材料固态相变与扩散 第4章_扩散性相变
- 格式:ppt
- 大小:1.74 MB
- 文档页数:54
材料物理思考题2011第二章材料的晶态结构1、重要名词:晶体:内部质点在三维空间呈周期性重复排列的固体。
非晶态:熔体、液体和不具有晶体结构的物质准晶体:具有准周期性(周期对称性),长程无序的亚稳态,不具有固定熔点的固体物质点阵(晶格):阵点(将构成晶体的质点抽象成纯粹的几何点)在空间呈周期性规则排列,并具有等同的周围环境的模型为点阵。
作许多平行的直线把阵点连接起来,构成一个三维的几何构架称为晶格。
晶胞:在空间点阵中,能代表空间点阵结构特点的小平行六面体;整个空间可由晶胞作三维重复堆砌而构成同素异构现象:固态金属在不同温度和压力下具有不同的晶体结构即具有多晶型性,转变的产物称为同素异构体。
合金:是指由两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质固溶体:是以某一组元作为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所组成的均匀混合的固态熔体,他保持着溶剂的晶体结构类型。
间隙式固溶体:溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体。
置换式固溶体:溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子这种固溶体称为置换式固溶体。
中间相:合金组元相互作用形成的晶格类型和特性完全不同于任意组元的新相即为金属化合物,或称中间相。
间隙相和间隙化合物:由过渡族金属元素与碳、氮、氢、硼等原子半径较小的非金属元素形成的化合物为间隙化合物。
超结构(超点阵,有序固溶体):有序固溶体结构的通称陶瓷:无机非金属材料统称为陶瓷。
特种陶瓷:由人工合成原料制成的新型陶瓷材料,如:Al2O3,Si3N4,SiC,BN等。
硅氧四面体:(1)每个Si4+存在于4个O2-为顶点的四面体中心,构成硅氧四面体,它是硅酸盐晶体结构的基础。
(2)[SiO4]四面体的每个顶点,即O2-最多只能为两个[SiO4]所共用。
(3)两个邻近的[SiO4]四面体之间,只能以共顶而不以共棱或共面相联接。
扩散型相变和无扩散型相变名词解释相变是物质在一定条件下从一种状态转变为另一种状态的过程。
在相变中,物质的性质和结构都会发生改变,因此相变是物质研究中的重要课题之一。
相变可以分为很多种类,其中扩散型相变和无扩散型相变是两种常见的相变类型。
扩散型相变是指物质在相变过程中需要通过扩散来完成。
扩散是指物质中的分子或离子在空间中的自由移动。
在扩散型相变中,物质的分子或离子需要通过扩散来完成相变过程。
扩散型相变的典型例子是固态金属的熔化。
在金属熔化的过程中,金属中的原子需要通过扩散来完成熔化过程。
此外,固态晶体的溶解、气体的液化和固态晶体的晶化等过程也属于扩散型相变。
无扩散型相变是指物质在相变过程中不需要通过扩散来完成。
在无扩散型相变中,物质的分子或离子不需要通过扩散来完成相变过程。
无扩散型相变的典型例子是液态水的沸腾。
在水的沸腾过程中,水分子不需要通过扩散来完成沸腾过程。
此外,气体的升华、液态晶体的相变和超导材料的相变等过程也属于无扩散型相变。
扩散型相变和无扩散型相变的区别在于相变过程中是否需要通过扩散来完成。
扩散型相变需要通过扩散来完成,而无扩散型相变不需要通过扩散来完成。
此外,扩散型相变和无扩散型相变的物理机制也不同。
扩散型相变的物理机制是分子或离子的扩散,而无扩散型相变的物理机制则是其他因素的影响,如温度、压力等。
总之,扩散型相变和无扩散型相变是物质相变中的两种常见类型。
它们的区别在于相变过程中是否需要通过扩散来完成。
了解这两种相变类型的特点和物理机制,有助于我们更好地理解物质的性质和结构,为物质研究提供更加深入的认识。
扩散与固态相变在超细硬质合金固相烧结过程中的应用超细硬质合金具有高硬度和高强度是硬质合金的重要发展方向,进入20世纪 90年代以来,围绕如何细化晶粒,制取亚微﹑超细乃至纳米结构硬质合金的研究开发和生产,已经成为超细硬质合金技术领域的一大热点[1-2]。
由于市场需求的快速增长,超细晶硬质合金产量每年都在以两位数的速度增长,特别是在电子行业,全球 PCB 市场最近几年的增长率均超过9%,2007年超过440亿美元,中国超过 100亿美元,2009年全球电路板总产值超过500 亿美元.中国占到总产值的三分之一,并且还将持续发展,总产值将超过日本,位居世界第一[3-4]。
从而促进了PCB刀具的快速增长。
超细硬质合金中晶粒的非均匀长大这一现象自超细硬质合金问世以来就引起了生产者和研究者的密切关注,也是影响合金质量的一个重要方面,区别于晶粒连续均匀长大,非均匀长大是指局部的个别晶粒异常长大,其表现为某单个晶粒尺寸远大于周围晶粒的平均晶粒度[5-6]。
研究者普遍认为粗大晶粒和晶粒聚集导致在外力的作用下成为断裂的源头,使合金强度和耐磨性及其它相关性能降低[]。
由于超细硬质合金中粗大晶粒大都是在烧结过程中形成的,在众多的国内外文献中,对超细硬质合金的生长机理以及相变进行了详细的研究,但主要集中在液相烧结,本文将探讨扩散与固态相变中在几种超细硬质合金烧结过程中的应用,主要集中在烧结过程中晶粒非均匀长大机理。
1 超细硬质合金烧结过程中扩散-溶解-析出细硬质合金中 WC活性大,在固相烧结时WC向钴相进行扩散-溶解并析出而长大。
1.1烧结过程中WC晶粒形貌的演变以08型WC与Co制成wc-10%co试样条,脱蜡后分别1200.1250.1300.1 350℃进行烧结并分别保温1h和5 h.采用扫描电镜观察烧结过程中WC晶粒形貌的变化,采用差热分析仪研究WC-10%Co[10]。
为说明WC在烧结过程中的长大情况,此处引入参考文献[10]中的实验照片,列举在对在不同烧结温度及保温时间样品的WC晶粒的组织结构进行保温1h和5h时的照片加以详细说明:图1 对烧结的完成的试样PS条脱蜡后的形貌图 2 1200℃烧结后的形貌(a)1h (b)2h图3 1350℃烧结后的形貌(a)1h (b)2h[1] 李沐山,20世纪90年代世界硬质合金材料技术进展[M], 株洲:《硬质合金》编辑部,2004:3-125[2] Lei Yiwen. Effects of grain growth inhibitor on properties of ultrafinccmented carbidcf[D]. Changsha: Central South University, 2003: 40-48[3] 颜练武.纳米V8C7,结构性能与应用研究[D].长沙:中南大学2008:2-30.[4] Yamamotoa T,Ikuharaa Y, Sakumab T. High resolution transmissionelectron microscopy study in VC-doped WC-Co compound[J]. Scienceand Technology of Advanced Materials, 2000, 1(2): 97-104.[5] Sommer M, Schuhert WD, Zohctz E,et al. On the formation of very large WC crystals during sintering of ultra-fine WC-Co alloys[J]. Int JRefract Met Hard Mater. 2002.20(1): 41-45.[6] Mannesson Karin, Elfwing Manias, Kusoffsky Alexandra,et al.Analysis of WC grain growth during sintering using electron backscatter diffraction and image analysis [J]. Int J Refract Met Hard Mater, 2008,26(5): 449-455.[7] 颜练武.超细硬质合金中粗晶形成机理研究[D].北京:北京科技大学.2011 .[8] 颜练武,谢晨辉,王燕斌.硬质合金中异常长大晶粒生长力向的EBSD研究[J] .硬质合金,2010,27( 5):259-262.[9] 杜伟,聂洪波,吴冲浒.烧结工艺对低Co超细硬质合金性能的影响[J].粉末冶金材料科学与工程,2010,15( 6):650-655.[10] 毛善文,超细硬质合金烧结过程中扩散-溶解-析出特征与研究[J].硬质合金,2014,31(2):68-71。