神经网络例题与程序
- 格式:ppt
- 大小:1.26 MB
- 文档页数:20
人工智能与神经网络考试试题一、选择题(每题 5 分,共 30 分)1、以下哪个不是人工智能的应用领域?()A 医疗诊断B 金融投资C 艺术创作D 传统手工制造业2、神经网络中的神经元通过什么方式进行连接?()A 随机连接B 全连接C 部分连接D 以上都不对3、在训练神经网络时,常用的优化算法是()A 随机梯度下降B 牛顿法C 二分法D 以上都是4、下列关于人工智能和神经网络的说法,错误的是()A 人工智能包括神经网络B 神经网络是实现人工智能的一种方法C 人工智能就是神经网络D 神经网络具有学习能力5、下面哪种激活函数常用于神经网络?()A 线性函数B 阶跃函数C Sigmoid 函数D 以上都是6、神经网络的层数越多,其性能一定越好吗?()A 一定B 不一定C 肯定不好D 以上都不对二、填空题(每题 5 分,共 30 分)1、人工智能的英文缩写是_____。
2、神经网络中的“学习”是指通过调整_____来优化模型性能。
3、常见的神经网络架构有_____、_____等。
4、训练神经网络时,为了防止过拟合,可以采用_____、_____等方法。
5、深度学习是基于_____的一种机器学习方法。
6、神经网络中的损失函数用于衡量_____与_____之间的差异。
三、简答题(每题 10 分,共 20 分)1、请简要说明人工智能和机器学习的关系。
答:人工智能是一个广泛的概念,旨在让计算机能够像人类一样思考和行动,实现智能的表现。
机器学习则是实现人工智能的重要手段之一。
机器学习专注于让计算机通过数据和算法进行学习,自动发现数据中的模式和规律,从而能够对新的数据进行预测和决策。
机器学习为人工智能提供了技术支持,使计算机能够从大量数据中获取知识和技能,不断提升智能水平。
可以说机器学习是人工智能的核心组成部分,但人工智能不仅仅局限于机器学习,还包括其他技术和方法,如知识表示、推理、规划等。
2、简述神经网络中反向传播算法的原理。
一、名词解释(共5题,每题5分,共计25分)1、泛化能力答:泛化能力又称推广能力,是机器学习中衡量学习机性能好坏的一个重要指标。
泛化能力主要是指经过训练得到的学习机对未来新加入的样本(即测试样本)数据进行正确预测的能力。
2、有监督学习答:有监督学习又被称为有导师学习,这种学习方式需要外界存在一个“教师”,她可以对一组给定输入提供应有的输出结果,学习系统可根据已知输出与实际输出之间的差值来调节系统参数。
3、过学习答:过学习(over -fitting ),也叫过拟和。
在机器学习中,由于学习机器过于复杂,尽管保证了分类精度很高(经验风险很小),但由于VC 维太大,所以期望风险仍然很高。
也就是说在某些情况下,训练误差最小反而可能导致对测试样本的学习性能不佳,发生了这种情况我们称学习机(比如神经网络)发生了过学习问题。
典型的过学习是多层前向网络的BP 算法4、Hebb 学习规则答:如果两个神经元同时兴奋(即同时被激活),则它们之间的突触连接加强。
如果用i v 、j v 表示神经元i 和j 的激活值(输出),ij ϖ表示两个神经元之间的连接权,则Hebb 学习规则可以表示为:ij i j w v v α∆=,这里α表示学习速率。
Hebb 学习规则是人工神经网络学习的基本规则,几乎所有神经网络的学习规则都可以看作Hebb 学习规则的变形。
5、自学习、自组织与自适应性答:神经网络结构上的特征是处理单元的高度并行性与分布性,这种特征使神经网络在信息处理方面具有信息的分布存储与并行计算而且存储与处理一体化的特点。
而这些特点必然给神经网络带来较快的处理速度和较强的容错能力。
能力方面的特征是神经网络的自学习、自组织与自适应性。
自适应性是指一个系统能改变自身的性能以适应环境变化的能力,它包含自学习与自组织两层含义。
自学习是指当外界环境发生变化时,经过一段时间的训练或感知,神经网络能通过自动调整网络结构参数,使得对于给定输入能产生期望的输出。
1. 神经网络中的激活函数的主要作用是什么?A. 增加网络的复杂性B. 计算损失值C. 引入非线性特性D. 调整权重2. 在卷积神经网络(CNN)中,卷积层的主要功能是什么?A. 降低数据维度B. 提取图像特征C. 增加数据维度D. 计算梯度3. 反向传播算法在神经网络中的作用是什么?A. 初始化权重B. 计算前向传播C. 更新权重D. 选择激活函数4. 下列哪项不是神经网络的常见类型?A. 循环神经网络(RNN)B. 自组织映射(SOM)C. 决策树D. 长短期记忆网络(LSTM)5. 在神经网络训练过程中,什么是过拟合?A. 模型在训练数据上表现不佳B. 模型在测试数据上表现不佳C. 模型在训练数据上表现良好,但在测试数据上表现不佳D. 模型在训练和测试数据上都表现良好6. 下列哪项是防止神经网络过拟合的常用方法?A. 增加网络层数B. 减少训练数据C. 使用正则化D. 增加学习率7. 在神经网络中,什么是梯度消失问题?A. 梯度变得非常大B. 梯度变得非常小C. 梯度保持不变D. 梯度变为零8. 下列哪项是解决梯度消失问题的有效方法?A. 使用Sigmoid激活函数B. 使用ReLU激活函数C. 增加网络层数D. 减少训练数据9. 在神经网络中,什么是批量归一化(Batch Normalization)?A. 一种初始化权重的方法B. 一种正则化技术C. 一种加速训练过程的方法D. 一种计算损失的方法10. 下列哪项是神经网络中的损失函数?A. ReLUB. SigmoidC. Cross-EntropyD. Tanh11. 在神经网络中,什么是交叉熵损失函数?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种用于分类任务的损失函数D. 一种用于回归任务的损失函数12. 下列哪项是神经网络中的优化算法?A. K-meansB. AdamC. PCAD. SVM13. 在神经网络中,什么是Adam优化算法?A. 一种初始化权重的方法B. 一种计算梯度的方法C. 一种自适应学习率的优化算法D. 一种正则化技术14. 在神经网络中,什么是学习率?A. 网络层数B. 权重更新步长C. 激活函数D. 损失函数15. 下列哪项是调整学习率的有效方法?A. 增加网络层数B. 使用学习率衰减C. 减少训练数据D. 增加激活函数16. 在神经网络中,什么是Dropout?A. 一种初始化权重的方法B. 一种正则化技术C. 一种计算梯度的方法D. 一种激活函数17. 下列哪项是神经网络中的正则化技术?A. L1正则化B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数18. 在神经网络中,什么是L2正则化?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种正则化技术D. 一种激活函数19. 下列哪项是神经网络中的初始化方法?A. Xavier初始化B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数20. 在神经网络中,什么是Xavier初始化?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数21. 下列哪项是神经网络中的评估指标?A. 准确率B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数22. 在神经网络中,什么是准确率?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数23. 下列哪项是神经网络中的评估指标?A. 召回率B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数24. 在神经网络中,什么是召回率?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数25. 下列哪项是神经网络中的评估指标?A. F1分数B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数26. 在神经网络中,什么是F1分数?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数27. 下列哪项是神经网络中的评估指标?A. 精确率B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数28. 在神经网络中,什么是精确率?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数29. 下列哪项是神经网络中的评估指标?A. ROC曲线B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数30. 在神经网络中,什么是ROC曲线?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数31. 下列哪项是神经网络中的评估指标?A. AUCB. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数32. 在神经网络中,什么是AUC?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数33. 下列哪项是神经网络中的评估指标?A. 均方误差(MSE)B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数34. 在神经网络中,什么是均方误差(MSE)?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数35. 下列哪项是神经网络中的评估指标?A. 均方根误差(RMSE)B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数36. 在神经网络中,什么是均方根误差(RMSE)?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数37. 下列哪项是神经网络中的评估指标?A. 平均绝对误差(MAE)B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数38. 在神经网络中,什么是平均绝对误差(MAE)?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数39. 下列哪项是神经网络中的评估指标?A. 决定系数(R^2)B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数40. 在神经网络中,什么是决定系数(R^2)?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数41. 下列哪项是神经网络中的评估指标?A. 混淆矩阵B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数42. 在神经网络中,什么是混淆矩阵?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数43. 下列哪项是神经网络中的评估指标?A. 精确召回曲线B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数44. 在神经网络中,什么是精确召回曲线?A. 一种计算梯度的方法B. 一种评估模型性能的方法C. 一种初始化权重的方法D. 一种激活函数45. 下列哪项是神经网络中的评估指标?A. 准确率-召回率曲线B. Sigmoid激活函数C. ReLU激活函数D. Tanh激活函数答案1. C2. B3. C4. C5. C6. C7. B8. B9. C10. C11. C12. B13. C14. B15. B16. B17. A18. C19. A20. C21. A22. B23. A24. B25. A26. B27. A28. B29. A30. B31. A32. B33. A34. B35. A36. B37. A38. B39. A40. B41. A42. B43. A44. B45. A。
研究生神经网络试题A卷参考答案一、简答题1. 神经网络的基本原理是什么?神经网络是一种模仿人脑神经元网络结构和工作方式的计算模型。
它由大量的节点(神经元)和连接它们的边(突触)构成。
每个神经元接收多个输入信号,并通过激活函数进行处理后,将输出信号传递给其他神经元。
通过多层的神经元连接,神经网络能够对复杂的非线性问题进行建模和求解。
2. 神经网络训练的过程及原理是什么?神经网络的训练过程分为前向传播和反向传播两个阶段。
在前向传播过程中,将输入信号通过网络的各层神经元传递,并经过激活函数的作用,最终得到输出结果。
在反向传播过程中,通过与真实输出值的比较,计算网络输出的误差,然后将误差逆向传播回网络,根据误差进行权重和偏置的调整,以减小误差。
反复进行前向传播和反向传播的迭代训练,直到达到预定的训练精度或收敛条件。
3. 神经网络的主要应用领域有哪些?神经网络广泛应用于各个领域,包括图像识别、语音识别、自然语言处理、机器翻译、推荐系统等。
在图像识别领域,卷积神经网络(CNN)被广泛应用于图像分类、目标检测和图像分割等任务。
在自然语言处理领域,循环神经网络(RNN)和长短时记忆网络(LSTM)在语言模型、机器翻译和文本生成等方面表现出色。
此外,神经网络还可以用于金融预测、智能控制和模式识别等其他领域。
4. 神经网络中的激活函数有哪些常用的?它们的作用是什么?常用的激活函数包括sigmoid函数、ReLU函数和tanh函数。
它们的作用是在神经网络中引入非线性,增加网络的表达能力。
sigmoid函数将输入映射到0和1之间,主要用于二分类问题。
ReLU函数在输入大于0时返回该值,否则返回0,可以有效地缓解梯度消失问题,目前在深度学习中得到广泛应用。
tanh函数将输入映射到-1和1之间,具有对称性,使得网络的输出更加均匀。
5. 神经网络中的损失函数有哪些常用的?它们的作用是什么?常用的损失函数包括均方误差损失函数(MSE)、交叉熵损失函数和对数损失函数。
习题2.1什么是感知机?感知机的基本结构是什么样的?解答:感知机是Frank Rosenblatt在1957年就职于Cornell航空实验室时发明的一种人工神经网络。
它可以被视为一种最简单形式的前馈人工神经网络,是一种二元线性分类器。
感知机结构:2.2单层感知机与多层感知机之间的差异是什么?请举例说明。
解答:单层感知机与多层感知机的区别:1. 单层感知机只有输入层和输出层,多层感知机在输入与输出层之间还有若干隐藏层;2. 单层感知机只能解决线性可分问题,多层感知机还可以解决非线性可分问题。
2.3证明定理:样本集线性可分的充分必要条件是正实例点集所构成的凸壳与负实例点集构成的凸壳互不相交.解答:首先给出凸壳与线性可分的定义凸壳定义1:设集合S⊂R n,是由R n中的k个点所组成的集合,即S={x1,x2,⋯,x k}。
定义S的凸壳为conv(S)为:conv(S)={x=∑λi x iki=1|∑λi=1,λi≥0,i=1,2,⋯,k ki=1}线性可分定义2:给定一个数据集T={(x1,y1),(x2,y2),⋯,(x n,y n)}其中x i∈X=R n , y i∈Y={+1,−1} , i=1,2,⋯,n ,如果存在在某个超平面S:w∙x+b=0能够将数据集的正实例点和负实例点完全正确地划分到超平面的两侧,即对所有的正例点即y i=+1的实例i,有w∙x+b>0,对所有负实例点即y i=−1的实例i,有w∙x+b<0,则称数据集T为线性可分数据集;否则,称数据集T线性不可分。
必要性:线性可分→凸壳不相交设数据集T中的正例点集为S+,S+的凸壳为conv(S+),负实例点集为S−,S−的凸壳为conv(S−),若T是线性可分的,则存在一个超平面:w ∙x +b =0能够将S +和S −完全分离。
假设对于所有的正例点x i ,有:w ∙x i +b =εi易知εi >0,i =1,2,⋯,|S +|。
神经网络课程作业1.要求程序具有以下功能:能对6输入单节点网络进行训练;能选用不同的学习规则;能选用不同的转移函数;能选用不同的训练样本程序调试通过后,自己设计一组数据进行训练,训练时应给出每一步的净输入和权向量调整结果。
2.下面给出的训练集由玩具兔和玩具熊组成。
输入样本向量的第一个分量代表玩具的重量,第二分量代表玩具耳朵的长度,教师信号为-1表示玩具兔,教师信号为1表示玩具熊。
{X=[1,4],d=-1}, {X=[1,5],d=-1},{X=[2,4],d=-1}, {X=[2,5],d=-1},{X=[3,1],d=1}, {X=[3,2],d=1},{X=[4,1],d=1}, {X=[4,2],d=1}.1. 用MATLAB训练一个感知器,求解此分类问题。
2. 用输入样本对所训练的感知器进行验证。
3. 根据BP流程图上机编程实现三层前馈神经网络的BP学习算法。
要求程序具有以下功能:1. 允许选择各层节点数;2. 允许选用不同的学习率;3. 能对权值进行初始化,初始化用[-1,1]区间的随机数4.允许选用单极性或双极性两种不同Sigmoid型转移函数程序调试通过后,可用以下题目提供的数据进行训练。
设计一个神经网络对下面三类线性不可分模式进行分类。
期望输出向量分别用(1,-1,-1),(-1,1,-1),(-1,-1,1)代表三类,输入用下面9个样本坐标,要求:选择合适的隐节点数;用BP算法训练网络对下面9个样本进行正确分类第一类:(1/4,1/4)(3/4,1/8)(3/4,3/4)第二类:(1/2,1/8)(3/4,1/4)(3/4,1/4)第三类:(1/4,1/2)(1/2,1/2)(3/4,1/2)4.给定5个4维输入模式如下: (1,0,0,0),(1,1,0,0),(1,1,1,0),(0,1,0,0),(1,1,1,1)试设计一个具有5*5神经元平面阵的SOM网,建议学习率在前1000步训练中从0.5线性下降至0.04,然后在训练到10000步时减小至0.优胜领域半径初值设为2个节点(即优胜领域覆盖整个输出平面),1000个训练步时减至0(即只含获胜节点)。
1.非线性机器学习算法具有以下的什么特性?A.针对难以用准则来描述的复杂模型B.能够达到更深层次的抽象C.能够进行广泛使用的分类算法D.以上都是正确答案:D2.神经网络的学习步骤包括:1、求得权重等参数,2、定义代价函数,3、对测试数据进行预测,4、根据样本数据和标签采用梯度下降法进行学习,步骤的正确顺序为:A.4213B.2413C.2143D.4123正确答案:B二、判断题1.单层感知器能对线形可分的数据集进行分类,能解决逻辑问题异或。
正确答案:×2.前馈神经网络中偏置单元可以有输入。
正确答案:×3.在某种意思上,小批量梯度下降算法是以迭代次数换取算法的运行速度。
正确答案:√4.神经网络中的神经元有两个状态:兴奋、抑制。
这两个状态由阈值决定。
正确答案:√5.前馈式神经网络层间有反馈。
6.小批量梯度下降法在迭代的每一步中,参数的更新只用了小批量样本的信息。
正确答案:√7.小批量梯度下降法和随机梯度下降算法收敛可能需要更多的迭代次数正确答案:√三、多选题1.使用均方误差作为代价函数,有什么特点?( )A.形式简单B.通俗易懂C.容易出现饱和现象D.容易陷入局部最优解正确答案:A、B、C、D2.感知器可以解决一下哪些问题?( )A.实现逻辑关系中的与B.实现逻辑关系中的或C.实现逻辑关系中的非D.线性分类和线性回归问题正确答案:A、B、C、D3.神经网络具有下面哪几个特点?( )A.能充分逼近复杂的非线性关系B.具有高度的容错能力C.具有自组织能力D.可以并行分布处理正确答案:A、B、C、D4.以下会造成梯度消失的激活函数有( )。
A.sigmoid函数B.tanh函数C.ReLU函数D.softplus函数正确答案:A、B四、填空1.在()模型中,每个神经元同时将自身的输出作为输入信号反馈给其他神经元。
正确答案:反馈神经网络。
神经网络习题1.由单神经元构成的感知器网络,如下图所示:已知:x0 = 1 w0 = -1 w1= w2 = w3= w4 = 0.5假设:神经元的变换函数为符号函数:即:11y⎧=⎨-⎩ss≥<若该网络输入端有十种不同的输入模式:即: x1 x2 x3 x4 = 0 0 0 0 - 1 0 0 1 试分析该感知器网络对以上输入的分类结果。
2、对于图1所示的多层前馈神经网络,试利用BP算法训练该神经网络,使其能实现如下异或逻辑关系,即(0)(0)(2)x x x120 0 00 1 11 0 11 1 0 Array图1要求:(1)提交编写的程序;(2)对已训练的BP网络进行测试,并画出相应的学习曲线。
3、设有如下的二维非线性函数)cos()sin(),(2121x x x x f ππ=其中]1,1[1 x -∈,]1,1[2 x -∈。
试利用多层前馈神经网络实现该非线性映射。
建议按10.021==x x ∆∆的间隔均匀取点,利用上述解析式进行理论计算,将其结果用以构造输入输出训练样本集。
为了构造输入输出测试样本集,建议按12.021==x x ∆∆的均匀间隔进行采样。
要求:(1)提交编写的程序;(2)给出对网络进行测试后的精度分析结果,并画出相应的学习曲线;(3)分别画出按解析式计算的输出结果及已训练BP 神经网络输出结果的三维图形。
【附加总结类文档一篇,不需要的朋友可以下载后编辑删除,谢谢】2015年文化馆个人工作总结在XXXX年X月,本人从XXXX学院毕业,来到了实现我梦想的舞台--XX区文化馆工作。
在这里我用艰辛的努力,勤劳的付出,真诚而认真地工作态度认真的做好自身的每一项文化馆相关工作,取得了较为良好的工作业绩。
随着一场场活动的成功举办、一台台戏剧的成功出演,在这个带有着梦想和希望的舞台上,转眼之间我已在这里渡过了XX年的青春事业,我亦与舞台共同成长,逐步由一名青涩的毕业生,历练成为了今天的XXX。
人体神经系统的结构与功能例题和知识点总结在我们的身体中,神经系统就如同一个高效的指挥中心,掌控着我们的一举一动、感知和思维。
为了更深入地理解它,让我们通过一些例题和知识点的总结来一探究竟。
首先,来了解一下神经系统的基本结构。
神经系统主要由中枢神经系统和周围神经系统两大部分组成。
中枢神经系统包括脑和脊髓,这可是整个神经系统的“核心指挥部”。
脑又分为大脑、小脑、脑干等部分,每一部分都有着独特的功能。
大脑是我们思考、感知、记忆和决策的中心。
比如说,当我们看到一个美丽的风景,大脑负责处理视觉信息,并产生欣赏和愉悦的感受。
小脑则主要负责协调身体的运动和平衡。
想象一下骑自行车,小脑就在背后默默工作,让我们保持平衡,流畅地骑行。
脊髓就像一条信息高速公路,连接着大脑和身体的各个部分,传递着各种神经信号。
周围神经系统则像延伸出去的“触角”,包括脑神经和脊神经。
它们将中枢神经系统与身体的各个器官、组织和细胞连接起来,实现信息的传递和反馈。
接下来,通过几个例题来加深对神经系统结构的理解。
例题一:当我们不小心踩到尖锐的物体,脚部会迅速缩回。
请问这个反应过程中,神经信号是如何传递的?在这个例子中,脚部的感觉神经末梢感受到疼痛刺激,将信号通过传入神经传递到脊髓。
脊髓接收到信号后,迅速做出反应,通过传出神经将指令传递给脚部的肌肉,使其收缩,从而实现脚部的缩回动作。
这整个过程非常迅速,是一种本能的反射,不需要经过大脑的思考。
再看一个例题。
例题二:某人因为车祸导致脊髓受损,下肢失去知觉和运动能力。
请解释这一现象。
由于脊髓是连接大脑和身体下部的重要通道,当脊髓受损时,神经信号无法正常传递。
大脑发出的指令无法下达给下肢的肌肉和组织,同时下肢的感觉信息也无法上传到大脑,从而导致下肢失去知觉和运动能力。
了解了神经系统的结构,再来看看它的功能。
神经系统的主要功能包括感觉功能、运动功能、调节功能和认知功能。
感觉功能让我们能够感知外界的各种刺激,如视觉、听觉、触觉、味觉和嗅觉等。