第十章贯通测量方案选择与误差预计
- 格式:ppt
- 大小:3.62 MB
- 文档页数:69
西康铁路秦岭隧道(Ⅰ线)采用TBM施工。
隧道全长18.5 km,两端独头掘进距离长(近10 km),再加上TBM 一次成洞,对贯通精度要求比较高,给洞内控制测量带来了很大的困难。
本文介绍这项工程中控制测量实施方案。
一、控制测量设计众所周知,隧道贯通面上贯通误差的影响值,由洞外、洞内控制测量两部分组成。
由于洞外采用GPS 网作控制来保证洞外控制精度,因此本设计只对洞内控制测量进行设计。
为保证高精度贯通,本设计按总横向中误差150 mm(《铁路测量规则》规定为250 mm),高程中误差25 mm进行设计。
按《测规》规定的分配原则,分配给洞内横向中误差为120 mm,洞内高程中误差17 mm。
1. 平面(横向)测量设计由于Ⅰ线隧道采用TBM施工,其通视条件较好,为提高测量精度,导线边长尽量长,故本方案按边长为650 m的导线测量方案进行设计。
这时洞内横向贯通误差为:按上述布设方案,R x,dy计算如下:(1) 洞内∑R2x计算依据各导线点至贯通面的竖直距离计算的结果为∑R2x=900062125。
(2) 洞内∑dy2计算由于洞内导线沿隧道中线布设,隧道为直线隧道,则dy=0,即∑dy2=0。
(3) 洞内测角精度计算由于采用测距标称精度为±(2 mm+2×10-6D)的全站仪测距,洞内测边误差远小于1/100 000。
因为∑dy2=0,则m2yi=0,所以其中,mβ为洞内测角精度。
代入数据,得则mβ=±0.83″。
实际采用±0.7″,即洞内按一等导线要求和精度指标进行施测可满足在120 mm内贯通要求。
2. 高程测量设计洞内两开挖洞口间长度按19 km计,则高程控制测量的高差中数偶然中误差为:(三等水准限差)所以洞内高差控制测量按三等水准要求即可满足高程贯通中误差影响值为17 mm的要求。
从安全角度考虑,实际操作可按二等水准要求施测。
3. 贯通误差预计(1) 横向贯通误差预计由式当mβ=±0.7″,导线平均边长为650 m时,m y=±102 mm<120 mm(洞内分配值)。
贯通测量误差预计之浅见一、贯通测量误差预计的重要性在大型贯通规程中,测量工作起着至关重要的作用。
而贯通误差预计是检验测量方案是否可靠,能否实施的依据。
同时,只有通过贯通误差预计,才能制定出适合贯通工程的正确的测量方案。
二、贯通误差预计与测量设计对某矿14#层422盘区52207巷贯通测量进行《贯通测量误差预计与测量设计》。
预计贯通在K点处,南井与六风井之间直线距离约4㎞,地面导线长约5㎞,井下导线长约6㎞。
根据《规程》规定,结合工程需要,确定贯通相遇点K在水平方向上允许偏差不得超过0.5m。
由于沿同一煤层掘进,高程无偏差。
一)、贯通测量方案的选择本贯通测量仪器,地面、井下统一采用同一台DTM-532型全站仪。
1、地面控制测量本工程为两井间的井巷贯通工程,地面近井点以四个GPS测点:六风井近1、六风井近2、水池、北洋路西四个点为起始点建立平面控制系统,布成方向附合导线,用全站仪三架法进行施测,测后进行严密平差。
以求得六风井近1点、井口的坐标和六风井近1-六风井近2及井口点的方位角、水池点的坐标和水池-北洋路西的方位角,为起始数据,分别引测井下导线。
地面水平角施测按《国家三角测量和精密导线测量规范》有关四等精密导线测量的规定进行。
高程按《国家水准测量规范》有关四等水准测量的规定进行。
3、矿井联系测量及井下导线测量井口点起始,用全站仪经井筒导入坐标高程及施测井下导线,均按7″级导线施测,为了减小风流大的影响,采用三架法測至11#416-1辅巷开始埋设永久点,测永久点时,对准时除采取挡风措施外,采用重垂球,并注意提高对准精度。
测量时按《规程》要求,每测站两测回,同测回上、下半测回互差小于20″,测回间互差小于12″。
4、高程测量高程测量在测导线的同时,按四等水准测量的要求,进行三角高程测量。
垂直角观测符合测量限差要求,仪高和觇标高应用小钢卷尺在观测前后各量一次,两次丈量的互差不应大于4mm,取其平均值作为最终丈量值。
贯通测量方案的选择与误差预计毛亚春摘要:矿山测量属于该领域的一项十分关键的基础技术工作,但是,贯通项目的测量精度优劣在很大程度上决定着这一个项目能否准确贯通,贯通测量的方案设定和误差预计在施工中起指导作用,科学的指导和严谨的工作态度是贯通测量任务完成的保障。
本文进一步分析了贯通测量方案的选择与误差预计,以供同仁参考借鉴。
关键词:贯通测量;方案选择;误差预计一、贯通误差预计参数的类型贯通误差预计参数根据其各自情况不同主要划分为地面控制网误差预计参数、陀螺定向误差预计参数mT、立井导入高程误差预计参数mα、井下控制网误差预计参数。
地面控制网误差主要是由于地面已知控制点的坐标、方位角误差引起的,即边长误差mL上、角度误差mβ上及高程误差参数mH上。
井下控制网误差参数有测角误差参数mβ下、量边误差参数mL下及高程测量误差参数mH下。
测角误差有测量水平角误差和测量垂直角误差;量边误差有钢尺量边误差和光电测距仪量边误差;高程测量误差有水平测量误差和三角高程测量误差。
二、贯通误差来源两个或两个以上的掘进工作面在预定地点彼此接通的工程称为贯通。
贯通包括两个方向的误差: 贯通误差在贯通中线方向上的投影称为纵向误差,与之垂直的投影方向的误差称为横向误差。
在高程方向上的误差称为高程误差。
把纵向误差和横向误差的平方和几何平均值称为贯通点的点位误差。
由于导线测角和测边误差的累积,必然会使贯通点的设计位置与实际位置发生偏移,即产生点位误差。
贯通测量误差一般包括三个部分的误差,分别为地面控制部分误差,两井之间进行联系测量的误差和井下导线测量部分的误差。
地面控制部分误差和两井之间联系测量的误差可以采用不同的测量方法进行控制。
由于井下作业环境复杂,很难提高。
因此在进行贯通测量之前,必须对井下测量部分进行贯通测量的误差预计,来保证贯通工程的顺利进行。
本文在进行贯通点的误差预计时,分别推导了井下贯通点的横向误差和纵向误差计算公式,并讨论了在满足限差条件下如何使得贯通点的点位误差达到最小,根据推导结果采用条件平差的模型,在满足最小二乘条件的原则下,预计贯通点的点位误差。
隧道贯通测量误差预计方案隧道进出口、斜井间贯通时,除进行洞外导线和洞外高程测量之外,还必须进行隧道洞内和进出口、斜井间的联系测量。
所以在进行贯通测量误差预计时,要考虑隧道进出口、斜井间的联系测量误差及隧道洞内测量误差的综合影响。
(一)测量方案简述工程要求水平重要方向x’上的容许偏差为0.3m,竖直方向上的容许偏差为0.05m.(1) 隧道洞外进口、斜井按B级GPS网进行测量,测量时采用美国产天宝5800GPS观测2个时段,每个时段测量1.5小时。
(2)定向测量尤溪隧道进口、斜井各采用几何定向。
1、对中误差当定向边边长d=400m时,仪器及棱镜的对中误差为:E C=E T=±1”。
2、测线前后两测回的平均值误差M平=±1/√2=±0.71”.则M定=±√M EC2+M ET2+M平=±√12+12+0.712=±1.58”3、洞内导线测量进口从洞口起始边GCPI140-GCPI119边开始,沿大里程方向闭合到秀村斜井的CPI140-3~CPI140-4边。
测角、测边采用日本产SOKKIA SET230R全站仪,角度测9个测回:每边往、返各测3个测回,一测回内读数误差不大于5mm,单程测回间较差不大于10mm,往测及返测边长化算到隧道平均高程面上水平距离(经气象和倾斜改正)后的互差,不得大于边长1/6000。
所有闭(附)合导线和支导线均有不同观测者独立测量两次,取两次测量的角度及边长平均值,并进行严密平差计算。
4、隧道洞外水准测量进口与秀村之间的水准测量按照洞外二等水准要求实测,自进口洞外水准点GCPI140到秀村斜井洞口水准点BM60进行往返观测单程路线长度27KM,同时采用美国Trimble电子水准仪和日本产Sokkia电子水准仪实测。
5、洞内水准测量采用苏-光自动安平水准仪往返观测,往返高差的较差不大于±4√L(L 为水准点间的长度,以km 为单位)。
两井间巷道贯通测量设计及误差预计摘要:两个井筒之间的巷道贯通一般需要贯通测量距离长,受已有巷道坡度和角度限制,导线点不能均匀布置,导线边长一般较短,导线测站多,对贯通测量增加了难度。
为保证巷道能够准确贯通,在工程施工前要对贯通测量方案进行设计,依据设计的测量方法和各项精度要求进行误差预计计算,误差预计结果能满巷道贯通要求说明测量方案正确,否则需要重新设计。
关键词:两井;贯通;测量设计;误差预计一、概述铜川矿业公司玉华煤矿位于铜川市印台区,随矿井发展设计从地面开拓北风井与井下现有巷道定点贯通。
两井口间井下导线全长5300多米,地面控制距离近5600米,闭合长度10893米。
井下受巷道条件限制导线边长和角度不能均匀布置且观测条件差,所以施工前必须进行贯通设计和误差预计。
二、地面控制测量设计1.GPS平面控制根据付(斜)井和北风井两个井口附近的具体条件并兼顾今后测量工作,设计在付井附近布设六个近井点,北风井附近布设一组四个近井点,并与测区附近的三个国家控制点共同构网联测,采用GPS测量方案。
(1)已知点资料根据现有的“矿区控制点成果资料”,选取距测区10km以内的三个高等级控制点“葡萄寺”(Ⅱ等点)、“中石峁”(Ⅱ等点)及“草滩”(Ⅲ等点)作为GPS起算点。
(2)近井点布设首先布置与井下通视的井口永久点,其它点布设在稳定位置,要求最小基线长度不低于200m。
保证相邻两点之间相互通视,并尽可能使同组近井点之间都通视。
设计在两个井口共设置10个近井点,点位与编号见附图1。
(3)GPS网的精度设计根据《煤矿测量规程》确定近井点测量采用E级GPS网。
(4)GPS网的图形设计GPS网共有10个未知点(近井点)和3个已知点,其图形布设如附图1。
采用边连接方式,包括6个同步环。
最长基线边9238m,最短基线边300m。
总基线边36条,其中独立基线边18条,必要基线边12条,多余基线边6条。
表1E级GPS网测量精度与技术要求(5)GPS测量方法先对三个已知点进行GPS检测,在确认已知点进行GPS约束平差,然后再进行整体控制测量。
浅谈测量贯通的误差预计引言荆各庄矿业公司2390柱运料斜井是我矿东二采区的主要运输巷道;该巷道贯通后才能保证东二采区挖潜工作的正常进行,巷道导线长度在6000米以上,且在斜井中贯通。
为了确保贯通精度,我们精确分析该工程的误差预计和误差来源分析,改进测量方法来保证贯通工程质量。
1实施方案开工前用井下防爆全站仪测设全站导线。
全站仪可以满足《煤矿测量规程》中7″导线的技术要求。
在巷道测量中,测点位置必须选在顶板相对稳定的地方,为了提高精度,尽量加大导线边长,减少测站数。
同时为了减少误差以及考虑地球曲率等因素对导线边长造成的影响,导线的边长尽量控制在100米之内,以提高导线精度,尽最大限度减小测量误差。
透点位置及附近点的标高见草图:2误差预计按照《测量规程》要求采用测回法测设30″级采区控制导线,导线独立进行两次,按照规程限差进行往返测量。
要求贯通巷道水平重要方向上的允许偏差0.2m。
我们对该贯通工程进行了误差预计。
3误差分析3.1导线边长改正分析将导线边长投影到高斯—克吕格投影面上的改正,已知导线边的平均横坐标为=399千米。
上述计算表明:地球的曲率的影响对于导线边长而言,在井下贯通中可以忽略不计。
3.2导线高程改正分析由于不同的高程基准面对应不同的高程系统,在实际测量工作中,我们选择正高系统,根据井下测量数据知道导线边最长约100m,假设为MN,设地球在北纬39°41′的地球半径为r,B点在大地水准面上的投影为P,设NP长,MN 长为t,弧度MP长为S。
如下图所示:两点间投影的水平距离与在大地水准面上的弧长相差很小,a与b可以近似看为相等,同时NP比地球半径R小得可以忽略不计,所以上面又可以写作:NP = a*a /(2R)井下实测导线边最长距离为90m,得出:平均分配到每一个测站的误差为:0.453mm表明:地球的曲率的影响对于高差而言,在井下贯通中测量中可以忽略不计。
4采取的措施(1)为了保证测角和测距的精度,该工程使用的仪器重新进行各项技术检测,保证仪器的专检、专用。
xxx贯通测量设计及误差预计xxx综采工作面贯通测量设计及误差预计一、前言0541-1综采工作面是一矿1512综采工作面的接续采面,为了保证此项施工巷道快速、准确地完成,特进行贯通测量设计及误差预计。
二、施工巷道概况由于0541-1综采工作面的延长,测点增加,导线加长,导线由原来的2559米增加到现在的3739米,所以对原来的误差预计进行补充说明。
方位均为175°03′11″回风巷断面宽3.8m、高3.740m。
机巷断面宽4.7m、高3.3m,施工长度(1488.6米)2668.6m。
贯通精度:中线误差小于0.3m,腰线误差小于0.2m。
三、矿井测量概况预计2010年3月中旬实现贯通。
导线等级为7s级,共设测41站,导线全长3739米。
相对闭合差达到1/9000,测角中误差Mβ=6.71s,三角高程任意两点往返高差小于10+0.3L,闭合差不小于25√L,平差值为:导线量边偶然误差系数a平=0.0004865,b斜=0.000046;系统误差系数a平=0.000091,b斜=0.00065。
四、贯通测量方案设计1.布置方式此贯通属一井贯通,均由导线边A45-△起始,故布设为闭合导线,闭合导线自检能力强,受其它因素影响小。
2、布设精度(1)测角精度根据现状有两种方案:方案1——7s级经纬仪导线,方案2——15s级经纬仪导线。
首先考虑测角中误差导致最终贯通点重要方向误差: 7s级导线Mxβ=7/206265×3739=0.126m15s级导线Mxβ=15/206265×3739=0.272 m精度评定选择方案1——施测7s级导线。
(2)量边精度根据现状有两种方案:方案1——使用全站仪测距量边,方案2——使用钢尺量边。
精度预测:钢尺量边:ML=22a=0.000091, b=0.000486, L=90(平均)ML=0.0040全站仪测距:Δd=D往?D返≤2√2 mDmD为仪器的标称精度mD=(1+1ppm)可见前面两种方案均满足精度要求,但第1方案工作强度低,效率高,因此选择方案1——使用全站仪量边。
目录前言 (1)1 东庄矿区概况 (2)1.1 区域构造位置以及特征 (2)1.2 井田构造特征 (2)2 贯通测量概述 (3)2.1 贯通测量 (3)2.2 井巷贯通允许偏差和误差预计参数 (4)2.2.1 贯通允许偏差的确定 (4)2.2.2 贯通测量误差预计 (4)3 第一贯通方案 (8)3.1 贯通测量方法 (8)3.2 贯通误差预计 (11)3.3减小误差措施 (14)4 第二贯通方案 (15)4.1 贯通测量方法 (15)4.1.1 平面控制测量方案: (15)4.1.2 地下控制测量方案 (17)4.1.3 矿井联系测量方案 (17)4.1.4 地面及井下高程控制测量方案 (19)4.1.5 导入高程方案 (19)4.2 贯通误差预计 (19)4.2.1地面采用GPS布网时的贯通误差 (19)4.2.2地下控制方案 (20)5 最优方案的选择 (24)5.1 在平面控制方面 (24)5.2 在井下控制方面 (24)6 结论和建议 (26)致谢 (27)参考文献 (28)前言贯通测量,尤其是大型巷道贯通测量是矿山测量工作的一项重要工作,贯通工程质量的好坏,直接关系到整个矿井的建设、生产和经济效益,为了加快矿井的建设速度、缩短建井周期、保证正常的生产接替和提高矿井产量,经常采用多井口或多头掘进,这样就会出现两井间或井田的长距离巷道贯通测量,所以两井间贯通测量就成为了矿井生产中必不可少的一项工作。
近50年来,随着电子技术、计算机技术、光机技术和通讯技术的发展,测绘仪器制造也得到了长足进展,其高科技产品代表之一就是电子全站仪。
全站仪是当前比较流行,也比较实用的测绘仪器。
应用全站仪与传统的科技手段和地质勘探技术理论相结合,在矿山勘探、设计、开发和生产运营的各个阶段,对矿区地面和地下的空间、资源和环境信息进行采集、存储、处理、显示、利用,将极大地提高资源勘探的效率,降低成本,减少人力物力,使矿区开采更加有效地进行。
矿山测量学复习资料第一章井下平面控制测量1、井下平面控制测量的基本原则是什么?程序上“由整体到局部”,步骤上“先控制后碎部”,井下导线的布设,精度上按照“高级控制低级”的原则进行。
2、井下平面控制测量有何特点?由于受井下巷道条件的限制,井下平面控制均以导线的形式沿巷道布设,而不能像地面控制网那样可以有测角网、测边网、GPS网和交会法等多种可能方案。
3、简述井下平面控制测量的等级和布设要求等级要求:基本控制导线的主要技术指标井田一翼长度/km 测角中误差/”一般边长/m导线全长相对闭合差闭(附)合导线复测支导线≥5 7±60~200 1/8000 1/6000 <5 15±40~140 1/6000 1/4000采区控制导线的主要技术指标采区一翼长度/km 测角中误差/”一般边长/m导线全长相对闭合差闭(附)合导线复测支导线≥1 15±30~90 1/4000 1/3000<1 30±--- 1/3000 1/2000布设要求:井下平面控制分为基本控制和采区控制两类,这两类又都应敷设成闭(附)合导线或复测支导线。
基本控制导线按照测角精度分为±7″和±15″两级,一般从井底车场的起始边开始,沿矿井主要巷道(井底车场,水平大巷,集中上、下山等)敷设,通常每隔1.5~2.0 km应加测陀螺定向边,以提供检核和方位平差条件。
采区控制导线也按测角精度分为±15″和±30″两级,沿采区上、下山、中间巷道或片盘运输巷道以及其他次要巷道敷设。
4、井下经纬仪导线有哪几种类型?依导线的形状及与已知点边的连接方式分类:(1)闭合导线或导线网(2)空间交叉闭合导线(3)附合导线(4)复测支导线(5)方向附合导线依仪器分类:(1)经纬仪导线(钢尺量边)(2)陀螺光电导线(3)光电测距导线6、有一台没有镜上中心的仪器,如何标出其镜上中心?现在仪器上大致选一点A作为镜上中心,悬挂一垂球线,在其下方安置经纬仪,使望远镜水平,仪器精确整平对中,使暂定的镜上中心与垂球尖对准。
隧道贯通测量中的误差预计摘要:随着经济和科学技术的发展,对道路的建设的要求也越来越高。
长大隧道作为道路建设的控制性工程之一,其贯通的水平在很大程度上代表了我国隧道的技术发展水平,而且贯通测量是测量学科内一项最综合性的测量工作,非常值得探讨、研究,也是对测量理论和知识方面的一次全面性的训练和培养。
关键词:隧道贯通; 测量; 误差预计导言误差在任何工程建筑项目测量过程中是无法避免的,隧道误差也不例外。
在实际测量过程中,施工人员往往因为加快项目进度,缩短工程施工期限和改善隧道工作的环境,以隧道两端的开切口为施工起点,从隧道两端同时进行施工。
为了确保隧道在贯通方向与贯通点的误差符合规定要求,在实际施工中,隧道贯通测量的误差预计十分重要。
1 贯通测量误差预计技术简要概述贯通测量误差预计,指的是以早期明确的测量方案为基准,同时结合具体的测量技术,借助最小二乘准则及误差传播定量,进一步将贯通精度估算出来。
本文论述主要预计的是贯通实际偏差的最大误差,而非具体偏差值。
误差预计拥有概率方面的价值作用,其主要目的是使既定的测量方案更加完善,从而进一步选择更加合理、科学的策略,以此为全面掌握贯通过程奠定基础。
总而言之,由于贯通测量误差预计具备多方面的特点及优势,因此其可在隧道测量中推广及应用。
2误差预计的重要性施工中,隧道工程贯通相遇点(K点)在水平面内的左右偏差和竖直面内的上下的偏差是影响贯通质量的最重要的两个因素。
因测量中的误差是不可避免的,所以加强贯通测量误差控制是极其重要的工作。
误差预计工作是通过对贯通精度进行估算,达到优化测量方案,验证测量方法是否可靠,最终确定贯通测量组织设计书的目的。
3误差预计方法根据最终确定的测量方案及方法,根据最小二乘原理和误差传播定律,对贯通误差进行预计。
贯通测量的最大误差应在允许的范围内,过大的测量误差则会使测量严重失准,造成贯通效果差,严重的可以导致质量事故的发生,造成一系列经济损失;而测量精度过高则会使投资过大,造成不必要的资源浪费,因此,对贯通测量误差进行预计具有重要的意义。
第十章贯通测量方案的选择与误差预计第一节概述-X贯通测量设计书的编制贯通工程,尤其是重要的贯通工程,关系到整个矿井的设计、建设与生产,所以必须认真对待。
矿山测量人员应在重要贯通工程施测之前,编制好贯通测量设计书0特别重要的贯通测量设计书要报矿务局审批。
乍赃材是选择合理的测量方案和测量方法,以保证毎道正确贯通。
设计书可参照下列提纲编制:(1)井巷贯通工程概况.(2)贯通测量方案的选定。
地面控制测量,矿井联系;测量及井下控制测量.包括所用测量起始数据情况.:(3)贯通测量方法-包括采用的仪器、测量方法及其:限差•彳(4)贯通测量误差预计•J(5)贯通测量成本预计- )(6)贯通测量中存在的问题和采取的措施. }贯通测量误差预计,就是按照所选择的测量方案与测量方法,应用最小二乘准则及误差传播律,对贯通精度的一种估算。
它是预计贯通实际偏差最大可能出现的限度,而不是预计贯通实际偏差的大/ 小,因此,误差预计只有概率上的意义。
其目的是? 优化测量方案与选择适当的测量方法,做到对贯通心中有数。
在满足采矿生产要求的前提下,既不由于精度太低而造成工程的损失,影响正常安全生产,也不J 因盲目追求高精度而增加测量工作量。
1根据误差理论可知,服从正态分布的随机变量X落在p-/fa)区间内的概率为:P {M+/(a<X<M-/(a}=2q>(/f)=2式中M——正态随机变量的数学期望E(X)a—正态随机变量的方差D (X)k—正系数户取二倍中误差(方差),即k=2作为容许误差时, W 其出现的概率约为95.5%;当k=3时,其概率约为 99.7%0 k 值愈大,则其随机变量落在(P 土舫)区 间的概率愈大,在评定测量成果质量时,一般均取二 倍中误差作为容许误差,在预计误差,例如重要巷道 的贯通时,则取三倍中误差作为预计误差,这样的目 的。
主要是保证测量工作的质量能满足采矿工程的要 求(Hi二、选择贯通测量方案及误差预计的一般方法(-)了解情况,收集资料,初步确定贯通测就方案(1)了解有关贯通工程的设计、部署、工程限差要求和贯通相遇点的位置等皑况⑵检核设计部门提供的图纸资料(3) 收集与贯通测量有关的测量资料,抄录必要的测量起始数据,并确认其可靠性和精度(4) 绘制巷道贯通测量设计平(5) 拟定出可供选择的测量方案•二)為择合适的测量方法测量方案初步确定后,选用什么仪器和哪种测量方法,规定多大的限差,采取哪些检核措施,都要一一确定下来.这个选择是和误差预计相配合进行的,常常是有反复的过程。
煤矿贯通测量误差预计与分析摘要:矿井巷道贯通测量在国内矿井建设中起着非常关键的作用,它的首要任务就是保证矿井建设时井下巷道能够顺利与各个节点连通。
结合目前矿井建设项目的实际情况,对其施工过程中出现的问题进行了详细的探讨,并给出了相应的处理方法。
采用新的设备、新的工艺,减少了贯通误差和提高导线测量精度,确保巷道顺利贯通。
关键词:煤矿工程测量;贯通工程测量;误差贯通测量是矿井工程测量工作中的一项非常重要的工作,贯通工程的质量直接关系到整个矿井的建设、生产和经济效益,所以为了加快矿井的建设速度,缩短建井周期,确保正常的生产接替,并提高矿井的产量,经常需要对巷道进行贯通测量,所以,贯通测量成为矿井生产中不可缺少的一项工作。
煤矿企业为满足煤炭运输、供水、通风等要求,需在矿井内设置多个洞口,并对其施工工艺做了简单介绍。
1矿井巷道贯通测量中的一般技术措施在矿井井下巷道的穿透性测量中,对测量结果的准确性提出了更高的要求,从而对测量结果的偏差进行了有效的控制,保持了巷道贯通测量的准确度。
1.1巷道贯通测量勘查在巷道贯通测探中,测探是其实施和运用的先决条件,只有在确定了测探的具体内容之后,才能进行测探技术的设计。
由于地下通道受到通视条件、作业环境等多种因素的影响,因此,地下通道的测量和勘探工作重点放在了高程和方位上。
存在局部检测角度无法检测的情况,从而造成了方位与高程信息的传递存在一定的偏差,且随巷道持续开挖等环境因素的影响,这种偏差的传递也会逐渐增大,因此,需要在长距离巷道开挖时重新测量与定位,以避免在巷道贯通阶段发生台阶与穿袖现象。
比如,在一个矿井中,由于在7,000 m的巷道中,由于交叉作业的存在,测点受到了一定的影响,而且不能准确地确定测点位置,从而造成了较大的误差。
虽然通道已经被清理干净,但通过再次测量,再加上陀螺的位置,通道的方向还是出现了1′的偏差。
由于这条隧道是沿隧道底部进行的,没有发生明显的断层,因此,对隧道的顶板影响很小。
贯通测量方案及误差预计摘要:根据矿井发展规划,为解决163采区生产时的物料运输、进风、行人要求,需设计施工163采区轨道石门,为了缩短通风距离,加快巷道形成速度,使此条巷道早日投入使用,按照设计要求,采用贯通掘进的方法,为确保巷道按照设计要求贯通,方案要求贯通相遇点水平重要方向上的允许偏差值为0.1m,高程方向上的允许偏差值为0.1m。
关键词:测量方案误差预计巷道贯通导线测量结果分析根据矿井发展规划和生产接续计划,现在需要施工163采区轨道石门,163采区轨道石门是为了开采163采区时作为运料、进风、行人使用,为了缩短通风距离,加快巷道形成速度,使此条巷道早日投入使用,按照设计要求,采用贯通掘进的方法。
1 工程概况山东丰源远航煤业有限公司赵坡煤矿位于山东省滕州市级索镇,行政区划归级索镇管辖。
地理坐标为:东经:116°55′29″~116°58′24″,北纬:35°00′05″~35°02′50″。
自然边界东以张坡断层与17煤层露头相交点,西至41勘探线,南到17煤露头线,北以张坡断层为界。
地面标高+41.22~+48.02m,地形变化的总趋势是东北部较高而西南部较低。
主、副井井口标高+46.30m。
井田东部以6、7号2个拐点连线为界与武所屯生建煤矿相邻;西部以第27勘探线(由1、12号2个拐点控制)为界,与留庄煤业有限公司相邻;北部以AA'勘探线(由1-6号6个拐点控制)为界,与金达煤业有限责任公司相邻;南部以张坡正断层(由7-12号6个拐点控制)为界。
井田东西走向长4.4km,南北宽1.4km,井田面积6.1014km2。
矿井采用立井开拓,中央并列式通风,副井进风,主井回风。
煤层开采顺序先上后下,上下山开采。
上山采区区段前进式,下山采区区段后退式,后退式走向长壁采煤法。
163轨道石门全长505m巷道坡度3‰,巷道断面:3×3.2m巷道方位:68°,在施工过程中严格按照“煤矿三大规程”要求施工。