生等措施,延长离子交换树脂的使用寿命。
五、紫外线杀菌除铁除锰处理过程中,还需考虑水中细菌的杀灭问题。
紫外线作为一种高效、无污染的杀菌方法,可通过紫外线杀菌器对井水进行处理。
紫外线作用可以破坏细菌的核酸结构,从而达到杀菌效果。
六、水质监控为确保除铁除锰技术方案的有效性,需要进行定期的水质监控,包括除铁除锰效果监测、细菌残留监测等。
根据监测结果,对处理设备进行调整和维护,以保持处理效果稳定。
综上所述,5吨每小时井水除铁除锰技术方案包括水质分析与预处理、氧化反应、沉淀过滤、离子交换、紫外线杀菌和水质监控等步骤。
这些技术手段相互协作,可以有效地去除井水中的铁和锰,提高水质。
我国饮用地下水的农村和城市很多,地下水一般水质较好,作为生活、生产用水水源,具有很多优点,因此优先考虑。
但在很多地区地下水中铁、锰含量超标,如果水中铁、锰含量高时,除影响生活用水对色、味、嗅等感官指标的要求,在用具、洗涤物上产生斑渍外,还会影响人类身体健康。
下面是小编整理的关于地下水去除铁锰离子的方法与工艺分析等内容,希望能对于去除铁锰离子方面起到一些参考价值。
地下水除铁方法:方法一:曝气氧化除铁法原理:利用空气中的氧将二价铁氧化成三价铁,使之析出,然后经过沉淀、过滤去除。
工艺流程:地下水去除铁锰离子的方法与工艺工艺特点:1、曝气不是完全为了充氧,不可忽视的是散失CO2,恢复地下水本来的OH- 浓度,提高PH值。
2、停留时间应由曝气氧化试验得出的完全氧化时间来决定,只考虑氧化速度是不充分的。
3、溶解性硅酸含量对曝气氧化铁有明显影响。
4、曝气氧化除铁不需要投加药剂,滤池负荷低,运行稳定,是一种经济的除铁方法。
方法二:氯氧化除铁法原理:含铁地下水经过加氯氧化后,通过絮凝、沉淀和过滤去除水中生成的Fe(OH)3的悬浮物。
当原水含铁量小时,可省去沉淀,当原水含铁量更小时,还可省去絮凝池,采用投氯后直接过滤。
工艺流程:地下水去除铁锰离子的方法与工艺工艺特点:1、只要投加必要的氯量,二价铁瞬间就完成氧化,达到Fe2+浓度为零。
2、向原水管中投氯,通过管内混合就可以顺利进行二价铁的氧化。
3、在沉淀池中除去氢氧化铁绒粒、悬浮物的主要目的是减轻滤池的负荷。
4、过滤时除铁工艺不可缺少的操作单元。
5、氯氧化法的适应性很强,几乎适用于各种水质,这是它的最大优点。
方法三、接触过氯氧化除铁法原理:经曝气后含铁地下水经过天然滤池的滤层过滤,水中的二氧化铁的氧化反应能迅速在滤层中完成,并同时将铁质截留于滤层中,从而完成除铁过程。
工艺流程:地下水去除铁锰离子的方法与工艺工艺特点:1、曝气仅仅是为了将空气中的氧气向原水中充入,以达到增加溶解氧浓度的目的,并不考虑二价铁的氧化问题。
地下水和废水预处理工艺中去除铁的主要方法1:空气曝气法去除锰、铁,空气曝气是应用最多的一种方法。
目的是为了向水中溶入氧,散去co2提高ph值,使fe2+向fe3+转化,然后形成fe(oh)3的絮凝体沉淀过滤而除去。
曝气的方式有水射式曝气、跌水曝气、空气压缩机曝气、淋水或喷水曝气、曝气塔曝气等。
2:氯水解法氯就是比溶解氧更弱的氧化剂,能够快速地将二价铁水解成三价铁。
可以增加反应和结晶时间,精简处置系统,在ph值4~10的范围内都可以出现。
当水中不含铵盐或含氮有机物时,加氯量减小。
3:高锰酸钾氧化法用于处理硬度较大的含铁地下水。
高锰酸钾是比氯和氧更强烈的氧化剂,能迅速地将二价铁氧化成三价铁,生成密室的絮凝体,易于为砂滤池所截留。
4:碰触过滤法以硫酸锰、氯化锰和高锰酸钾反反复复处置锰砂、绿砂、人造沸石或其他阴离子互换剂,可使之表面粘附一层高价锰的氧化物,当含铁水通过这种滤料时,二价铁便被水解除去。
适合于处置含铁浓度不少于10mg/l的原水。
5:离子交换法水中溶解的亚铁离子可用离子交换法除去,除去的过程和软化法一样。
适用于水需同时软化,且要求水中无氧气,不含二价铁离子以外的其他形式的铁质。
6:化学沉淀法重新加入石灰后,水中产生feco3结晶出,然后轻易由过滤器除去。
在ph值8.0-8.5就可以出现反应,建议水中没有氧气,一般需要一个密闭的压力反应器和压力滤池系统。
7:混凝沉淀过滤法当地下水含有有机铁或胶体状铁时,一般氧化法不能将铁去除,需用混凝剂,通过混凝、沉淀、过滤可获得良好的效果。
8:电解法在金属铝电极间通过原水,由水电解产生新生氧而水解水中亚铁盐,同时从电极中释出的铝离子可以分解成氢氧化钠,溶解悬浊的铁氧化物,展开汇聚、结晶、过滤器。
9:用铁细菌处理法利用铁细菌可以使水中溶解的铁氧化为不溶性的fe3+而聚集起来。
如发式纤毛细菌、赫氏纤毛细菌、含铁嘉氏铁柄杆菌、多胞铁细菌等。
操作简单,费用低廉,是一种慢速过滤法,适用于水量小的情况。