单源最短路径的Dijkstra算法
- 格式:doc
- 大小:181.00 KB
- 文档页数:9
最短路径—Dijkstra算法Dijkstra算法1.定义概览Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
注意该算法要求图中不存在负权边。
问题描述:在无向图G=(V,E) 中,假设每条边E[i] 的长度为w[i],找到由顶点V0 到其余各点的最短路径。
(单源最短路径)2.算法描述1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S 中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。
在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。
此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:a.初始时,S只包含源点,即S={v},v的距离为0。
U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
dijkstra例题详解Dijkstra算法是一种求解单源最短路径问题的贪心算法,它是由荷兰计算机科学家Edsger W. Dijkstra在1956年提出的。
Dijkstra算法可以解决有向有权图中单个源节点到其他所有节点的最短路径问题。
下面我们就来看一下Dijkstra算法的具体流程和实例。
一、Dijkstra算法的基本思想Dijkstra算法是一种基于贪心算法的思想,它采用了一种逐步逼近的方式来得到最短路径。
Dijkstra算法主要基于两个概念:1.已知最短路径节点集合S2.未知最短路径节点集合Q初始时,已知最短路径节点集合S为空,未知最短路径节点集合Q包含所有节点。
第一步,从未知最短路径节点集合Q中选取一个节点v,使得该节点到源节点的距离最短,并把这个节点加入到已知最短路径节点集合S中。
第二步,根据新加入的节点v,更新其他节点到源节点的距离。
如果节点w到源节点的距离通过v缩短了,那么就更新节点w的距离。
重复以上两个步骤,直到集合S包含所有节点。
二、Dijkstra算法的实现步骤具体实现Dijkstra算法的步骤如下:1.首先,初始化一个距离数组dis,保存源节点到每个节点的最短距离,初始化为INF(无穷大)。
2.初始化一个标记数组vis,保存每个节点是否已经走过,初始化为false。
3.设置源节点的距离为0,并将其放入优先队列中。
4.重复以下步骤,直到队列为空:从队列中取出距离源节点最近的节点u,将其标记为vis[u]=true。
遍历节点u的所有邻节点v,若vis[v]=false,则计算源节点到v的距离,并更新dis[v]。
将节点v放入优先队列中。
5.最终,dis数组中保存的就是源节点到每个节点的最短距离。
三、Dijkstra算法的例题详解现在我们来看一个Dijkstra算法的例题。
假设有一个无向有权图,图中有5个节点,给定起点s,节点之间的边和边权如下图所示。
给定起点s,求源节点s到每个节点的最短路径。
Dijkstra算法1. 引言Dijkstra算法是一种用于解决图中单源最短路径问题的经典算法。
由荷兰计算机科学家Edsger W. Dijkstra于1956年提出,被广泛应用于路由选择、网络优化等领域。
本文将介绍Dijkstra算法的基本原理、实现步骤以及应用场景。
2. 基本原理Dijkstra算法通过构建一个有向加权图来描述问题,其中每个节点表示一个地点,边表示两个地点之间的路径,边上的权重表示路径的长度或代价。
该算法通过不断更新起始节点到其他节点的最短路径长度和路径信息,逐步扩展搜索范围,直到找到起始节点到目标节点的最短路径。
3. 实现步骤Dijkstra算法的实现主要包括以下几个步骤:步骤1:初始化•创建一个集合S来存放已经找到最短路径的节点。
•创建一个数组dist[]来存放起始节点到其他节点的当前最短距离估计值。
•创建一个数组prev[]来存放起始节点到其他节点的当前最短路径上该节点的前驱节点。
•将起始节点加入集合S,并将dist[]数组初始化为正无穷大(除了起始节点的距离设为0)。
步骤2:更新最短路径信息•从集合S中选择一个距离起始节点最近的节点u。
•对于u的每个邻接节点v,如果通过u能够获得更短的路径长度,则更新dist[v]和prev[v]的值。
•将节点u从集合S中移除。
步骤3:重复步骤2直到找到目标节点或集合S为空•重复步骤2,直到目标节点被加入集合S或者集合S为空。
步骤4:构建最短路径•根据prev[]数组构建起始节点到目标节点的最短路径。
4. 应用场景Dijkstra算法在许多领域都有广泛应用,下面列举几个常见的应用场景:4.1 路由选择在计算机网络中,路由器需要根据网络拓扑和链路状态来选择最优路径进行数据包转发。
Dijkstra算法可以用于计算每个路由器到其他路由器之间的最短路径,以便做出最优路由选择。
4.2 网络优化在通信网络中,带宽限制、传输延迟等因素会影响网络性能。
单源最短路径dijkstra算法c语言单源最短路径问题是图论中的经典问题之一,指的是在图中给定一个起始节点,求出该节点到其余所有节点之间的最短路径的算法。
其中,Dijkstra 算法是一种常用且高效的解决方案,可以在有向图或无向图中找到起始节点到其余所有节点的最短路径。
本文将逐步介绍Dijkstra算法的思想、原理以及C语言实现。
一、Dijkstra算法的思想和原理Dijkstra算法的思想基于贪心算法,通过逐步扩展当前已知路径长度最短的节点来逐步构建最短路径。
算法维护一个集合S,初始时集合S只包含起始节点。
然后,选择起始节点到集合S之外的节点的路径中长度最小的节点加入到集合S中,并更新其他节点的路径长度。
具体来说,算法分为以下几个步骤:1. 初始化:设置起始节点的路径长度为0,其他节点的路径长度为无穷大。
2. 选择最小节点:从集合S之外的节点中选择当前路径长度最短的节点加入到集合S中。
3. 更新路径长度:对于新加入的节点,更新与其相邻节点的路径长度(即加入新节点后的路径长度可能更小)。
4. 重复步骤2和3,直到集合S包含所有节点。
二、Dijkstra算法的C语言实现下面我们将逐步讲解如何用C语言实现Dijkstra算法。
1. 数据结构准备首先,我们需要准备一些数据结构来表示图。
我们可以使用邻接矩阵或邻接表来表示图。
这里,我们选择使用邻接矩阵的方式来表示权重。
我们需要定义一个二维数组来表示图的边权重,以及一个一维数组来表示起始节点到各个节点的路径长度。
c#define MAX_NODES 100int graph[MAX_NODES][MAX_NODES];int dist[MAX_NODES];2. 初始化在使用Dijkstra算法之前,我们需要对数据进行初始化,包括路径长度、边权重等信息。
cvoid initialize(int start_node, int num_nodes) {for (int i = 0; i < num_nodes; i++) {dist[i] = INT_MAX; 将所有节点的路径长度初始化为无穷大}dist[start_node] = 0; 起始节点到自身的路径长度为0初始化边权重for (int i = 0; i < num_nodes; i++) {for (int j = 0; j < num_nodes; j++) {if (i == j) {graph[i][j] = 0; 自身到自身的边权重为0} else {graph[i][j] = INT_MAX; 其他边权重初始化为无穷大}}}}3. 主要算法接下来是Dijkstra算法的主要逻辑。
Dijkstra算法描述目录一、算法概述1二、算法原理及计算12.1算法原理12.2计算过程22.3改良的算法〔Dijkstra-like〕分析5三、源码分析6四、接口调用7一、算法概述Dijkstra〔迪杰斯特拉〕算法是典型的单源最短路径计算算法,用于解决源点到所有结点最短路径计算的问题,它采用了分治和贪心〔动态规划的特殊形式〕的思想搜索全局最优解。
本系统采用了主流、开源的JAVA图论库——Jgrapht来解决源点到终点间所有可能路径输出的问题,它的核心计算引擎采用了一种Dijkstra-like算法,由经典的Dijkstra〔迪杰斯特拉〕算法演化和改良而来。
二、算法原理及计算2.1算法原理Dijkstra算法思想为:设(,)= 是带权有向图,V代表图中顶点集合,E代G V E表图中含权重的边集合。
将全部顶点集合V分成两组,第一组为已求出最短路径的顶点集合,用S表示〔初始时S中只有一个源点,以后每求得一条最短路径,就将该路径的终点参加到集合S中〕;第二组为其余待确定最短路径的顶点集合,用U表示。
按最短路径长度的递增次序依次把U集合的顶点逐个参加到S集合中,约束条件是保持从源点v到S中各顶点的最短路径长度不大于从源点v到U 中任何顶点的最短路径长度。
算法的终止条件是集合U为空集,即集合U的顶点全部参加到集合S中。
2.2计算过程以图1为例讨论Dijkstra算法的计算过程,即计算某源点到网络上其余各结点的最短路径,设源点为①,逐步搜索,每次找出一个结点到源点①的最短路径,直至完成所有结点的计算。
图1 带权有向图记()D v为源点①到某终点v的距离,是源点①到终点v某条路径的所有链路长度之和。
记(,)l w v 是源点w到终点v的距离。
Dijkstra算法归纳如下:S=,U是其余未确〔1〕初始化,令S是已求出最短路径的顶点集合,{}U=,可写出:定最短路径的顶点集合,{}(1,)()l v D v ⎧=⎨∞⎩(1-1) 公式1-1中,(1,)l v 是源点①与终点v 的直连路径长度,而∞代表源点①与终点v 不相连,初始化结果如表1所示;〔2〕遍历集合U 中的所有结点v 并计算[]min (),()(,)D v D w l w v + 。
Dijkstra算法是一种用于解决图的单源最短路径问题的算法,由荷兰计算机科学家埃德斯格·迪克斯特拉提出。
该算法被广泛应用于网络路由算法、城市交通规划、通信网络等领域。
本文将从几个具体的案例出发,介绍Dijkstra最短路径算法的应用。
一、网络路由算法在现代计算机网络中,Dijkstra算法被应用于路由器之间的数据传输。
路由器之间通过Dijkstra算法计算出最短路径,以确保数据包能以最短的路径传输,从而提高网络的传输效率和稳定性。
假设有一个由多个路由器组成的网络,每个路由器之间存在多条连接线路,而每条线路都有一个权重值,代表数据传输的成本。
当一个路由器需要发送数据时,Dijkstra算法可以帮助它找到到达目的地最短且成本最小的路径。
这样,网络中的数据传输就能以最高效的方式进行,从而提升了整个网络的性能。
二、城市交通规划Dijkstra算法也被广泛应用于城市交通规划领域。
在城市交通规划中,人们通常需要找到最短路径以及最快到达目的地的方法,而Dijkstra算法正是能够满足这一需求的算法之一。
假设某城市有多条道路,每条道路都有不同的行驶时间。
当一个人需要从城市的某个地点出发到达另一个地点时,可以利用Dijkstra算法计算出最短行驶时间的路径。
这样,城市交通规划部门就可以根据这些信息对城市的交通流量进行合理分配和调度,提高城市交通的效率。
三、通信网络另一个Dijkstra算法的应用案例是在通信网络中。
通信网络通常是由多个节点和连接这些节点的线路组成的。
而节点之间的通信是通过传送数据包来实现的。
在这种情况下,Dijkstra算法可以帮助确定数据包传输的最短路径,以提高通信网络的效率和稳定性。
在一个由多个节点组成的通信网络中,当一个节点需要向另一个节点发送数据时,Dijkstra算法可以帮助确定最短路径,从而确保数据包能够以最短的路径传输到目的地。
这样一来,通信网络就能够更加稳定地进行数据传输,提高了通信网络的效率。
dijkstra最短路径算法详解
Dijkstra最短路径算法是一种常用的图算法,用于求解带权图中的单源最短路径问题,即从一个固定的源节点到图中的其他节点的最
短路径。
以下是详细的算法步骤:
1. 初始化
一开始,将源节点的距离设为0,其余节点的距离设置为正无穷,在未访问的节点集合中把源节点压入堆中。
2. 确定最短路径
从堆中取出未访问节点集合中距离源节点最近的节点v,标记其
为已访问。
之后,对于v的邻居节点w,计算从源节点到v再到w的距离,如果经过v的路径比已经计算得到的路径短,则更新路径。
更新
后的距离先暂时放入堆中,如果后边有更短的路径,则更新。
3. 重复第2步
重复第2步,直到取出的节点为终点节点,或者堆为空。
4. 算法结束
算法结束后,各节点的距离就是从源节点到它们的最短距离。
Dijkstra算法的复杂度是O(NlogN),其中N是节点个数。
其优
势在于只需要算一次即可得到所有最短路径,但是要求所有边的权值
必须非负,否则会导致算法不准确。
总之,Dijkstra算法是一种简单有效的最短路径算法,其实现也比较直观。
在处理如飞机和火车等交通路径规划问题中有较好的应用。
最短路径dijkstra算法总结最短路径Dijkstra算法是一种用于求解带权有向图的单源最短路径问题的经典算法。
该算法通过不断地选择具有最短距离的节点来逐步扩展最短路径树,最终得到从起点到所有其他节点的最短路径。
算法的基本思想是利用贪心策略,每次选择当前距离起点最近的节点进行扩展,并更新其他节点的距离。
具体实现上,可以使用一个距离数组来保存节点距离起点的最短路径长度,以及一个标记数组来记录已经确定最短路径的节点。
算法的核心是通过不断选择最短距离的节点进行松弛操作,更新距离数组中的值。
下面是一个简洁的伪代码描述Dijkstra算法的过程:```1. 初始化起点的距离为0,其他节点的距离为正无穷,标记数组初始化为空。
2. 设置起点为当前节点。
3. 循环直到所有节点的最短路径都已确定:4. 标记当前节点为已确定最短路径。
5. 遍历当前节点的所有邻接节点:6. 如果该邻接节点未被确定最短路径且经过当前节点的路径比其原本的最短路径更短,则更新距离数组中的值。
7. 输出最短路径数组。
```Dijkstra算法的时间复杂度取决于图的规模和边的数量。
具体而言,算法包含一个外循环和一个内循环。
外循环的次数等于节点的数量,内循环的次数等于边的数量。
因此,Dijkstra算法的时间复杂度为O(V^2+E),其中V为节点数量,E为边数量。
Dijkstra算法的应用非常广泛,特别是在路由选择和网络通信中。
除了上述基本的算法描述外,还有一些优化和扩展版本的Dijkstra算法,例如使用堆数据结构来实现优先级队列,以提高算法的效率;或者通过引入一个前驱数组来记录最短路径中的节点,以便还原整个最短路径。
参考内容:1. 《算法导论》,Thomas H.Cormen, Charles E.Leiserson, Ronald L.Rivest, Clifford Stein,机械工业出版社,2009年。
2. 《数据结构与算法分析——C语言描述》,Mark Allen Weiss,高等教育出版社,2009年。
图解迪杰斯特拉(Dijkstra)最短路径算法目录前言一、最短路径的概念及应用二、Dijkstra迪杰斯特拉1.什么是Dijkstra2.逻辑实现总结前言无论是什么程序都要和数据打交道,一个好的程序员会选择更优的数据结构来更好的解决问题,因此数据结构的重要性不言而喻。
数据结构的学习本质上是让我们能见到很多前辈在解决一些要求时间和空间的难点问题上设计出的一系列解决方法,我们可以在今后借鉴这些方法,也可以根据这些方法在遇到具体的新问题时提出自己的解决方法。
(所以各种定义等字眼就不用过度深究啦,每个人的表达方式不一样而已),在此以下的所有代码都是仅供参考,并不是唯一的答案,只要逻辑上能行的通,写出来的代码能达到相同的结果,并且在复杂度上差不多,就行了。
一、最短路径的概念及应用在介绍最短路径之前我们首先要明白两个概念:什么是源点,什么是终点?在一条路径中,起始的第一个节点叫做源点;终点:在一条路径中,最后一个的节点叫做终点;注意!源点和终点都只是相对于一条路径而言,每一条路径都会有相同或者不相同的源点和终点。
而最短路径这个词不用过多解释,就是其字面意思:在图中,对于非带权无向图而言,从源点到终点边最少的路径(也就是BFS广度优先的方法);而对于带权图而言,从源点到终点权值之和最少的路径叫最短路径;最短路径应用:道路规划;我们最关心的就是如何用代码去实现寻找最短路径,通过实现最短路径有两种算法:Dijkstra迪杰斯特拉算法和Floyd弗洛伊德算法,接下来我会详细讲解Dijkstra迪杰斯特拉算法;二、Dijkstra迪杰斯特拉1.什么是DijkstraDijkstra迪杰斯特拉是一种处理单源点的最短路径算法,就是说求从某一个节点到其他所有节点的最短路径就是Dijkstra;2.逻辑实现在Dijkstra中,我们需要引入一个辅助变量D(遇到解决不了的问题就加变量[_doge]),这个D我们把它设置为数组,数组里每一个数据表示当前所找到的从源点V开始到每一个节点Vi的最短路径长度,如果V到Vi有弧,那么就是每一个数据存储的就是弧的权值之和,否则就是无穷大;我们还需要两个数组P和Final,它们分别表示:源点到Vi的走过的路径向量,和当前已经求得的从源点到Vi的最短路径(也就是作为一个标记表示该节点已经加入到最短路径中了);那么对于如下这个带权无向图而言,我们应该如何去找到从V0到V8的最短路径呢;在上文中我们已经描述过了,在从V0到V8的这一条最短路径中,V0自然是源点,而V8自然是终点;于是我根据上文的描述具现化出如下的表格;在辅助向量D中,与源点V0有边的就填入边的权值,没边就是无穷大;构建了D、P和Final,那么我们要开始遍历V0,找V0的所有边中权值最短的的边,把它在D、P、Final中更新;具体是什么意识呢?在上述带权无向图中,我们可以得到与源点有关的边有(V0,V1)和(V0,V2),它们的权值分别是1和5,那么我们要找到的权值最短的的边,就是权值为1 的(V0,V1),所以把Final[1]置1,表示这个边已经加入到最短路径之中了;而原本从V0到V2的距离是5,现在找到了一条更短的从V0 -> V1 -> V2距离为4,所以D[2]更新为4,P[2]更新为1,表示源点到V2经过了V1的中转;继续遍历,找到从V0出发,路径最短并且final的值为0的节点。
Dijkstra算法求解过程简介Dijkstra算法是解决单源最短路径问题的经典算法之一,它通过贪心策略逐步确定从源点到其他所有节点的最短路径。
该算法的核心思想是利用优先队列,不断选择最短路径中还未确定最短路径的节点,直到找到源点到目标节点的最短路径。
算法思路1.创建一个优先队列Q,并初始化源点到所有其他节点的距离为无穷大(表示未确定最短路径)。
2.将源点到自身的距离设置为0,将源点加入优先队列Q。
3.从Q中选择距离最短的节点u,并标记节点u的最短路径为确定。
4.遍历节点u的所有邻接节点v,更新源点到v的距离,如果发现新的最短路径,则更新路径长度并将节点v加入优先队列Q。
5.重复步骤3和4,直到优先队列Q为空。
算法步骤详解初始化首先,我们需要创建一个优先队列Q,并初始化源点到所有其他节点的距离为无穷大。
同时,将源点到自身的距离设置为0,将源点加入优先队列Q。
选择最短路径节点从优先队列Q中选择距离最短的节点u,将其标记为最短路径已确定的节点。
更新最短路径遍历节点u的所有邻接节点v,计算从源点到节点v的距离。
如果发现新的最短路径,则更新节点v的路径长度,并将节点v加入优先队列Q。
重复步骤3和4重复进行步骤3和4,直到优先队列Q为空。
这样就能够找到源点到所有其他节点的最短路径。
算法实例下面通过一个具体的示例来演示Dijkstra算法的求解过程。
假设有如下图所示的带权有向图,我们需要求解从源点A到其他所有节点的最短路径:4A -------> B| /|\| / || 2 | \3| \/ \/| C---D| / || /1 |2| \/ |--->E------>F我们先初始化距离表,将源点A到所有其他节点的距离设置为无穷大,源点A到自身的距离设置为0:节点距离A 0——- —-B ∞——- —-C ∞——- —-D ∞——- —-E ∞——- —-F ∞接着,将源点A加入优先队列Q。
单源最短路径的Dijkstra算法:
问题描述:
给定一个带权有向图G=(V,E),其中每条边的权是非负实数。
另外,还给定V中的一个顶点,称为源。
现在要计算从源到所有其他各顶点的最短路长度。
这里路的长度是指路上各边权之和。
这个问题通常称为单源最短路径问题。
算法描述:
Dijkstra算法是解单源最短路径的一个贪心算法。
基本思想是:设置顶点集合S并不断地做贪心选择来扩充这个集合。
一个顶点属于S当且仅当从源到该顶点的最短路径长度已知。
初始时,S中仅含有源。
设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。
Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist做必要的修改。
一旦S包含了所有V中顶点,dist就记录了从源到所有其他顶点之间的最短路径长度。
源代码:
#include<iostream>
#define MAX 1000
#define LEN 100
int k=0, b[LEN];
using namespace std;
//-------------------------------------数据声明------------------------------------------------//c[i][j]表示边(i,j)的权
//dist[i]表示当前从源到顶点i的最短特殊路径长度
//prev[i]记录从源到顶点i的最短路径上的i的前一个顶点
//---------------------------------------------------------------------------------------------
void Dijkstra(int n, int v, int dist[], int prev[], int c[][LEN])
{
bool s[LEN]; // 判断是否已存入该点到S集合中
for (int i = 1; i <= n; i++)
{
dist[i] = c[v][i];
s[i] = false; //初始都未用过该点
if (dist[i] == MAX)
prev[i] = 0; //表示v到i前一顶点不存在
else
prev[i] = v;
}
dist[v] = 0;
s[v] = true;
for (int i = 1; i < n; i++)
{
int temp = MAX;
int u = v;
for (int j = 1; j <= n; j++)
if ((!s[j]) && (dist[j] < temp)) //j不在s中,v到j距离不在为无穷大
{
u = j; // u保存当前邻接点中距离最小的点的号码
temp = dist[j];
}
s[u] = true;
k++;
b[k] = u;
cout<<"----------------------------------------------------------"<<endl;
cout<<"迭代次数:"<<i<<endl;
cout<<"顶点为:";
cout<<v<<"\t";
for (int i = 1; i <= k; i++)
cout<<b[i] <<"\t";
cout<<endl;
for (int j = 1; j <= n; j++)
if ((!s[j]) && c[u][j] < MAX)
{
int newdist = dist[u] + c[u][j];
if (newdist < dist[j])
{
dist[j] = newdist; //更新dist
prev[j] = u; //记录前驱顶点
}
}
cout<<"单源路径分别为:"<<endl;
for (int i = 2; i <= n; i++)
if (dist[i] != MAX)
cout<<dist[i] <<" ";
cout<<endl;
}
cout<<"----------------------------------------------------------"<<endl; // for (int i = 1; i <= n; i++)
// t[i] = prev[i];
int p[LEN];
for (int i = 2; i <= n; i++)
{
cout<<"dist["<<i<<"]="<<dist[i] <<" ";
cout<<"路径为:"<<v<<"\t";
/*while (t[i] != v)
{
cout << t[i] << "\t";
t[i] = prev[t[i]];
}*/
int m = prev[i];
int k=0;
while (m != v)
{
k++;
p[k] = m;
m = prev[m];
}
for (int x = k; x >= 1; x--)
cout<<p[x] <<"\t";
cout<<i;
cout<<endl;
}
}
int main()
{
int i, j,k, m,n, v=1;
int dist[LEN], prev[LEN], c[LEN][LEN];
cout<<"请输入顶点个数:"<<endl;
cin>>n;
cout<<"请输入边的个数:"<<endl;
cin>>m;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
{
if (i == j)
c[i][j] = 0;
else
c[i][j] = MAX;
}
cout<<"请输入每条边的权_格式为:i j 权"<<endl;
for (k = 1; k <= m; k++)
{
cin>>i;
cin>>j;
cin>>c[i][j];
}
Dijkstra(n, v, dist, prev, c);
cout<<"----------------------------------------------------------"<<endl;
system("pause");
return 0;
}
实验结果:。