镍氢电池基本知识
- 格式:ppt
- 大小:281.50 KB
- 文档页数:33
一、镍氢1. 镍氢电池工作原理:2Ni (OH)2 + M NiooH + MH ±Q(总化学反应)Ni (OH)2 :正极物质,球镍。
M :负极物质,储氢合金粉。
NiooH :正极物质充电过程中被氧化生成物,羟基氧化镍。
MH :负极物质被还原生成物。
二、各部份功用1. Cell cap(盖帽):与电池正极相连,起密封和导电作用,盖帽分平(flat cap)和尖头(Nigh cap)两种。
2. Gasket(密封圈):使电池正、负极隔绝以及防止漏液。
3. Top insulator(顶部绝缘垫):防止正负极短路。
4. Current Collector(集耳):将正极片与顶盖联接,起集电流及导电流作用。
5. Cell Can(电池壳):起容器以及充当负极导体作用。
6. Bottom insulator(底垫):防止电池底部短路。
7. Safety-vent system(安全阀系统):在电池过充或过放时电池内部压力过大,气体通过安全阀排放。
8. Separator(隔膜):保持电解液并使正负极隔离,防止电池内部短路。
9. Positive electrode(正极板):电极上活性物质反应产生电流。
9. Negative electrode (负极板):电极上活性物质反应产生电流。
二、电池使用常识A.充电1. 充电温度(1) 电池充电应在环境温度0℃至45℃间进行(特殊型电池除外)。
(2) 充电环境温度影响充电效率,充电效率在10℃~30间充电效率最高,因此,尽可能将充电器(或电池)放于指定温度范围内的地方。
(3) 在低温时,气体的吸收速度减慢,电池内压升高,这可能使安全阀开启,泄漏出碱性气体,使电池性能恶化。
(4) 温度高于40℃,充电效率降低,这会干扰充电,并造成电池性能的恶化和漏液。
2. 并联充电设计并联充电要确保线路的可靠性,否则导致大电流对电池充电,使电池性能恶化,甚至漏液。
3. 反极充电会造成电池内压升高,激活安全阀,使电池漏液,性能恶化,甚至发生鼓胀或破裂。
定义特点定义与特点随着技术的不断进步,镍氢电池逐渐成为主流的可充电电池之一,广泛应用于消费电子、电动汽车等领域。
镍氢电池的历史与发展发展历程起源消费电子电动汽车其他领域镍氢电池的应用领域负极反应•电池总反应:镍氢电池的总反应是正极和负极反应的组合。
充电过程放电过程电池充电与放电容量镍氢电池的容量是指电池在一定条件下可以储存的电量,通常以毫安时(mAh)为单位表示。
容量取决于电池的活性物质(如金属镍和氢)的含量以及电池的体积。
能量密度镍氢电池的能量密度是指单位体积或单位质量电池可以储存的能量,以瓦时/千克(Wh/kg)或瓦时/立方厘米(Wh/cm³)为单位表示。
高能量密度意味着在相同体积或质量的电池中可以储存更多的能量。
容量与能量密度内阻与欧姆损耗内阻镍氢电池的内阻是指电池内部电阻,包括欧姆电阻和极化电阻。
内阻的大小反映了电池内部电学特性的好坏,对电池的充放电性能和效率有重要影响。
欧姆损耗欧姆损耗是指电池在充放电过程中由于内阻而产生的热量和电压损失。
欧姆损耗的大小与电池的品质和制造工艺有关,同时也受到环境温度和使用条件的影响。
镍氢电池的自放电率是指电池在不使用的情况下,内部活性物质自发发生化学反应而导致的电量损失率。
自放电率越低,电池储存期间保持电量的能力就越强。
储存寿命镍氢电池的储存寿命是指电池在储存状态下可以保持的有效期。
储存寿命受到多种因素的影响,如活性物质的结构、环境温度、湿度等。
一般来说,提高储存温度和湿度会缩短储存寿命。
自放电率自放电率与储存寿命VS充电效率与放电效率充电效率放电效率原材料材料配方原材料处理030201电极材料涂布工艺电极干燥与处理电池结构掌握电池组装的流程和工艺,如叠层、焊接、密封等。
组装工艺封装与测试电池组装与封装安全风险与应对措施电池过充01电池过放02电池高温03存储寿命测试通过模拟电池在存储状态下的变化,评估电池的长期性能和稳定性。
测试方法包括在不同温度和湿度条件下存储电池,并定期测量电池性能指标。
镍氢电池知识点介绍镍氢电池是一种性能良好的蓄电池。
镍氢电池分为高压镍氢电池和低压镍氢电池。
镍氢电池作为氢能源应用的一个重要方向越来越被人们注意。
下面小编为大家介绍下镍氢电池知识点。
一、镍氢电池的分类镍氢电池分为高压镍氢电池和低压镍氢电池。
低压镍氢电池具有以下特点:(1)电池电压为1.2~1.3V,与镉镍电池相当;(2)能量密度高,是镉镍电池的1.5倍以上;(3)可快速充放电,低温性能良好;(4)可密封,耐过充放电能力强;(5)无树枝状晶体生成,可防止电池内短路;(6)安全可靠对环境无污染,无记忆效应等。
高压镍氢电池具有如下特点:(1)可靠性强。
具有较好的过放电、过充电保护,可耐较高的充放电率并且无枝晶形成。
具有良好的比特性。
其质量比容量为60A·h/kg,是镉镍电池的5倍。
(2)循环寿命长,可达数千次之多。
(3)与镍镉电池相比,全密封,维护少。
(4)低温性能优良,在-10℃时,容量没有明显改变。
二、镍氢电池的结构原理镍氢电池正极活性物质为Ni(OH)2(称NiO电极),负极活性物质为金属氢化物,也称储氢合金(电极称储氢电极),电解液为6mol/L氢氧化钾溶液。
活性物质构成电极极片的工艺方式主要有烧结式、拉浆式、泡沫镍式、纤维镍式及嵌渗式等,不同工艺制备的电极在容量、大电流放电性能上存在较大差异,一般根据使用条件不同的工艺生产电池。
通讯等民用电池大多采用拉浆式负极、泡沫镍式正极构成电池。
充放电化学反应如下:正极:Ni(OH)2+OH-=NiOOH+H2O+e-负极:M+H2O+e-=MHab+OH-总反应:Ni(OH)2+M=NiOOH+MH注:M:氢合金;Hab:吸附氢;反应式从左到右的过程为充电过程;反应式从右到左的过程为放电过程。
充电时正极的Ni(OH)2和OH-反应生成NiOOH和H2O,同时释放出e-一起生成MH和OH-,总反应是Ni(OH)2和M生成NiOOH,储氢合金储氢;放电时与此相反,MHab释放H+,H+和OH-生成H2O和e-,NiOOH、H2O和e-重新生成Ni (OH)2和OH-。
镍氢充电知识点总结一、镍氢电池的基本原理镍氢电池是一种环保的可充电电池,它采用了镍氢化物和氢氧化镍作为正负极材料,使用了一种碱性电解液。
镍氢电池的工作原理是在充放电过程中,正极的氢氧化镍和负极的镍氢化合物之间进行氧化还原反应,通过电化学反应来储存和释放电能。
二、镍氢电池的特点1. 高能量密度:镍氢电池的能量密度比铅酸电池和镍镉电池高,能够提供更长的续航里程。
2. 长寿命:镍氢电池具有长寿命,能够充放电数千次。
3. 环保:镍氢电池不含有铅和镉等有毒元素,对环境友好。
4. 安全性好:镍氢电池不会发生“记忆效应”,也不会因深度放电而损坏。
三、镍氢电池的充电特点1. 充电电压范围:镍氢电池的标称工作电压为1.2V,充电电压范围为1.41V~1.56V。
2. 充电过程:在正常充电过程中,电流逐渐减小,直至充电完全停止。
3. 充电时间:镍氢电池的充电时间根据电流的大小不同,充电时间也不同。
四、镍氢电池的充电方法1. 恒定电压充电:恒定电压充电是一种常用的充电方法,适用于镍氢电池的大容量充电时。
2. 恒流充电:在恒流充电过程中,电压逐渐增加,直至镍氢电池充满。
五、镍氢电池的充电注意事项1. 使用合适的充电器:应使用专门设计的镍氢电池充电器,以避免过充或过放。
2. 适当的充电模式:根据电池的实际情况,选择合适的充电模式。
3. 避免过充:充电时应注意控制电压和电流,避免过充,以免发生安全事故。
4. 避免过放:充电过程中应及时停止充电,避免过放,以免影响电池的使用寿命。
六、镍氢电池的充电管理系统镍氢电池的充电管理系统主要包括充电控制器、电池管理模块、充电接口等部件。
充电管理系统能够实现对电池的全面监控和管理,保证电池的安全充电和使用。
七、镍氢电池的充电技术发展趋势1. 高速充电技术:随着科技的不断发展,镍氢电池的充电速度也在不断提高,未来将会出现更高速的充电技术。
2. 高能量密度技术:目前,科研人员正在致力于提高镍氢电池的能量密度,以满足电动汽车等高功率需求。
镍氢电池简单知识镍氢电池规范叫法:金属氢化物镍电池标称电压(表示电池电压的近似值):nX1.2V。
(以3508氢电为例,n=3)终止电压(规定放电终止时):nX1.0V。
充电制式:(恒流,在以0.2C放电至终止电压后开始恒流充电)1、0.4C充电:以0.4C充电3.5h2、完全充电:以0.1C充电16h放电性能:(只说其一,与大家关系密切的)0.2C放电:以0.2C放电至终止电压,放电时间应不小于5h。
国家技术监督部门鉴定氢电容量,是按照0.4C的充电制式充电,并按照0.2C的放电制式放电的。
完全充电是用于鉴定电池的储存性能的,在储存12个月后,经完全充电后,以0.2C放电,时间不应低于4h。
过充电性能:0.4C充电结束后,继续以0.1C充电48h,应不变形、不漏夜、不冒烟、等等。
以上是对氢电国家标准GB/T18288-2000的简单描述,由此我们可以看出几个问题:1、对于氢电,完全充电有好处,可以充的更饱,好象就是大家的激活概念。
2、但是,完全充电是有条件的,那就是0.1C,但市场上的充电器不会设计这么小的充电电流(以3508氢电计,应是50mA),如果用普通的充电器16小时,要么充电器充满后已经截止,剩下是浪费时间,要么充满后的涓流过大造成过充。
但氢电抗过充的能力比锂电强的多。
即使这样我们也不应该去考验它呀。
3、10几个小时的充电时间概念是从氢电时延续来的,但对于锂电已经不适用了。
氢电的规范有一个完全充电的条款,但是有条件的。
而锂电根本没有相应的条款,只不过在检测前给一个预循环,而预循环充电恒流到4.2V即结束,根本没有后面的横压补电过程。
锂电不用所谓的“激活”。
电池生产厂根本没有什么激活不激活的过程,生产出的电池都是活的,只是氢电不适宜长时间储存,时间长了会“死”,建议大家氢电不用时,每三个月进行一个充放循环,并充满保存。
保存温度不能过高。
(柜台内被射灯照射很长时间的不要买,储存很长时间的不要买)4、氢电充饱后电压是nX1.45V,以3508氢电为例是4.35V,市场上的品牌座充,如果充氢电满意,则绝对不能充锂电,如果充锂电满意则充氢电不饱,但不会损坏。
目录1.各种蓄电池的比较: (2)2.Ni-MH 电池材料构成 (2)3.Ni-MH 电池工作原理 (4)4.镍氢动力电池的不足 (5)1.各种蓄电池的比较:2.Ni-MH 电池材料构成镍氢电池的材料构成主要由电极材料、电解液、金属材料及隔膜组成,正负极及电解液材料上不同工艺上的差异使电池有不同的性能,其中正极材料决定了电池的容量,负极材料决定了大电流或高温工作时,电池充放电的稳定性。
目前正极材料多用高密度氢氧化镍,负极材料为贮氢合金粉。
如图:镍氢电池材料构成正极性能可通过添加制剂来改善。
影响氢氧化镍电池正极性能的主要因素有:1)稳定高比容量(>500mAh/cm3)Ni(OH)2 正极的制备;2)宽温度(大电流)使用范围(− 20 ~ 50oC )下电池性能的稳定性,特别是较高温度下,氢氧化镍正极上氧的过电位下降而引起充电过程内压过高,效率降低;3)由于极片膨胀使隔膜电液干涸,电液内阻加大,引起电池性能衰退。
针对这些因素,一般通过增加添加剂、导电剂、粘合剂等来改善其性能。
4)如图:实用添加剂导电剂和粘合剂贮氢合金是影响电池容量和充放电性能的关键材料,也是发展镍氢动力电池的主要技术瓶颈。
电动车用MH-Ni 电池要求贮氢合金必须具备高比容量、长寿命、高电压平台、良好的催化活性(包括构成电极后所形成的气、固、液三相催化层)及低成本等性能,技术门槛也体现在贮氢合金的配方、纯度、粒度、表面处理、活性催化、容量与寿命,以及充放电控制、温度控制等方面。
目前已经商业化的Ni-MH 电池负极材料有两种:AB5 型混合稀土类和AB2 型锆基贮氢合金。
AB5 型受其理论容量的限制,很难满足电动汽车对动力电池的要求,而AB2 型合金吸氢量大,电化学理论容量高,与氢反应速度快,活化容易,没有滞后反应,抗电解液的腐蚀氧化性强,电化学循环稳定性高,是镍氢动力电池最主要应用的新型贮氢材料。
3.Ni-MH 电池工作原理电池中的反应方程式是:正极:Ni( OH)2 = NiOOH + H + + e−负极: M + (H)2 O + e− = MH + OH −电池总反应:Ni(OH) 2 + M = NiOOH + MH,其中M 为贮氢合金,MH为吸附了氢原子的贮氢合金。