材料屈服与强度理论
- 格式:ppt
- 大小:980.50 KB
- 文档页数:39
材料力学四大强度准则材料力学的强度准则就像是建筑的“生死簿”,这些准则告诉我们,啥时候材料能撑得住,啥时候就要“打退堂鼓”。
想象一下,你在盖房子,突然发现材料一旦承载超出它的能力,就像是给它施加了“过重的包袱”,结果可想而知,房子就得闹脾气了,哐当一声倒下去,那场面可真是心疼啊。
第一个强度准则,叫做“最大应力理论”。
这玩意儿就像个“保镖”,随时随地守护着材料。
它告诉你,材料能承受的最大拉力和压强就像你能吃的最大份儿的火锅,超出这个范围,那可真是撑不住的。
如果你拿着一根细细的铁丝,往上提,轻轻一扯就没事,但要是你使劲,嘿嘿,那可就“翻车”了。
材料承受的压力太大,结果就是“应力集中”,就像是给材料聚集了太多不必要的烦恼,最后它就会“罢工”。
然后说说“屈服强度理论”。
这个就有点像你在职场上遇到的那些无良老板,给你加班加点,结果你也会有一天受不了,直接“辞职”。
材料也是一样,屈服强度就像是一个材料的“底线”,当你施加的力量超过它的承受能力,它就会变形,哪怕不碎,也得“扭曲”一下。
这种变形可不是普通的捏捏,简直就是“折磨”,一旦开始变形,就像是你和老板之间的关系,再也回不去了。
接下来是“强度极限理论”,这玩意儿就像是赛车的极速表,告诉你材料的“极限”。
要知道,材料在承受极大的负载时,就会像是在冲刺,最后一旦达到极限,就会直接崩溃,发出“轰”的一声,简直就是“英雄惜英雄”,瞬间变成碎片。
这就让人想起那些极限运动,冲得太猛,最后摔得“头破血流”。
所以,在设计的时候,得留点余地,给自己留条后路,不然真是“骑虎难下”。
最后是“疲劳强度理论”,这就有点像是人长时间加班,精疲力尽的状态。
你知道吗,材料在长期的重复载荷下,可能会悄悄地“累坏”,没啥征兆,突然就“垮了”。
就像你熬夜,第二天起床时,感觉四肢无力,脑袋重得像块石头。
材料也是如此,经过无数次的“折腾”,最终在某个瞬间就会因为“疲劳”而失去耐力,轻松就折断。
这个理论提醒我们,在设计的时候,得考虑到材料的“心情”,不要一味追求极限,得给它“喘口气”的时间。
9 强度理论1、 脆性断裂和塑性屈服脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。
塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。
2、四种强度理论(1)最大拉应力理论(第一强度理论)材料发生脆性断裂的主要因素是最大拉应力达到极限值,即:01σσ= (2)最大伸长拉应变理论(第二强度理论):无论材料处于什么应力状态,只要发生脆性断裂,都是由于最大拉应变(线变形)达 到极限值导致的,即: 01εε=(3)最大切应力理论(第三强度理论)无论材料处于什么应力状态,只要发生屈服,都是由于最大切应力达到了某一极限 值,即: 0max ττ=(4)形状改变比能理论(第四强度理论)无论材料处于什么应力状态,只要发生屈服,都是由于单元体的最大形状改变比能达到一个极限值,即:u u 0dd =强度准则的统一形式 [] σσ≤*其相当应力: r11σ=σr2123()σ=σ-μσ+σ r313σ=σ-σ222r41223311()()()2⎡⎤σ=σ-σ+σ-σ+σ-σ⎣⎦ 3、摩尔强度理论的概念与应用; 4、双剪强度理论概念与应用。
9.1图9.1所示的两个单元体,已知正应力σ =165MPa ,切应力τ=110MPa 。
试求两个单元体的第三、第四强度理论表达式。
图9.1[解] (1)图9.1(a )所示单元体的为空间应力状态。
注意到外法线为y 及-y 的两个界面上没有切应力,因而y 方向是一个主方向,σ是主应力。
显然,主应力σ 对与y 轴平行的斜截面上的应力没有影响,因此在xoz 坐标平面内可以按照平面应力状态问题对待。
外法线为x 、z 轴两对平面上只有切应力τ,为纯剪切状态,可知其最大和最小正应力绝对值均为τ,则图9.1(a )所示单元体的三个主应力为:τστσσσ-===321、、,第三强度理论的相当应力为解题范例r4σ=()eq313165110275a σσσστ=-=+=+=MPa第四强度理论的相当应力为:()eq4a σ==252.0== MPa(2)图9.1(b)所示单元体,其主应力为第三强度理论的相当应力为:()eq31322055275b σσσ=-=+=MPa第四强度理论的相当应力为:()eq4a σ=252.0==MPa9.2一岩石试件的抗压强度为[]σ=14OMPa,E=55GPa, μ=0.25, 承受三向压缩。
材料力学四大强度理论材料力学是研究材料在外力作用下的力学性能和变形规律的学科,其中强度理论是材料力学中的重要内容之一。
材料的强度是指材料在外力作用下抵抗破坏的能力,而强度理论则是用来描述和预测材料在不同应力状态下的破坏规律和强度值的理论体系。
在材料力学中,有四大经典的强度理论,分别是极限强度理论、绝对最大剪应力理论、莫尔-库伊特理论和最大应变能理论。
首先,极限强度理论是最早被提出的强度理论之一,它是根据材料的屈服条件来描述材料的破坏规律。
极限强度理论认为材料在受到外力作用时,只要应力达到了材料的屈服强度,材料就会发生破坏。
这种理论简单直观,易于应用,但在实际工程中往往存在一定的局限性,因为它忽略了材料在屈服之前的变形过程。
其次,绝对最大剪应力理论是基于材料的最大剪应力来描述材料的破坏规律。
这种理论认为,材料在受到外力作用时,只要材料中的最大剪应力达到了材料的抗剪强度,材料就会发生破坏。
这种理论在一些特定情况下具有较好的适用性,但在一些复杂应力状态下往往难以准确描述材料的破坏规律。
接下来,莫尔-库伊特理论是基于材料的主应力来描述材料的破坏规律。
这种理论认为,材料在受到外力作用时,只要材料中的任意一个主应力达到了材料的抗拉强度或抗压强度,材料就会发生破坏。
莫尔-库伊特理论相对于前两种理论来说,更加全面和准确,因为它考虑了材料在不同应力状态下的破坏规律。
最后,最大应变能理论是基于材料的应变能来描述材料的破坏规律。
这种理论认为,材料在受到外力作用时,只要材料中的应变能达到了材料的抗拉强度或抗压强度,材料就会发生破坏。
最大应变能理论在描述材料的破坏规律时考虑了材料的变形能量,因此在一些复杂应力状态下具有较好的适用性。
综上所述,材料力学中的强度理论是描述和预测材料在外力作用下的破坏规律和强度值的重要理论体系。
四大强度理论分别是极限强度理论、绝对最大剪应力理论、莫尔-库伊特理论和最大应变能理论,它们各自具有一定的适用范围和局限性,工程应用中需要根据具体情况进行选择和应用。
屈服准则简要说明屈服准则是指在表面或内部应力作用下,物质开始发生变形或破坏的临界条件。
当物体受到外界力的作用时,会引起内部应力的产生,若这些应力超过了物体的屈服准则,就会导致物体的塑性变形或破坏。
屈服准则是材料力学中一个重要的概念,对于材料的设计和使用具有重要的意义。
在材料力学中,常用的屈服准则有两种,分别是塑性屈服准则和破坏屈服准则。
塑性屈服准则是指材料开始发生塑性变形的应力状态。
常用的塑性屈服准则有屈服强度理论和Tresca准则。
屈服强度理论a(YS)是指材料在受力过程中发生塑性变形的特征应力状态,是材料强度的一个重要参数。
它可以通过材料的抗拉强度或者屈服强度等进行表征。
塑性屈服准则是指当材料受力达到屈服强度时,就会发生可见的塑性变形。
Tresca准则是指当材料受力时,如果材料中任意剪切面上的最大剪应力达到屈服强度时,就会引起材料的塑性变形。
破坏屈服准则是指材料在受到极限载荷时发生破坏的应力状态。
常用的破坏屈服准则有最大剪应力理论、最大正应力理论和最大扭矩理论。
最大剪应力理论是指当材料中任何一个剪应力达到或超过破坏强度时,材料就会发生破坏。
最大正应力理论是指当材料中任何一个正应力达到或超过破坏强度时,材料就会发生破坏。
最大扭矩理论是指当材料中任何一个扭矩达到或超过破坏强度时,材料就会发生破坏。
不同的材料在不同的条件下可能采用不同的屈服准则。
例如对于金属材料来说,常用的屈服准则是屈服强度理论或Tresca准则。
而对于混凝土材料来说,常用的屈服准则是最大剪应力理论。
此外,不同的材料也可能根据具体情况选择不同的屈服准则,以满足特定的工程需求。
总的来说,屈服准则是材料力学的重要概念,用于描述材料的塑性变形和破坏行为。
掌握和了解不同材料的屈服准则对于材料的设计和使用至关重要,可以帮助我们选择合适的材料和确定合理的设计方案。
工程力学中四大强度理论的基本内容一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ] ,所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用(1)、第一理论的应用和局限应用:材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。
局限:没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。
(2)、第二理论的应用和局限应用:脆性材料的二向应力状态且压应力很大的情况。
几种屈服准则的差异性和适用性
屈服准则是衡量材料或结构出现变形或破坏的标准,是通过对结构的受力状态和破坏机制的分析,从而确定结构安全性的方法。
不同的屈服准则基于不同的假设和条件,因此在不同的应用环境下具有差异性和适用性。
以下是几种常见的屈服准则的差异性和适用性:
1.极限强度理论:极限强度理论认为,当材料或结构达到其最大强度时,即为屈服。
该理论假设材料的应变和应力之间存在线性的关系,并且强度在材料的全截面上都是均匀分布的。
这种屈服准则比较简单且易于计算,适用于强度均匀且线性的材料,如金属材料。
2.钢铁理论:钢铁理论是一种屈服准则,用于考虑材料的塑性变形。
该理论假设材料在达到屈服点时,继续加载会导致材料的塑性变形,直到出现破坏。
这种屈服准则适用于大多数金属材料,尤其是钢铁。
3.衰减理论:衰减理论是一种屈服准则,考虑了材料在长期加载下的疲劳破坏。
衰减理论假设材料的疲劳寿命是基于它的强度随时间的衰减。
这种屈服准则适用于需要经历长期加载的结构,如桥梁和飞机。
4.弹性准则:弹性准则是一种屈服准则,假设材料在达到其弹性极限时发生屈服。
这种准则适用于弹性材料,如橡胶和塑料。
弹性准则也可以用于计算结构在正常工作条件下的应力和变形。
不同的屈服准则具有不同的适用性,可根据具体的工程需求和材料特性选择。
需要考虑材料的强度、刚度、加载方式、应变速率等因素。
在实践中,通常会使用组合屈服准则,以综合考虑材料的多个方面和应对复杂加载条件。