变压器纵差保护
- 格式:ppt
- 大小:1.94 MB
- 文档页数:12
热电厂主变压器的纵差动保护原理及整定方法浙江旺能环保股份有限公司 作者:周玉彩一、构成变压器纵差动保护的基本原则我们以双绕组变压器为例来说明实现纵差动保护的原理,如图1所示。
由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差动保护的正确工作,就必须适当选择两侧电流互感器的变比,使得在正常运行和外部故障时,两个二次电流相等,亦即在正常运行和外部故障时,差动回路的电流等于零。
例如在图1中,应使图 '2I =''2I = 。
同的。
这个区别是由于线路的纵差动保护可以直接比较两侧电流的幅值和相位,而变压器的纵差动保护则必须考虑变压器变比的影响。
二、变压器纵差动保护的特点变压器的纵差动保护同样需要躲开流过差动回路中的不平衡电流,而且由于差动回路中不平衡电流对于变压器纵差动保护的影响很大,因此我们应该对其不平衡电流产生的原因和消除的方法进行认真的研究,现分别讨论如下: 1、由变压器励磁涌流LY I 所产生的不平衡电流变压器的励磁电流仅流经变压器的某一侧,因此,通过电流互感器反应到差动回路中不能平衡,在正常运行和外部故障的情况下,励磁电流较小,影响不是很大。
但是当变压器空载投入和外部故障切除后电压恢复时,由于电磁感应的影响,可能出现数值很大的励磁电流(又称为励磁涌流)。
励磁涌流有时可能达到额定电流的6~8倍,这就相当于变压器内部故障时的短路电流。
因此必须想办法解决。
为了消除励磁涌流的影响,首先应分析励磁涌流有哪些特点。
经分析得出,励磁涌流具有以下特点:(1) 包含有很大成分的非周期分量,往往使涌流偏向于时间轴的一侧 ; (2) 包含有大量的高次谐波,而以二次谐波为主; (3) 波形之间出现间断,在一个周期中间断角为ɑ。
根据以上特点,在变压器纵差动保护中,防止励磁涌流影响的方法有: (1) 采用具有速饱和铁心的差动继电器;İ1′′ n İ1′(2) 利用二次谐波制动;(3) 鉴别短路电流和励磁涌流波形的差别等。
变压器纵差保护原理
变压器纵差保护是保护变压器的一种重要保护方式,目的是在发生变压器内部故障时,及时切除故障区域,保护变压器不受进一步的损害。
其基本原理是利用变压器偏差电流的存在来检测变压器内部故障,并对故障进行判别和定位。
变压器偏差电流是指变压器正常运行时,由于磁路不对称或绕组接地等原因,发生的不平衡电流。
该电流包含了负荷电流和因不平衡而产生的额外电流。
变压器纵差保护利用偏差电流的大小和方向进行保护判据的建立。
一般情况下,变压器内部短路故障会导致变压器的绕组短路,使得电流在绕组内形成环流。
这样,由于短路故障产生的偏差电流会使得变压器两侧的偏差电流不平衡,通过测量偏差电流的不平衡程度,可以判断出故障的位置及类型。
变压器纵差保护系统主要由绕组电流变比、差动电流继电器和相关的电路组成。
绕组电流变比将绕组电流变换成适合差动电流继电器测量的信号,差动电流继电器则进行信号的比较和判别,当测量到的差动电流超过事先设定的阈值时,差动电流继电器将产生动作指令,使断路器切除故障点。
总之,变压器纵差保护的原理是基于测量变压器偏差电流的不平衡程度来判断变压器内部是否存在故障,并通过差动电流继电器进行判别和动作,以实现对变压器的保护。
热电厂主变压器的纵差动保护原理及整定方法浙江旺能环保股份有限公司 作者:周玉彩一、构成变压器纵差动保护的基本原则我们以双绕组变压器为例来说明实现纵差动保护的原理,如图1所示。
由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差动保护的正确工作,就必须适当选择两侧电流互感器的变比,使得在正常运行和外部故障时,两个二次电流相等,亦即在正常运行和外部故障时,差动回路的电流等于零。
例如在图1中,应使图1 变压器纵差动保护的原理接线'2I =''2I =1'1l n I =21''l n I 或 12l l n n 1'1''I I =B n 式中:1l n —高压侧电流互感器的变比;2l n —低压侧电流互感器的变比;B n —变压器的变比(即高、低压侧额定电压之比)。
由此可知,要实现变压器的纵差动保护,就必须适当地选择两侧电流互感器的变比,使其比值等于变压器的变比B n ,这是与前述送电线路的纵差动保护不同的。
这个区别是由于线路的纵差动保护可以直接比较两侧电流的幅值和相位,而变压器的纵差动保护则必须考虑变压器变比的影响。
二、变压器纵差动保护的特点变压器的纵差动保护同样需要躲开流过差动回路中的不平衡电流,而且由于İ1′′ n İ1′差动回路中不平衡电流对于变压器纵差动保护的影响很大,因此我们应该对其不平衡电流产生的原因和消除的方法进行认真的研究,现分别讨论如下: 1、由变压器励磁涌流LY I 所产生的不平衡电流变压器的励磁电流仅流经变压器的某一侧,因此,通过电流互感器反应到差动回路中不能平衡,在正常运行和外部故障的情况下,励磁电流较小,影响不是很大。
但是当变压器空载投入和外部故障切除后电压恢复时,由于电磁感应的影响,可能出现数值很大的励磁电流(又称为励磁涌流)。
励磁涌流有时可能达到额定电流的6~8倍,这就相当于变压器内部故障时的短路电流。
变压器主保护纵差保护与差动速断保护的区别下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 引言在变压器保护中,纵差保护和差动速断保护是两种常见的保护方式。
变压器的纵差保护,低压侧中性点直接接地的一般不会用,因单相不平衡电流会产生差流,正常保护的定值会大一点(灵敏度降低)。
纵差保护能保护区内的相间短路、接地故障,匝间短路的灵敏度很低!对于变压器的差动保护,是可以反应直接接地系统绕组单相接地短路故障的。
但是对于变压器的速断保护,却不一定。
关键看直接接地系统侧是变压器的电源侧还是负荷侧。
如果是在电源侧,那么速断保护是可以反应单相接地故障的。
但是如果直接接地侧是在变压器的负荷侧,那么当变压器负荷侧发生单相接地短路时,速断保护不应动作。
小电流接地系统,其接地电流为系统的电容电流,一般不超过10A。
这个电流与变压器的额定电流相比,实在太小。
使得两侧的差流会很小,不足以启动差动保护。
纵联差动保护能够反映变压器内部严重的匝间短路,但是对大多匝间短路并不灵敏。
所以一般不用纵差保护来保护匝间短路。
对于变压器而言,匝间短路主要由另一个主保护——重瓦斯保护来实现。
在高压继电保护中,是没有带时限速断保护一说的!速断保护就是一种瞬时动作的过电流保护,它的动作时限仅仅为继电器本身固有的动作时间.它的选择性不是靠时限,而是靠它的动作电流的选择.(不像低压有短路短延时一说).高压的继电保护一般由带时限的过流保护和速断保护组成(零流不谈).带时限的过流保护一般又分:定时限过流保护和反时限过流保护(选一种).最简单的反时限4楼讲的很清楚了用GL继电器,定时限用DL+时间+中间继电器作用于断路器跳闸回路.高压中一般用反时限过流保护+速断保护的较多,速断保护作为后备保护,它的整定值较大(10倍左右额定电流,主要针对较大的短路电流).而反时限过流你得同时整定时间和电流,它是针对过负荷和小短路电流的对高压来讲,过流保护一般是对线路或设备进行过负荷及短路保护,而电流速断一般用于短路保护。
过流保护设定值往往较小(一般只需躲过正常工作引起的电流),动作带有一定延时;而电流速断保护一般设定值较大,多为瞬时动作。
电力变压器的纵差保护一.引言电力变压器在电力系统中是十分重要的电气设备。
微机保护在整个系统中占有重要的地位,它的性能好坏将直接影响到系统安全稳定运行和能否可靠地供电。
电力变压器微机保护通常由电流纵差动保护(反应变压器的内、外部故障,瞬时动作于跳闸)与瓦斯保护(反应变压器的内部短路故障或油面降低,瞬时动作于信号或跳闸)作为主保护,而过电流或复合电压启动的过电流保护〔反应变压器外部相间短路)、过负荷保护(反应变压器对称过负载,动作于信号或跳闸)、零序过流保护(反应变压器大电流接地系统中变压器外部接地短路,一般作用于信号)、过激磁保护(反应变压器过励磁,动作于信号或跳闸)等构成其后备保护。
瓦斯保护用来反映变压器油箱内部的相间或匝间短路是一种非电量保护,其动作时间一般晚差动保护。
差动保护是作为变压器相间、匝间和接地短路故障的保护,它是变压器的一种重要的保护形式。
二.电流平衡与相位校正原理在理想情况下,当变压器正常运行或发生外部故障时,流过差流回路的电流为零,差动继电器不动作。
实际上由于主变各侧CT型号、变比、计算变比、磁饱和特性、励磁电流及主变空载合闸的励磁涌流等影响,差流回路不可避免存在不平衡电流;一旦不平衡电流超过差动继电器动作整定值时,会导致差动保护误动作。
为了防止变压器励磁涌流所产生的不平衡电流引起差动保护误动作,主变差动保护采用间断角制动原理、二次谐波制动原理、波形对称原理躲过变压器励磁涌流的影响;为防止两侧CT型号不同所产生的不平衡电流引起差动保护误动作,则采用增大启动电流值以躲开主变保护范围外部短路时的最大不平衡电流;为了防止因变压器接线组别、CT变比不同引起的不平衡电流,则采用软件进行相位补偿及电流数值补偿使其趋于平衡。
图1变压器差动保护连线图Y→△补偿方式主变差动保护实际对主变高压侧(Y型侧)二次电流相位校准,算法如下:Y型侧:(222(222(222I I I A A B I I I B B C I I I C C A '⎧∙∙∙⎪=-⎪⎪'∙∙∙⎪=-⎨⎪'∙∙∙⎪⎪=-⎪⎩△型侧:222222a a b b c c I I I I I I ∙∙∙∙∙∙'⎧=⎪⎪'⎪=⎨⎪'⎪=⎪⎩ △→Y 补偿方式主变差动保护实际对主变低压侧(△型侧)二次电流相位校准,算法如下:Y 型侧:220220220()()()A A B B C C I I I I I I I I I ∙∙∙∙∙∙∙∙∙'⎧=-⎪⎪'⎪=-⎨⎪'⎪=-⎪⎩ △型侧:222222222()/()/()/a a c b b a c c b I I I I I I I I I ∙∙∙∙∙∙∙∙∙'⎧=-⎪⎪'⎪=-⎨⎪'⎪=-⎪⎩其中02221()3A B C I I I I ∙∙∙∙=++表示Y 型侧去掉零序电流,目的在于去除主变区外接地故障时流入Y 型侧的零序电流;因为△型侧不能提供零序电流通路,当发生接地故障时,零序电流在差流回路会产生不平衡电流而引起差动保护误动作。
电力变压器纵差保护常见问题分析(1)首先有必要一提的是最常见的问题便是安装过程中消失的问题;目前常见的电流互感器,出厂时都在外壳上明确标注P1、P2;抽头S1、S2;意思是当CT一次侧的电流由P1流向P2时,二次侧感应电流的方向为S1到S2。
差动装置取的是爱护区域两端的两个CT的二次侧感应电流进行计算,此时就肯定要留意差动爱护装置本身的固有特性:是180度接线还是0度接线。
所谓180度接线要求,就是对两端两个CT进入爱护装置的电流求和,和为零时不动作;0度接线要求就是对两端两个CT进入爱护装置的电流求差值,差值为零时不动作。
安装作业人员甚至一些设计人员经常由于对该原理的模糊导致对于发电机的差动爱护习惯性设置为0接线,对变压器采纳180接线;这就与很有可能与差动爱护装置本身的计算属性要求不符,继而造成差动爱护的误动作。
虽然现在的自适应接线方式的差动爱护装置很好的解决了这个问题,但这种装置电厂普及度不高,极易消失问题,这就要求现场人员在施工过程中要严格校验。
(2)差动继电器的电流回路接线问题,现在电力变压器主要分为干式变压器和油浸式变压器两类,在变压器的规格参数中有一项被称之为联接组标号。
也就是平常说的接线方式。
暂以常规的Dyn11来阐明差动继电器电流回路接线问题。
依据基础电路理论,角型接法的线电压比星型接法的相电压超前30度,所以就变压器自身来说高压侧的电流会超前低压侧30度。
那么假如两侧的CT采纳相同的接线方式的话,在高压侧CT处产生的二次电流也会比低压侧CT产生的二次电流在相位上相差30度,那么正常运行时也就可能超过爱护定值造成误动。
对此问题现在普遍采纳转变CT二次绕组接线方式的方法来解决。
以Dyn11为例来说明,高压侧采纳三角形接线,那么高压侧对应的CT的二次绕组就采纳星型接线;低压侧采纳星型接线,那么低压侧对应的二次绕组就采纳角型接线;这样一次侧虽然高压侧的感应的线电压虽然会比低压侧感应的相电压超前30度;但由于接线方式,星型接法的CT的感应电流会比角型接法的CT的感应电流滞后30度。
变压器纵联差动保护变压器纵联差动保护在正常运行和外部故障时,由于变压器的励磁电流、接线方式和电流互感器误差等因素的影响,使差动继电器中有不平衡电流流过,且这些不平衡电流远比发电机及线路差动保护的大。
因此,减小或消除不平衡电流对差动保护的影响是变压器差动保护中很重要的问题之一。
规程中规定:对于6.3kVA及以上厂用工作变和并行运行的变压器10MVA及以上厂用备用变压器和单独运行的变压器应装设纵联差动保护,对于高压侧电压为330kV及以上变压器,可装设双重的纵联差动保护。
纵联差动保护应符合下列要求:应能躲过励磁涌流和外部短路产生的不平衡电流;应在变压器过励磁时不产生误动作;差动保护范围应包括变压器套管及引出线,如不能包括引出线时,应采取快速切除故障的辅助措施。
变压器纵联差动保护与发电机纵联差动保护一样也可以采用比率制动或标记制动方式达到外部短路不产生误动作和内部短路灵敏动作的目的。
但变压器的纵联差动保护需考虑以下问题:(1)变压器两侧额定电压和额度电流各不相同。
因此,各测电流互感器的型号、变比各不相同,所以各测电流的相位可能不一致,这样使外部短路时不平衡电流增大,所以变压器的纵联差动保护的最大制动系数比发电机的最大灵敏度相对较低。
(2)变压器高压绕组为有调压分接头,使变压器的纵联差动保护已调整的二次电流又被破坏,不平衡电流增大,这使变压器纵联差动保护的最小动作电流和制动系数都要相对增大。
(3)对于定子绕组的匝间短路,发电机纵联差动保护完全无作用。
变压器绕组各侧的匝间短路,通过变压器的铁心耦合,改变了各测电流的大小和相位,使变压器的纵联差动保护对匝间短路有作用。
(匝间短路可视为变压器的一个新绕组发生端口短路)(4)无论变压器绕组还是发电机定子绕组开路故障,纵联差动保护均不能动作。
变压器依靠瓦斯或压力保护来反应。
变压器因为励磁电流存在,增大纵联差动保护的不平衡电流特别是在变压器空载投入时,励磁电流急剧增加至数十倍的额度电流,如不特别考虑将会造成纵联差动保护误动作。
变压器纵差保护原理及不平衡电流的克服方法_变压器三相电流不平衡1.变压器纵差保护基本原理变压器具有两个或更多个电压等级,构成纵差保护所用电流互感器的额定参数各不相同,由此产生的纵差保护不平衡电流将比发电机的大得多,纵差保护是利用比较被保护元件各端电流的幅值和相位的原理构成的,根据KCL基本定理,当被保护设备无故障时恒有各流入电流之和必等于各流出电流之和。
2.纵差保护不平衡电流分析2.1稳态情况下的不平衡电流由电流互感器计算变比与实际变比不同而产生。
正常运行时变压器各侧电流的大小是不相等的。
为了满足正常运行或外部短路时流入继电器差动回路的电流为零,则应使高、低压两侧流入继电器的电流相等,即高、低侧电流互感器变比的比值应等于变压器的变比。
但是,实际上由于电流互感器的变比都是根据产品目录选取的标准变比,而变压器的变比是一定的,因此上述条件是不能得到满足的,因而会产生不平衡电流。
由变压器两侧电流相位不同产生。
变压器经常采用两侧电流相位相差30°的接线方式。
此时,假如两侧的电流互感器仍采用通常的接线方式,则二次电流由于相位不同,也会在纵差保护回路产生不平衡电流。
2.2暂态情况下的不平衡电流由变压器励磁涌流产生。
变压器的励磁电流仅流经变压器接通电源的某一侧,对差动回路来说,励磁电流的存在就相当于变压器内部故障时的短路电流。
在外部短路时,由于系统电压降低,励磁电流也将减小。
在正常运行和外部短路时励磁电流对纵差保护的影响经常可忽略不计。
在电压忽然增加的非凡情况下,比如变压器在空载投入和外部故障切除后恢复供电的情况下,则可能出现很大的励磁电流,这种暂态过程中出现的变压器励磁电流通常称励磁涌流。
由变压器外部故障暂态穿越性短路电流产生。
纵差保护是瞬动保护,它是在一次系统短路暂态过程中发出跳闸脉冲。
在变压器外部故障的暂态过程中,一次系统的短路电流含有非周期分量,它对时间的变化率很小,很难变换到二次侧,而主要成为互感器的励磁电流,从而使互感器的铁心更加饱和。