江苏省无锡外国语学校 2019—2020 学年度第一学期期末考试 九年级数学试题
- 格式:pdf
- 大小:615.94 KB
- 文档页数:8
2019-2020学年度第一学期九年级期末测试数学试题一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程(1)(2)0x x --=的解是( )A. 1x =B. 2x =C. 1x =或2x =D. 1x =-或2x =- 【答案】C【解析】【分析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案.【详解】解:∵(1)(2)0x x --=,∴x -1=0或x -2=0,解得:1x =或2x =.故选:C.【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键. 2.若25x y =,则x y y +的值为( ) A. 25 B. 72 C. 57 D. 75【答案】D【解析】分析】由已知可得x 与y 的关系,然后代入所求式子计算即可. 【详解】解:∵25x y =, ∴25x y =, ∴2755y y x y y y ++==.故选:D.【点睛】本题考查了比例的性质,属于基础题型,熟练掌握比例的性质是解题关键.3.若直线l 与半径为5的O e 相离,则圆心O 与直线l 的距离d 为( )A. 5d <B. 5d >C. 5d =D. 5d ≤ 【答案】B【解析】【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【详解】解:∵直线l 与半径为5的O e 相离,∴圆心O 与直线l 的距离d 满足:5d >.故选:B.【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.4.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( )A. B. C. 13 D. 【答案】A【解析】【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可.【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB =∴sinBC A AB ===. 故选:A.【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键.5.若将二次函数2y x =的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A. 2(2)2y x =++B. 2(2)2y x =--C. 2(2)2y x =+-D. 2(2)2y x =-+【答案】C【解析】【分析】 根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将2y x =的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:2(2)2y x =+-.故选:C.【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键. 6.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A. 265cm πB. 290cm πC. 2130cm πD. 2155cm π【答案】B【解析】【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=. 故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键. 7.国庆期间电影《我和我的祖国》第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把增长率记作x ,则方程可以列为( )A. 3(1)10x +=B. 23(1)10x +=C. 233(1)10x ++=D. 233(1)3(1)10x x ++++= 【答案】D【解析】【分析】用含x 的代数式表示出第二天和第三天的票房收入,三天的票房收入再相加即得答案.【详解】解:设平均每天票房收入的增长率记作x ,则233(1)3(1)10x x ++++=.故选:D.【点睛】本题考查的是一元二次方程的应用之增长降低率问题,一般的,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为:()21a x b ±=.8.如图,已知正五边形ABCDE 内接于O e ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A. 60︒B. 70︒C. 72︒D. 90︒【答案】C【解析】【分析】 连接OA 、OB 、OC 、OD 、OE ,如图,则由正多边形性质易求得∠COD 和∠BOE 的度数,然后根据圆周角定理可得∠DBC 和∠BCF 的度数,再根据三角形的内角和定理求解即可.【详解】解:连接OA 、OB 、OC 、OD 、OE ,如图,则∠COD =∠AOB =∠AOE =360725︒=︒, ∴∠BOE =144°, ∴1362DBC COD ∠=∠=︒,1722BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒.故选:C.【点睛】本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.的9.对于二次函数2610y x x =-+,下列说法不正确的是( )A. 其图象的对称轴为过(3,1)且平行于y 轴的直线.B. 其最小值为1.C. 其图象与x 轴没有交点.D. 当3x <时,y 随x 的增大而增大.【答案】D【解析】【分析】先将二次函数变形为顶点式,然后可根据二次函数性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1); A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键. 10.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A.B. 1C.1D. 【答案】B【解析】【分析】 的设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得2EF CF BE AB ==,于是设EF ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案.【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,∴△CEF ∽△AEB ,设AB =2,∵∠ADB =30°,∴BD =∵∠BDC =∠CBD =45°,CF ⊥BD ,∴CF=DF=BF =12BD∴EF CF BE AB ==,设EF ,则2BE x =,∴(2BF CF DF x ===+,∴(2CD x x ===,((22DE DF EF x x =+==+,∴(222EG DG DE x x ===+=,∴(CG CD DG x x =-=-=,∴tan 1x EG ACD CG∠==.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.二、填空题(本大题共8小题,每小题2分,满分16分,将答案填在答题纸上)11.若1x =为一元二次方程210x mx ++=的一个根,则m =__________.【答案】-2【解析】【分析】把x =1代入已知方程可得关于m 的方程,解方程即可求得答案.【详解】解:∵1x =为一元二次方程210x mx ++=的一个根,∴110m ++=,解得:m =-2.故答案为:-2.【点睛】本题考查了一元二次方程的解的定义,属于应知应会题型,熟练掌握一元二次方程的解的概念是解题关键.12.若有一组数据为8、4、5、2、1,则这组数据的中位数为__________.【答案】4【解析】【分析】根据中位数的定义求解即可.【详解】解:将数据8、4、5、2、1按从小到大的顺序排列为:1、2、4、5、8,所以这组数据的中位数为4.故答案为:4.【点睛】本题考查了中位数的定义,属于基本题型,解题的关键是熟知中位数的概念.13.若关于x 的一元二次方程x 2﹣4x +m =0没有实数根,则m 的取值范围是_____.【答案】m >4【解析】【分析】根据根的判别式即可求出答案.【详解】解:由题意可知:△<0,∴()2=441640m m ∆--=<﹣, ∴m >4故答案为m >4【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式.14.如图,在ABCD Y 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.【答案】6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△F AG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△F AG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭,∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.15.如图,ABC ∆是O e 的内接三角形,45BAC ∠=︒,»BC 的长是54π,则O e 的半径是__________.【答案】52【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵45BAC ∠=︒,∴∠BOC =90°,∵»BC 的长是54π, ∴9051804OB ππ⋅=, 解得:52OB =. 故答案为:52.【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键.16.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.【答案】(4,4)【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵0a b c -+=,930a b c ++=,∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,∴抛物线的对称轴是直线:x =1,∴点(2,4)-关于直线x =1对称的点为:(4,4).故答案为:(4,4).【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.17.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.【解析】【分析】如图所示,由网格的特点易得△CEF ≌△DBF ,从而可得BF 的长,易证△BOF ∽△AOD ,从而可得AO 与AB 的关系,然后根据勾股定理可求出AB 的长,进而可得答案.【详解】解:如图所示,∵∠CEB =∠DBF =90°,∠CFE =∠DFB ,CE=DB =1,∴△CEF ≌△DBF ,∴BF =EF =12BE =12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵AB=∴9AO=故答案为:9【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.18.如图,已知二次函数3(1)(4)4y x x=-+-的图象与x轴交于,A B两点(点A在点B的左侧),与y轴交于点,C P为该二次函数在第一象限内的一点,连接AP,交BC于点K,则PKAK的最大值为__________.【答案】4 5【解析】【分析】由抛物线的解析式易求出点A、B、C的坐标,然后利用待定系数法求出直线BC的解析式,过点P作PQ∥x轴交直线BC于点Q,则△PQK∽△ABK,可得PK PQAK AB=,而AB易求,这样将求PKAK的最大值转化为求PQ的最大值,可设点P的横坐标为m,注意到P、Q的纵坐标相等,则可用含m的代数式表示出点Q的横坐标,于是PQ可用含m的代数式表示,然后利用二次函数的性质即可求解.【详解】解:对二次函数2339(1)(4)3444y x x x x =-+-=-++, 令x =0,则y =3,令y =0,则3(1)(4)04x x -+-=, 解得:121,4x x =-=,∴C (0,3),A (-1,0),B (4,0),设直线BC 的解析式为:y kx b =+,把B 、C 两点代入得:340b k b =⎧⎨+=⎩, 解得:343k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为:334y x =-+, 过点P 作PQ ∥x 轴交直线BC 于点Q ,如图,则△PQK ∽△ABK , ∴PK PQ AK AB=, 设P (m ,239344m m -++), ∵P 、Q 的纵坐标相等, ∴当239344y m m =-++时,233933444x m m -+=-++, 解得:23x m m =-,∴()2234PQ m m m m m =--=-+,又∵AB =5, ∴()224142555PK m m m AK -+==--+. ∴当m =2时,PK AK 的最大值为45. 故答案为:45.【点睛】本题考查了二次函数与坐标轴的交点、二次函数的性质和二次函数图象上点的坐标特征、待定系数法求函数的解析式、相似三角形的判定和性质等知识,难度较大,属于填空题中的压轴题,解题的关键是利用相似三角形的判定和性质将所求PK AK的最大值转化为求PQ 的最大值、熟练掌握二次函数的性质. 三、解答题:本大题共10小题,共84分.解答应写出文字说明、证明过程或演算步骤.19.(10(2020)2tan 60π--︒(2)解方程:2210x x --=【答案】(1)1;(2)1211x x ==【解析】【分析】(1)原式分别根据二次根式的性质、0指数幂的运算法则和特殊角的三角函数值计算各项,再合并即可; (2)利用配方法求解即可.【详解】解:(1)原式1=-1=;(2)原方程可变形为:2212x x -+=,即()212x -=,∴1x -=∴1211x x ==.【点睛】本题考查了二次根式的性质、0指数幂的运算法则和特殊角的三角函数值以及一元二次方程的解法等知识,属于基本题型,熟练掌握上述基本知识是解题关键.20.如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为点(1,0)A 、(3,0)B 、(0,1)C .(1)ABC ∆的外接圆圆心M 的坐标为 .(2)①以点M 为位似中心,在网格区域内画出DEF ∆,使得DEF ∆与ABC ∆位似,且点D 与点A 对应,位似比为2:1,②点D 坐标为 .(3)DEF ∆的面积为 个平方单位.【答案】(1)(2,2);(2)①见解析;②(4,6);(3)4【解析】【分析】(1)由于三角形的外心是三边垂直平分线的交点,故只要利用网格特点作出AB与AC的垂直平分线,其交点即为圆心M;(2)根据位似图形的性质画图即可;由位似图形的性质即可求得点D坐标;(3)利用(2)题的图形,根据三角形的面积公式求解即可.【详解】解:(1)如图1,点M是AB与AC的垂直平分线的交点,即为△ABC的外接圆圆心,其坐标是(2,2);故答案为:(2,2);如图2所示;②点D坐标为(4,6);(2)①DEF故答案为:(4,6);(3)DEF ∆的面积=11242422DE ⨯=⨯⨯=个平方单位. 故答案为:4. 【点睛】本题考查了三角形外心的性质、坐标系中位似图形的作图和三角形的面积等知识,属于常考题型,熟练掌握基本知识是解题关键.21.某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选中其中一项),并将统计结果绘制成如下统计图(不完整),请根据图中信息回答问题:(1)求m ,n 的值.(2)补全条形统计图.(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数.【答案】(1)15%m =,15%n =;(2)见解析;(3)300人.【解析】【分析】(1)用选A 的人数除以其所占的百分比即可求得被调查的总人数,然后根据百分比=其所对应的人数÷总人数分别求出m 、n 的值j 即可;(2)用总数减去其他各小组的人数即可求得选D 的人数,从而补全条形统计图;(3)用样本估计总体即可确定全校最喜欢“数学史话”的学生人数.【详解】(1)抽取的学生人数为1220%60÷=人,所以156025%,96015%m n =÷==÷=.(2)最喜欢“生活应用”的学生数为6030%18⨯=(人).条形统计图补全如下:(3)该要校共有1200名学生,可估计全校最喜欢“数学史话”学生有;120025%300⨯=人.【点睛】本题考查了条形统计图与扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键.22.在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1、2、3、4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是 ;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于5的概率(请用画树状图或列表等方法求解).【答案】(1)12;(2)13【解析】【分析】(1)用标有奇数卡片的张数除以卡片的总张数即得结果; (2)利用树状图画出所有出现的结果数,再找出2张卡片标有数字之和大于5的结果数,然后利用概率公式计算即可. 【详解】解:(1)标有奇数卡片的是1、3两张,所以恰好抽到标有奇数卡片的概率=2142=. 故答案为:12; (2)画树状图如下:的由图可知共有12种等可能的结果,其中抽取的2张卡片标有数字之和大于5的结果数有4种, 所以抽取的2张卡片标有数字之和大于5的概率=41123=. 【点睛】本题考查了利用画树状图或列表的方法求两次事件的概率,属于常考题型,掌握求解的方法是解题的关键.23.如图,已知AB 是⊙O 上的点,C 是⊙O 上的点,点D 在AB 的延长线上,∠BCD=∠BAC. .1)求证:CD 是⊙O 的切线;.2)若∠D=30°.BD=2,求图中阴影部分的面积.【答案】.1)证明见解析;(2)阴影部分面积为43π【解析】【分析】(1)连接OC.易证∠BCD=∠OCA ,由于AB 是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°.CD 是⊙O 的切线..2)设⊙O 的半径为r.AB=2r ,由于∠D=30°.∠OCD=90°,所以可求出r=2.∠AOC=120°.BC=2,由勾股定理可知:OAC 的面积以及扇形OAC 的面积即可求出阴影部分面积.【详解】(1.如图,连接OC.∵OA=OC.∴∠BAC=∠OCA.∵∠BCD=∠BAC.∴∠BCD=∠OCA.∵AB 是直径,∴∠ACB=90°.∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC 是半径,∴CD 是⊙O 的切线.2)设⊙O 的半径为r.∴AB=2r.∵∠D=30°.∠OCD=90°.∴OD=2r.∠COB=60°∴r+2=2r.∴r=2.∠AOC=120°∴BC=2.∴由勾股定理可知:易求S △AOC =12S 扇形OAC =120443603ππ⨯=.∴阴影部分面积为43π【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.24.如图,90ABD BCD ︒∠=∠=,DB 平分∠ADC ,过点B 作BM CD ‖交AD 于M .连接CM 交DB 于N .(1)求证:2BD AD CD =⋅;(2)若68CD AD ==,,求MN 的长.【答案】(1)见解析;(2)MN =【解析】【分析】 (1)通过证明ABD BCD ∆∆∽,可得AD BD BD CD=,可得结论; (2)由平行线的性质可证MBD BDC ∠∠=,即可证4AM MD MB ===,由2BD AD CD ⋅=和勾股定理可求MC 的长,通过证明MNB CND ∆∆∽,可得23BM MN CD CN ==,即可求MN 的长.【详解】证明:(1)∵DB 平分ADC ∠,ADB CDB ∴∠∠=,且90ABD BCD ∠∠︒==,ABD BCD ∴∆∆∽ADBDBD CD ∴=2BD AD CD ∴⋅=(2)//BM CD QMBD BDC ∴∠∠=ADB MBD ∴∠∠=,且90ABD ∠︒=BM MD MAB MBA ∴∠∠=,=4BM MD AM ∴===2BD AD CD ⋅Q =,且68CD AD =,=,248BD ∴=,22212BC BD CD ∴=﹣=22228MC MB BC ∴+==MC ∴=//BM CD QMNB CND ∴∆∆∽23BMMNCD CN ∴==且MC =MN ∴=【点睛】考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC 的长度是本题的关键. 25.2019年12月27日,我国成功发射了“长征五号”遥三运载火箭.如图,“长征五号”运载火箭从地面A 处垂直向上发射,当火箭到达B 处时,从位于地面M 处的雷达站测得此时仰角45AMB ∠=︒,当火箭继续升空到达C 处时,从位于地面N 处的雷达站测得此时仰角30ANC ∠=o ,已知120MN km =,40BC km =. (1)求AB 的长;(2)若“长征五号”运载火箭在C 处进行“程序转弯”,且105ACD ∠=o ,求雷达站N 到其正上方点D 的距离.【答案】(1)AB =;(2)160km【解析】【分析】(1)设AB 为xkm ,根据题意可用含x 代数式依次表示出AM 、AC 、AN 的长,然后在直角△CAN 中利用解直角三角形的知识即可求出x 的值,进而可得答案;(2)由(1)的结果可得CN 的长,作DH CN ⊥,垂足为点H ,如图,根据题意易得∠DCN 和∠DNC 的度数,设HN=y ,则可用y 的代数式表示出CH ,根据CH+HN=CN 可得关于y 的方程,解方程即可求出y 的值,进一步即可求出结果.【详解】解:(1)设AB 为xkm ,∵45AMB ∠=︒,∴45ABM ∠=︒,则AM AB ==xkm ,在Rt ACN ∆中,∵30ANC ∠=︒,AC=AB+BC=x +40,AN=AM+MN=x +120,∴tan 60AN AC =︒=g ,)120x x +=+,解得:x =∴AB =;(2)作DH CN ⊥,垂足为点H ,如图,由(1)可得,40AC =,∵30ANC ∠=︒,∴80CN =,∵105ACD ∠=︒,∴45NCD ∠=︒,∴CH=DH ,∵90AND ∠=︒,∴60CND ∠=︒,设HN 为y ,则DH CH ==,80y +=,解得:80y =,∴2160DN y ==.答:雷达站N 到其正上方点D 的距离为160km .【点睛】本题以“长征五号”遥三运载火箭发射为背景,是解直角三角形的典型应用题,主要考查了解直角三角形的知识,属于常考题型,正确添加辅助线构造直角三角形、熟练掌握锐角三角函数的知识是解题关键.26.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.【答案】(1)W1=﹣x2+32x﹣236;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.【解析】【分析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x﹣6)(﹣x+26)﹣80=﹣x2+32x﹣236.(2)由题意:20=﹣x2+32x﹣236.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+26)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.27.如图,已知二次函数22=-++>的图象与x轴交于,A B两点(点A在点B的左侧),y x mx m m23(0)与y轴交于点C,顶点为点D.(1)点B 的坐标为 ,点D 的坐标为 ;(用含有m 的代数式表示)(2)连接,CD BC .①若CB 平分OCD ∠,求二次函数的表达式;②连接AC ,若CB 平分ACD ∠,求二次函数的表达式.【答案】(1)(3,0)m ,2(,4)m m ;(2)①21y x x =-++,②295y x x =-++ 【解析】【分析】 (1)令y =0,解关于x 的方程,解方程即可求出x 的值,进而可得点B 的坐标;把抛物线的解析式转化为顶点式,即可得出点D 的坐标;(2)①如图1,过点D 作DH AB ⊥,交BC 于点E ,作DF ⊥y 轴于点F ,则易得点C 的坐标与CF 的长,利用BH 的长和∠B 的正切可求出HE 的长,进而可得DE 的长,由题意和平行线的性质易推得CD DE =,然后可得关于m 的方程,解方程即可求出m 的值,进而可得答案;(3)如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,利用锐角三角函数、抛物线的对称性和等腰三角形的性质可推出1234∠=∠=∠=∠,进而可得AC AE =,然后利用勾股定理可得关于m 的方程,解方程即可求出m ,问题即得解决.【详解】解:(1)令y =0,则22302x mx m -+=+,解得:123,x m x m ==-,∴点B 的坐标为(3,0)m ;∵()2222243y x mx m x m m =-+-++=-,∴点D 的坐标为2(,4)m m ;故答案为:(3,0)m ,2(,4)m m ;(2)①如图1,过点D 作DH AB ⊥于点H ,交BC 于点E ,作DF ⊥y 轴于点F ,则2(0,3)C m ,(,0)A m -,DF=m ,CF =22243m m m -=,∵BC 平分OCD ∠,∴∠BCO =∠BCD ,∵DH ∥OC ,∴∠BCO =∠DEC ,∴∠BCD =∠DEC ,∴CD DE =, ∵23tan 3OC m ABC m OB m∠===,BH =2m , ∴22HE m =,∴222422DE DH HE m m m =-=-=,∵CD DE =,∴22CD DE =,∴2444m m m +=,解得:m =(m =舍去),∴二次函数的关系式为:21y x x =-+;②如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE , ∵223tan 1,tan 23DG m BK m m m CG m CK m∠===∠===,∴tan 1tan 2∠=∠,∴12∠=∠,∵EA=EB ,∴∠3=∠4,又∵23∠∠=,∴1234∠=∠=∠=∠,∵12DCB ∠=∠+∠,34AEC ∠=∠+∠,∴DCB AEC ACE ∠=∠=∠,∴AC AE =,∴2222AC AE EH AH ==+,即2442944m m m m +=+,解得:m =(m =舍去),∴二次函数的关系式为:295y x x =-++.【点睛】本题考查了二次函数的图象与性质、抛物线图象上点的坐标特征、角平分线的性质、等腰三角形的判定和性质、三角形的外角性质、勾股定理、锐角三角函数和一元二次方程的解法等知识,综合性强、难度较大,正确作出辅助线、利用勾股定理构建方程、熟练掌握上述知识是解答的关键.28.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,60BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,过点D 作DE AC P 交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE ,AC 于点F 、G .(1)求CD 的长.(2)若点M 是线段AD 的中点,求EF DF的值. (3)请问当DM 的长满足什么条件时,在线段DE 上恰好只有一点P ,使得60CPG ∠=︒?【答案】(1)DC =;(2)23EF DF =;(3)当DM =DM <<点P 只有一个.【解析】【分析】(1)由角平分线定义得30DAC ∠=︒,在Rt ADC ∆中,根据锐角三角函数正切定义即可求得DC 长.(2)由题意易求得BC =,BD =ASA 得DFM AGM ∆≅∆,根据全等三角形性质得DF AG =,根据相似三角形判定得~BFE BGA ∆∆,由相似三角形性质得EF BE BD AG AB BC==,将DF AG =代入即可求得答案.(3)由圆周角定理可得CQG ∆是顶角为120°的等腰三角形,再分情况讨论:①当Q e 与DE 相切时,结合题意画出图形,过点Q 作QH AC ⊥,并延长HQ 与DE 交于点P ,连结QC ,QG ,设Q e 半径为r ,由相似三角形的判定和性质即可求得DM 长; ②当Q e 经过点E 时,结合题意画出图形,过点C 作CK AB ⊥,设Q e 半径为r ,在Rt EQK ∆中,根据勾股定理求得r ,再由相似三角形的判定和性质即可求得DM 长;③当Q e 经过点D 时,结合题意画出图形,此时点M 与点G 重合,且恰好在点A 处,由此可得DM 长.【详解】(1)解:∵AD 平分BAC ∠,60BAC ∠=︒, ∴1302DAC BAC ∠=∠=︒.在Rt ADC ∆中,tan 30DC AC =⋅︒=(2)解:易得,BC =BD =由DE AC P ,得EDA DAC ∠=∠,DFM AGM ∠=∠.∵AM DM =,∴DFM AGM ∆≅∆,∴AG DF =.由DE AC P ,得~BFE BGA ∆∆, ∴EF BE BD AG AB BC==∴23EF EF BD DF AG BC ==== (3)解:∵60CPG ∠=︒,过C ,P ,G 作外接圆,圆心为Q ,∴CQG ∆是顶角为120°的等腰三角形.①当Q e 与DE 相切时,如图1,过Q 点作QH AC ⊥,并延长HQ 与DE 交于点P ,连结QC ,QG设Q e 的半径QP r =则12QH r =,12r r +=解得r =∴4CG ==,2AG =. 易知DFM AGM ∆∆:,可得43DM DF AM AG ==,则47DM AD =∴DM =②当Q e 经过点E 时,如图2,过C 点作CK AB ⊥,垂足为K .设Q e 的半径QC QE r ==,则QK r =.在Rt EQK ∆中,()2212r r +=,解得r =,∴143CG ==易知DFM AGM ∆∆:,可得DM =③当Q e 经过点D 时,如图3,此时点M 与点G 重合,且恰好在点A 处,可得DM =综上所述,当DM =DM <<P 只有一个. 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置解决数学问题,属于中考压轴题.。
2019年秋学期期末调研考试试题 2020.1初三数学本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号...........涂.黑.) 1.下列方程中,是一元二次方程的是 ( ▲ )A .2x +y =1B .x 2+3xy =6C .x +1x=4 D .x 2=3x -22.下列方程中,有两个不相等实数根的是 ( ▲ )A .x 2-x -1=0B .x 2+x +1=0C .x 2+1=0D .x 2+2x +1=03.若两个相似多边形的面积之比为4∶9,则这两个多边形的周长之比为 ( ▲ )A .2∶ 3B .2∶3C .4∶9D .16∶814.9名同学参加朗诵比赛,他们预赛成绩各不相同,现取前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还要知道这9名同学成绩的 ( ▲ ) A .平均数 B .极差 C .中位数 D .众数5.二次函数y =x 2-6x 图像的顶点坐标为 ( ▲ ) A .(3,0) B .(-3,-9) C .(3,-9) D .(0,-6)6.如图,若四边形ABCD 内接于⊙O ,且∠A =40°,则∠C 的度数是 ( ▲ ) A .110° B .120° C .135° D .140°7. 如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为 ( ▲ ) A .3cm B .5cm C .6cm D .8cm8.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为 ( ▲ )A .30°B .45°C .30°或150°D .45°或135° 9. 如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF 2,则BD 的长是 ( ▲ ) A .2B .3C .218D .24710.已知二次函数y =-(x -1) 2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为 ( ▲ ) A .12B .32C .2D . 52二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........) 11.一元二次方程x 2-4=0的解为 ▲ .12.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球 ▲ 只.13.某一时刻,一棵树高15m ,影长为18m .此时,高为50 m 的旗杆的影长为 ▲ m . 14.一个圆锥的底面半径为6cm ,圆锥的高8cm ,则该圆锥的侧面积是 ▲ cm 2. 15.在□ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35, 则EFBF的值为 ▲ .(第15题)FEDA(第6题)D ABOCA EDB C F (第9题)(第7题)ABO16.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=-1,那么方程a (x +m +2)2+b =0的解 ▲ .17.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为 ▲ .18. 如图,在边长为4的菱形ABCD 中,∠A =60°,若M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在的直线翻折得到△A ′MN ,连接A ′C ,则A ′C 的最小值为 ▲ .三、解答题(本大题共10小题,共84分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)解方程:(1)x 2-2x -1=0; (2)(2x -1)2=4(2x -1).20.(本题满分8分)已知关于x 的方程x 2-(m -1)x +2m =0,若方程的一个根为-4,求方程的另一个根及m的值.ACD MNA′(第18题)(第17题)ABC21.(本题满分6分)在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点及点O 都在格点上(每个小方格的顶点叫做格点).(1)以点O 为位似中心,在网格区域内画出△A ′B ′C ′,使△A ′B ′C ′与△ABC 位似(A ′、B ′、C ′分别为A 、B 、C 的对称点),且位似比为2﹕1; (2)△A ′B ′C ′的面积为 ▲ 个平方单位;(3)若网格中有一格点D ′(异与点C ′),且△A ′B ′D ′的面积等于△A ′B ′C ′的面积,请在图中标出所有..符合条件的点D ′. (如果这样的点D ′不止一个,请用D 1′、D 2′、…、D n ′标出)22.(本题满分8分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:(1)根据上述信息可知:甲的成绩的众数是 ▲ 环,乙的成绩的中位数是 ▲ 环; (2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会 ▲ .(填“变大”、“变小”或“不变”)OB CA23.(本题满分8分)“2020比佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A.全程马拉松;B.半程马拉松;C.迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为▲;(2)请利用树状图或列表法求两人被分配到同一个项目组的概率.24.(本题满分8分)如图,已知直线l切⊙O于点A,B为⊙O上一点,过点B作BC⊥l,垂足为点C,连接AB、OB.B (1)求证:∠ABC=∠ABO;O (2)若AB=10,AC=1,求⊙O的半径.A C lG FCDEBA25.(本题满分8分)如图,在□ABCD 中,点E 是边AD 上一点,延长CE 到点F ,使∠FBC =∠DCE ,且FB 与AD 相交于点G . (1)求证:∠D =∠F ;(2)用直尺和圆规在边AD 上作出一点P ,使△BPC ∽△CDP ,并加以证明.(作图要求:保留痕迹,不写作法.)26.(本题满分10分)某商店购进一批成本为每件30元的商品.经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,其图像如图所示. (1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,试利用函数图像确定销售单价最多为多少元?y/件O3045x/元7010027.(本题满分10分)如图,已知二次函数y =ax 2+4ax +c (a ≠0)的图像交x 轴于A 、B 两点(A 在B 的左侧),交y 轴于点C .一次函数y =-12x +b 的图像经过点A ,与y 轴交于点D (0,-3),与这个二次函数的图像的另一个交点为E ,且AD ∶DE =3∶2. (1)求这个二次函数的表达式;(2)若点M 为x 轴上一点,求MD +55MA 的最小值.28.(本题满分10分)如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作⊙O 交AC 于点F ,连接DF 、PF .(1)求证:△DPF 为等腰直角三角形; (2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将△EFP 沿PF 翻折,得到△QFP ,当点Q 恰好落在BC 上时,求t 的值.(备用图1)D B C A(备用图2)D BCABACE PDFO。
2022-2023学年江苏省无锡外国语学校九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列关于x的方程中,一定是一元二次方程的是( )A. 3x2−1=2B. ax2+5x+7=0C. 2x4+3x2−5=0D. x2+5=0x2. 神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的( )A. 平移B. 旋转C. 轴对称D. 黄金分割3. 已知△ABC∽△A′B′C′,且相似比为3:1,则下列结论错误的是( )A. AB是A′B′的3倍B. ∠A是∠A′的3倍C. 周长之比为3:1D. 面积之比为9:14. 已知关于x的方程x2+kx−3=0有一个根为x=1,则实数k的值为( )A. 1B. −1C. 2D. −25. 某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是( )A. 300(1+x)=507B. 300(1+x)2=507C. 300(1+x)+300(1+x)2=507D. 300+300(1+x)+300(1+x)2=5076. 下列每张方格纸上都有一个三角形,仅用圆规就能作出三角形外接圆的是( )A. B.C. D.7. 如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD//AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为( )A. 15°B. 35°C. 25°D. 45°8. 如图,在矩形ABCD中,AB=8,AD=12,经过A,D两点的⊙O与边BC相切于点E,则⊙O的半径为( )A. 4B. 214C. 5D. 2549. 如图,在正方形ABCD中,E是AD的中点,F是AB边上一点,BF=3AF,则下列四个结论:①△AEF∽△DCE;②CE平分∠DCF;③CE是CD与CF的比例中项;④直线AD是△CEF 外接圆的切线.其中正确的个数是( )A. 1个B. 2个C. 3个D. 4个10. 如图,等边△ABC边长为3,O是AB中点,点P沿A→C→B的路径运动,连接OP,H、E分别是OP、AC上的点,F、G在AB上,若点P运动的某段路程中正方形EFGH始终存在,则满足条件的点P运动的路径长度为( )A. 6√3−6B. 3√3C. 4.5D. 6二、填空题(本大题共8小题,共24.0分)11. 请写出一个一元二次方程,使得它的一个根为0,另一个根不为0:______.12. 在比例尺为1:500000的地图上,量得A、B两地的距离为3cm,则A、B两地的实际距离为______km.13. 若a2+4a=5,则代数式2a(a+2)−(a+1)(a−1)的值为______.14. 若圆O的半径是5,圆心的坐标是(0,0),点P的坐标是(−4,3),则点P与⊙O的位置关系是______.15. 如图,AB是⊙O的弦,AC切⊙O于点A,BC经过圆心.若∠C=40°,则∠B=______.16. 如图,在圆内接四边形ABCD中,∠C=135°,AB⊥BD,以AB为y轴,BD为x轴,建立如图所示的平面直角坐标系,若点A的坐标为(0,3),则圆的直径长度是______.17. 如图,平面直角坐标系中,以第一个矩形ODAE的边AE为边向上作正方形①,以DF为边向右作正方形②,得到第二个矩形OGBH,以此类推,得到第3个矩形、第4个矩形…若这些矩形右上角的顶点A、B、C…,与原点O在同一直线上,则这条直线的函数解析式为______.18. 在正方形ABCD中,AB=2,E是直线CD上的动点,连接AE、BE,F是AE上一点,连接BF,使∠AFB=∠ABE,则AF⋅AE的值为______,在E运动的过程中BF的最小值为______.三、解答题(本大题共10小题,共96.0分。
2019-2020学年江苏省无锡市新吴区九年级(上)期末数学试卷一、选择题(共10小题).1.(3分)一元二次方程(1)(2)0x x --=的解是( ) A .1x = B .2x =C .11x =,22x =D .11x =-,22x =-2.(3分)若25x y =,则x yy+的值为( ) A .25B .72C .57D .753.(3分)若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( ) A .5d <B .5d >C .5d =D .5d4.(3分)在Rt ABC ∆中,90C ∠=︒,3AC =,1BC =,则sin A 的值为( ) A .1010B .31010 C .13D .1035.(3分)将抛物线2y x =先向左平移2个单位,再向下平移2个单位,那么所得抛物线的函数关系式是( ) A .2(2)2y x =++B .2(2)2y x =+-C .2(2)2y x =-+D .2(2)2y x =--6.(3分)已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( ) A .265cm πB .290cm πC .2130cm πD .2155cm π7.(3分)某电影上映第一天票房收入约3亿元,以后每天票房收入按相同的增长率增长,三天后累计票房收入达到10亿元.若增长率为x ,则下列方程正确的是( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=8.(3分)如图,已知正五边形ABCDE 内接于O ,连结BD ,CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒9.(3分)对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线 B .其最小值为1C .其图象与x 轴没有交点D .当3x <时,y 随x 的增大而增大10.(3分)将一副学生常用的三角板如图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A .3B .31+C .31-D .23二、填空题(本大题共8小题,每小题2分,满分16分,将答案填在答题纸上) 11.(2分)已知1x =是方程210x mx ++=的一个根,则m = . 12.(2分)若有一组数据为8、4、5、2、1,则这组数据的中位数为 .13.(2分)若关于x 的一元二次方程240x x m -+=没有实数根,则m 的取值范围是 . 14.(2分)如图,在平行四边形ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆= .15.(2分)如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是 .16.(2分)已知实数a ,b ,c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为 .17.(2分)如图,由边长为1的小正方形组成的网格中,点A ,B ,C ,D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为 .18.(2分)如图,已知二次函数3(1)(4)4y x x =-+-的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,P 为该二次函数在第一象限内的一点,连接AP ,交BC 于点K ,则PKAK的最大值为 .三、解答题:本大题共10小题,共84分.解答应写出文字说明、证明过程或演算步骤. 19.(8分)(1012(2020)2tan 60π+--︒ (2)解方程:2210x x --=20.(8分)如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为点(1,0)A 、(3,0)B 、(0,1)C .(1)ABC ∆的外接圆圆心M 的坐标为 .(2)①以点M 为位似中心,在网格区域内画出DEF ∆,使得DEF ∆与ABC ∆位似,且点D 与点A 对应,位似比为2:1. ②点D 坐标为 .(3)DEF ∆的面积为 个平方单位.21.(8分)某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).请根据图中信息回答问题:(1)求m,n的值.(2)补全条形统计图.(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数.22.(8分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).23.(8分)如图,已知AB是O的直径,C是O上的点,点D在AB的延长线上,∠=∠.BCD BAC(1)求证:CD是O的切线;(2)若30BD=,求图中阴影部分的面积.∠=︒,2D24.(8分)如图,90BM CD交AD于M.连∠,过点B作//∠=∠=︒,DB平分ADCABD BCD接CM交DB于N.(1)求证:2=;BD AD CD(2)若6AD=,求MN的长.CD=,825.(8分)2019年12月27日,我国成功发射了“长征五号”遥三运载火箭.如图,“长征五号”运载火箭从地面A处垂直向上发射,当火箭到达B处时,从位于地面M处的雷达站测得此时仰角45∠=︒,当火箭继续升空到达C处时,从位于地面N处的雷达站测得此AMB时仰角30BC km=.=,40MN km∠=︒,已知120ANC(1)求AB的长;(2)若“长征五号”运载火箭在C处进行“程序转弯”,且105ACD∠=︒,求雷达站N到其正上方点D的距离.26.(8分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式26=-+.y x(1)求这种产品第一年的利润1W (万元)与售价x (元/件)满足的函数关系式; (2)若该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)在(2)的条件下,第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润2W 至少为多少万元.27.(10分)如图,已知二次函数2223(0)y x mx m m =-++>的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)点B 的坐标为 ,点D 的坐标为 ;(用含有m 的代数式表示) (2)连接CD ,BC .①若CB 平分OCD ∠,求二次函数的表达式; ②连接AC,若CB 平分ACD ∠,求二次函数的表达式.28.(10分)如图,在Rt ABC ∆中,90C ∠=︒,6AC =,60BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,过点D 作//DE AC 交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE ,AC 于点F 、G .(1)求CD的长.(2)若点M是线段AD的中点,求EFDF的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得60CPG∠=︒?参考答案一、选择题:(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)一元二次方程(1)(2)0x x --=的解是( ) A .1x =B .2x =C .11x =,22x =D .11x =-,22x =-解:10x -=或20x -=, 所以11x =,22x =. 故选:C . 2.(3分)若25x y =,则x yy+的值为( ) A .25 B .72C .57D .75解:25x y =, ∴27155x y x y y y y +=+=+=, 故选:D .3.(3分)若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( ) A .5d <B .5d >C .5d =D .5d解:直线l 与O 的位置关系是相离, d r ∴>, 5r ∴=, 5d ∴>,故选:B .4.(3分)在Rt ABC ∆中,90C ∠=︒,3AC =,1BC =,则sin A 的值为( )A B C .13D 解:在Rt ABC ∆中,90C ∠=︒,3AC =,1BC =,∴由勾股定理得到:AB ===.110sin 1010BC A AB ∴===. 故选:A .5.(3分)将抛物线2y x =先向左平移2个单位,再向下平移2个单位,那么所得抛物线的函数关系式是( ) A .2(2)2y x =++B .2(2)2y x =+-C .2(2)2y x =-+D .2(2)2y x =--解:抛物线2y x =先向左平移2个单位,再向下平移2个单位, ∴平移后的抛物线的顶点坐标为(2,2)--,∴所得抛物线的函数关系式是2(2)2y x =+-.故选:B .6.(3分)已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( ) A .265cm πB .290cm πC .2130cm πD .2155cm π解:这个圆锥的侧面积21251365()2cm ππ=⨯⨯⨯=. 底面积为:22525()cm ππ⨯=, 所以全面积为2652590()cm πππ+=. 故选:B .7.(3分)某电影上映第一天票房收入约3亿元,以后每天票房收入按相同的增长率增长,三天后累计票房收入达到10亿元.若增长率为x ,则下列方程正确的是( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=解:设增长率为x ,依题意,得:233(1)3(1)10x x ++++=. 故选:D .8.(3分)如图,已知正五边形ABCDE 内接于O ,连结BD ,CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒解:如图所示:五边形ABCDE 为正五边形,BC CD DE ∴==,108BCD CDE ∠=∠=︒,180108362CBD CDB CED DCE ︒-︒∴∠=∠=∠=∠==︒, 72BFC BDC DCE ∴∠=∠+∠=︒.故选:C .9.(3分)对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线 B .其最小值为1C .其图象与x 轴没有交点D .当3x <时,y 随x 的增大而增大 解:二次函数22610(3)1y x x x =-+=-+, ∴对称轴为3x =,故选项A 正确,不符合题意;顶点坐标为(3,1),所以有最小值1,故选项B 正确,不符合题意; △2(6)41040=--⨯=-<,故选项C 正确,不符合题意, 开口向上,当3x <时y 随着x 的增大而减小, 故选:D .10.(3分)将一副学生常用的三角板如图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A .3B .31+C .31-D .23解:如图作AH CB ⊥交CB 的延长线于H . 90ABD ∠=︒,45DBC ∠=︒, 45ABH ∴∠=︒, 90AHB ∠=︒,ABH ∴∆是等腰直角三角形, AH BH ∴=,设AH BH a ==,则2AB a =,6BD a =,3BC CD a ==,3CH a a =+, 90AHB DCB ∠=∠=︒, //AH DC ∴, ACD CAH ∴∠=∠,tan tan 31CHACD CAH AH∴∠=∠==+, 故选:B .二、填空题(本大题共8小题,每小题2分,满分16分,将答案填在答题纸上) 11.(2分)已知1x =是方程210x mx ++=的一个根,则m = 2- . 解:关于x 的一元二次方程210x mx ++=有一个根是1, 2110m ∴++=,解得:2m =-, 故答案为:2-;12.(2分)若有一组数据为8、4、5、2、1,则这组数据的中位数为 4. 解:把这组数据从小到大排列为1,2,4,5,8, 最中间的数是4,则中位数是4; 故答案为4.13.(2分)若关于x 的一元二次方程240x x m -+=没有实数根,则m 的取值范围是 4m > .解:由题意可知:△0<, 1640m ∴-<, 4m ∴>故答案为:4m >14.(2分)如图,在平行四边形ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆= 6 .解:过点G 作MN AD ⊥于点M ,交BC 于点N ,如图所示. 四边形ABCD 为平行四边形, //AD BC ∴,AD BC =.13BE DF BC ==,2AF BE ∴=. //AF BE , FAG BEG ∴∆∆∽, ∴2()FAG BEG S AF S EB∆∆=,GM AFGN EB =, 4FAG S ∆∴=,2GM GN =,32MN GM ∴=,113362222ABF FAG S AF MN AF GM S ∆∆∴====.故答案为:6.15.(2分)如图,ABC∆是O的内接三角形,45BAC∠=︒,BC的长是54π,则O的半径是52.解:连接OB,OC,45BAC∠=︒,290BOC BAC∴∠=∠=︒,BC的长是54π,∴9051804OBππ⨯=,52OB∴=,O∴的半径是52,故答案为:52.16.(2分)已知实数a,b,c满足0a≠,且0a b c-+=,930a b c++=,则抛物线2y ax bx c=++图象上的一点(2,4)-关于抛物线对称轴对称的点为(4,4).解:0a b c-+=和930a b c++=,3c a∴=-,2b a=-,∴抛物线解析式为223y ax ax a =--, ∴对称轴为212ax a-=-=, (2,4)∴-关于抛物线对称轴对称的点为(4,4).故答案是:(4,4).17.(2分)如图,由边长为1的小正方形组成的网格中,点A ,B ,C ,D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为8179.解:如图所示:在BDF ∆和ECF ∆中, 90DBF CEF BFD EFCBD CE ∠==︒⎧⎪∠=∠⎨⎪=⎩, ()BDF ECF AAS ∴∆≅∆, 12BF EF ∴==, 又//BF DA , BFO ADO ∴∆∆∽, ∴AO ADBO BF=, 又4AD =, ∴8AOBO=, 在Rt ABD ∆中,由勾股定理得,22224117AB AD BD =+=+=又AB AO BO =+,8179AO ∴=故答案为817 9.18.(2分)如图,已知二次函数3(1)(4)4y xx=-+-的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,P为该二次函数在第一象限内的一点,连接AP,交BC于点K,则PKAK的最大值为45.解:过P作//PQ AB,与BC交于点Q,如图,二次函数3(1)(4)4y x x=-+-的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,(1,0)A∴-,(4,0)B,(0,3)C,设BC的解析式为:(0)y mx n m=+≠,则340nm n=⎧⎨+=⎩,∴343mn⎧=-⎪⎨⎪=⎩,∴3:34BC y x=-+,设(P t,3(1)(4))4t t-+-,则2(3Q t t-,3(1)(4))4t t-+-,24PQ t t∴=-+,//PQ AB,PQK ABK∴∆∆∽,∴224144(1)55PK PQ t tt tAK AB-+===-+--,15-<,∴当452 12()5t=-=⨯-时,PKAK有最大值为214422555-⨯+⨯=,故答案为:45.三、解答题:本大题共10小题,共84分.解答应写出文字说明、证明过程或演算步骤. 19.(8分)(1)计算:012(2020)2tan60π+--︒(2)解方程:2210x x--=解:(1)原式231231=+-=(2)2210x x--=,2212x x∴-+=,2(1)2x∴-=,12x∴=±20.(8分)如图,在平面直角坐标系中,ABC∆的三个顶点的坐标分别为点(1,0)A、(3,0)B、(0,1)C.(1)ABC∆的外接圆圆心M的坐标为(2,2).(2)①以点M为位似中心,在网格区域内画出DEF∆,使得DEF∆与ABC∆位似,且点D 与点A对应,位似比为2:1.②点D坐标为.(3)DEF∆的面积为个平方单位.解:(1)如图:(2,2)M;故答案为:(2,2);(2)①如图所示:DEF∆即为所求;②(4,6)D;故答案为:(4,6);(3)DEF∆的面积为:14242⨯⨯=.故答案为:4.21.(8分)某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).请根据图中信息回答问题:(1)求m,n的值.(2)补全条形统计图.(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数.解:(1)观察条形统计图与扇形统计图知:选A的有12人,占20%,故总人数有1220%60÷=人,1560100%25%m∴=÷⨯=960100%15%n=÷⨯=;(2)选D的有6012159618----=人,故条形统计图补充为:(3)全校最喜欢“数学史话”的学生人数为:120025%300⨯=人.22.(8分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是2;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为21 42 =,故答案为:12.(2)根据题意列表得:1234 1345235634574567由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为82 123=.23.(8分)如图,已知AB是O的直径,C是O上的点,点D在AB的延长线上,BCD BAC∠=∠.(1)求证:CD 是O 的切线;(2)若30D ∠=︒,2BD =,求图中阴影部分的面积.解:(1)连接OC , OA OC =, BAC OCA ∴∠=∠, BCD BAC ∠=∠, BCD OCA ∴∠=∠,AB 是直径, 90ACB ∴∠=︒,90OCA OCB BCD OCB ∴∠+∠=∠+∠=︒ 90OCD ∴∠=︒OC 是半径, CD ∴是O 的切线(2)设O 的半径为r , 2AB r ∴=,30D ∠=︒,90OCD ∠=︒, 2OD r ∴=,60COB ∠=︒22r r ∴+=,2r ∴=,120AOC ∠=︒ 2BC ∴=,∴由勾股定理可知:3AC =易求123132AOC S ∆=⨯=120443603OAC S ππ⨯==扇形 ∴阴影部分面积为433π-24.(8分)如图,90ABD BCD∠=∠=︒,DB平分ADC∠,过点B作//BM CD交AD于M.连接CM交DB于N.(1)求证:2BD AD CD=;(2)若6CD=,8AD=,求MN的长.【解答】证明:(1)DB平分ADC∠,ADB CDB∴∠=∠,且90ABD BCD∠=∠=︒,ABD BCD∴∆∆∽∴AD BDBD CD=2BD AD CD∴=(2)//BM CDMBD BDC∴∠=∠ADB MBD∴∠=∠,且90ABD∠=︒BM MD∴=,MAB MBA∠=∠4BM MD AM∴===2BD AD CD=,且6CD=,8AD=,248BD∴=,22212BC BD CD∴=-=22228MC MB BC∴=+=7MC∴=//BM CDMNB CND ∴∆∆∽∴23BM MNCD CN==,且27MC=475MN∴=25.(8分)2019年12月27日,我国成功发射了“长征五号”遥三运载火箭.如图,“长征五号”运载火箭从地面A处垂直向上发射,当火箭到达B处时,从位于地面M处的雷达站测得此时仰角45AMB∠=︒,当火箭继续升空到达C处时,从位于地面N处的雷达站测得此时仰角30ANC∠=︒,已知120MN km=,40BC km=.(1)求AB的长;(2)若“长征五号”运载火箭在C处进行“程序转弯”,且105ACD∠=︒,求雷达站N到其正上方点D的距离.解:(1)设AB为xkm,则AM为xkm,在Rt ACN∆中,30ANC∠=︒,tanAC ANCAN∴∠=340120xx+=+,解得:3x=∴403AB=(2)作DH CN ⊥,垂足为点H ,由(1)可得,40340AC =, ∴380CN =+,105ACD ∠=︒,45NCD ∴∠=︒,90AND ∠=︒,60CND ∴∠=︒,设HN 为y ,则3DH CH ==, ∴380380y +=,解得:80y =,2160DN y ∴==,答:雷达站N 到其正上方点D 的距离为160km .26.(8分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y (万件)与售价x (元/件)之间满足函数关系式26y x =-+.(1)求这种产品第一年的利润1W (万元)与售价x (元/件)满足的函数关系式;(2)若该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)在(2)的条件下,第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润2W 至少为多少万元.解:(1)21(6)(26)8032236W x x x x =--+-=-+-.(2)由题意:22032236x x =-+-.解得:16x =,答:该产品第一年的售价是16元.(3)公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.1416x ∴,22(5)(26)2031150W x x x x =--+-=-+-,抛物线的对称轴15.5x =,又1416x ,14x ∴=时,2W 有最小值,最小值88=(万元), 答:该公司第二年的利润2W 至少为88万元.27.(10分)如图,已知二次函数2223(0)y x mx m m =-++>的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)点B 的坐标为 (3,0)m ,点D 的坐标为 ;(用含有m 的代数式表示)(2)连接CD ,BC .①若CB 平分OCD ∠,求二次函数的表达式;②连接AC ,若CB 平分ACD ∠,求二次函数的表达式.解:(1)在二次函数2223y x mx m =-++中,当0y =时,13x m =,2x m =-,点A 在点B 的左侧,0m >,(,0)A m ∴-,(3,0)B m ,222223()4y x mx m x m m =-++=--+,∴顶点2(,4)D m m ,∴故答案为:(3,0)m ,2(,4)m m ;(2)①如图1,过点D 作DH AB ⊥,交BC 于点E ,则//DH OC ,DEC OCE ∴∠=∠, BC 平分OCD ∠,OCE DCE ∴∠=∠,DEC DCE ∴∠=∠,CD DE ∴=,由(1)知,2(0,3)C m ,(,0)A m -,(3,0)B m ,23OC m ∴=,3OB m =,23tan 3m ABC m m∠==, 22HE m ∴=,222422DE DH HE m m m ∴=-=-=,CD DE =,22CD DE ∴=,2424m m m ∴+=,解得:1m =2m =,∴二次函数的关系式为:21y x x =-++;②如图2,过点D 作DH AB ⊥,交BC 于点E ,过点C 作y 轴的垂线CK ,过点B 作x 轴的垂线交CK 于点K ,连接AE ,tan DG DCG m CG ∠==,tan BK KCB m CK∠==,DCG KCB∴∠=∠,//CK AB∴,KCB EBA∴∠=∠,由对称性知,DH垂直平分AB,EA EB∴=,EAB EBA∴∠=∠,DCG KCB EBA EAB∴∠=∠=∠=∠,AEC EAB EBA∠=∠+∠,DCB DCG KCB∠=∠+∠,CB平分ACD∠,DCB AEC ACE∴∠=∠=∠,AC AE∴=,2222AC AE EH AH∴==+,2442944m m m m∴+=+,解得:115 5m=,215 5m=-(舍去),∴二次函数的关系式为:22159 55y x x=-++.28.(10分)如图,在Rt ABC ∆中,90C ∠=︒,6AC =,60BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,过点D 作//DE AC 交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE ,AC 于点F 、G .(1)求CD 的长.(2)若点M 是线段AD 的中点,求EF DF的值. (3)请问当DM 的长满足什么条件时,在线段DE 上恰好只有一点P ,使得60CPG ∠=︒? 解:(1)AD 平分BAC ∠,60BAC ∠=︒, 1302DAC BAC ∴∠=∠=︒, 在Rt ADC ∆中,3tan 30623DC AC =︒== (2)由题意易知:63BC =,43BD =,//DE AC ,FDM GAM ∴∠=∠,AM DM =,DMF AMG ∠=∠, ()DFM AGM ASA ∴∆≅∆, DF AG ∴=,//DE AC , ∴EF BE BD AG AB BC ==, ∴432363EF EF BD DF AG BC ====.(3)60CPG ∠=︒,过C ,P ,G 作外接圆,圆心为Q , CQG ∴∆是顶角为120︒的等腰三角形. ①当Q 与DE 相切时,如图31-中,作QH AC ⊥于H ,交DE 于P .连接QC ,QG .设Q 的半径为r .则12QH r =,1232r r +=, 43r ∴= 4334CG ∴==,2AG =, 由DFM AGM ∆∆∽,可得43DM DF AM AG ==, 41637DM AD ∴==. ②当Q 经过点E 时,如图32-中,延长CQ 交AB 于K ,设CQ r =.QC QG =,120CQG ∠=︒, 30KCA ∴∠=︒, 60CAB ∠=︒, 90AKC ∴∠=︒, 在Rt EQK ∆中,33QK r =-,EQ r =,1EK =, 2221(33)r r ∴+-=, 解得1439r =, 14314393CG ∴=⨯=, 由DFM AGM ∆∆∽,可得1435DM =. ③当Q 经过点D 时,如图33-中,此时点M ,点G 与点A 重合,可得43DM AD ==.观察图象可知:当DM=43<时,满足条件的点P只有一个.DM。
A .平均数B.方差C.中位数D.极差5.(3 分)二次函数2x2 6x 图象的顶点坐标为B. ( 3, 9)ABCD 内接于O ,若个圆柱形输水管横截面的示意图,A. 30C.C.(3, 9)40 ,则135D.D.阴影部分为有水部分,2cm ,则该输水管的半径为(C.6cm D.O中,若弦 AB 3 2 ,B. 45(0, 6)140如果水面 AB 的8cm则弦 AB 所对的圆周角的度数为()C. 30 或 150 D. 45 或 135 2019-2020 学年江苏省无锡市滨湖区九年级(上)期末数学试卷一、选择题(共 10 小题) .1.(3分)下列方程中,是一元二次方程的是()A.2x y1 B .x2 3xy 61C. x 42D . x 3x 22.(3分)下列方程中,有两个不相等的实数根的是()A.x2x10 2B . x2x 1 02C. x 2 1 02D. x 22x 1 0 3.(3 分)若两个相似多边形的面积之比为4 : 9 ,则这两个多边形的周长之比为()A. 2: 3 B.2:3 C. 4:9 D. 16 :814.(3 分)有 9 名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前 4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这 9 名同学成绩A. (3,0)B.1208.(3 分)在半径为3cm7.(3 分)如图是9.(3分)如图,等边三角形 ABC的边长为 5,D 、 E分别是边 AB、AC 上的点,将ADE沿 DE 折叠,点 A 恰好落在 BC 边上的点 F 处,若 BF 2 ,则 BD 的长是()A.2 B.3C.218 24 D.710.( 3分)已知二次函数y2 (x 1)25 ,当 m x n 且mn0 时, y 的最小值为2m ,最大值为2n ,则m n 的值为()1 3 5A.B.C.2 D.2 2 2二、填空题(共 8 小题)11.(2分)一元二次方程 x 4 0 的解是12.( 2 分)一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球 6 只,且摸出红球的概率为3,则袋中共有小球只.513.(2分)某一时刻,一棵树高 15m ,影长为 18m .此时,高为 50m的旗杆的影长为m.214.(2 分)已知一个圆锥底面圆的半径为 6cm ,高为 8cm ,则圆锥的侧面积为cm2.(结果保留)15.( 2 分)在 ABCD 中, ABC 的平分线 BF 交对角线 AC 于点 E ,交 AD 于点F .若2 b 0(a、b 、m 为常数,a 0)的解是 x1 2 ,x2 1 ,那么方程a(x m 2)2 b 0 的解17.( 2 分)如图,若一个半径为 1 的圆形纸片在边长为 6 的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为.18.(2分)如图,在边长为 4的菱形 ABCD中, A 60 ,M 是AD边的中点,点N是AB 边上一动点,将 AMN 沿MN 所在的直线翻折得到△ AMN ,连接 AC ,则线段 AC长度的最小值是三、解答题(本大题共 10 小题,共 84 分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.( 8 分)解方程:(1)x22x 1 0 ;2(2)(2x 1)2 4(2 x 1).220.( 8分)已知关于 x的方程x2(k 1)x 2k 0 ,若方程的一个根是 4 ,求另一个根及 k 的值.21.( 6分)在如图所示的方格纸中,每个小方格都是边长为 1 个单位长度的正方形, ABC 的顶点及点 O 都在格点上(每个小方格的顶点叫做格点).(1)以点 O 为位似中心,在网格区域内画出△ A B C ,使△ A B C 与 ABC 位似(A 、 B 、C 分别为 A、 B、 C的对应点),且位似比为 2:1 ;(2)△ A B C 的面积为个平方单位;(3)若网格中有一格点 D (异于点 C ),且△ AB D 的面积等于△ ABC 的面积,请在图中标出所有符合条件的点 D .(如果这样的点 D 不止一个,请用 D1 、D2 、、 D n 标出)22.( 8 分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶 5 次,成绩统计如下:命中环数 6 7 8 9 10 甲命中相应环数的次数 0 1 3 1 0 乙命中相应环数的次数2211)根据上述信息可知:甲命中环数的中位数是 环,乙命中环数的众数是 环; 2)试通过计算说明甲、乙两人的成绩谁比较稳定? (3)如果乙再射击 1 次,命中 8 环,那么乙射击成绩的方差会 或“不变” ) 23(. 8分)“2020比佛利”无锡马拉松赛将于 3月22 日鸣枪开跑,本次比赛设三个项目: A .全 程马拉松; B .半程马拉松; C .迷你马拉松.小明和小红都报名参与该赛事的志愿者服 务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组. (1)小明被分配到“迷你马拉松”项目组的概率为 ;(2)请利用树状图或列表法求两人被分配到同一个项目组的概率.24.(8 分)如图,已知直线 l 切 O 于点 A ,B 为 O 上一点,过点 B 作BC l ,垂足为 点 C ,连接 AB 、 OB . 1)求证: ABC ABO ;25.(8分)如图,在 ABCD 中,点E 是边 AD 上一点,延长 CE 到点F ,使 FBC DCE ,.(填“变大” 、“变小”1 ,求 O 的半径.且 FB 与 AD 相交于点 G . 1)求证: D F ;2)用直尺和圆规在边 AD 上作出一点 P ,使 BPC ∽ CDP ,并加以证明. (作图要求:26.( 10分)某商店购进一批成本为每件 30 元的商品. 经调查发现, 该商品每天的销售量 y (件 )与销售单价 x (元 ) 之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;( 2)若商店按单价不低于成本价且不高于 50 元销售, 则销售单价定为多少, 才能使销售该商品每天获得的利润最大?最大利润是多少?3)若商店要使销售该商品每天获得的利润不低于 800 元,试利用函数图象确定销售单价2 27.( 10 分)如图,已知二次函数y ax 2的左侧),交 y 轴于点 C .一次函数y1)求这个二次函数的表达式; 52)若点 M 为 x 轴上一点,求 MD MA 的最小值.5与这个二次函数的图象的另一个交点为 E ,且 AD : DE 3:2 .28.(10 分)如图,在正方形 ABCD 中, AB 4,动点 P从点 A出发,以每秒 2 个单位的速度,沿线段 AB 方向匀速运动,到达点 B 停止.连接 DP 交 AC 于点E ,以 DP 为直径作 O 交 AC 于点F ,连接 DF 、 PF .(1)求证: DPF 为等腰直角三角形;(2)若点 P 的运动时间t秒.①当t为何值时,点 E恰好为 AC 的一个三等分点;② 将 EFP 沿 PF 翻折,得到 QFP ,当点 Q 恰好落在 BC 上时,求t 的小红同学在知道自己成绩的情况下,要判断自己能否进入决赛, 还需要知道这 9 名同学成绩参考答案、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题所给出的四个选项中, 只有一项是正确的,请用 2B 铅笔把答题卡上相应的选项标号涂黑) 1.(3 分)下列方程中,是一元二次方程的是 ( ) 2 1 2A .2x y 1B . x 23xy 6C . x4 D . x 23x 2 x解: A 、原方程为二元一次方程,不符合题意; B 、原方程为二元二次方程,不符合题意; C 、原方程为分式方程,不符合题意; D 、原方程为一元二次方程,符合题意, 故选: D .2.(3 分)下列方程中,有两个不相等的实数根的是 ( ) A . x 2 x 1 0 2B . x x 1 02C . x 21 0 2D . x 22x 1 0解:在x2x 1 0中,△ 2 ( 1)24 1 ( 1) 1 45 0 ,故该方程有两个不相等的实数根,故 A 符合题意;在 x 2x 1 0 中,△ 2124 1 1 1 4 3 0 ,故该方程无实数根, 故 B 不符合题意; 在 x 2 1 0 中,△ 0 4 1 1 0 4 4 0 ,故该方程无实数根,故 C 不符合题意; 在x 2 2x 1 0 中,△ 2 22 4 1 10, 故该方程有两个相等的实数根, 故D 不符合题意故选: A .3.(3 分)若两个相似多边形的面积之比为 4 : 9 ,则这两个多边形的周长之比为 ( ) 解: 两个相似多边形的面积之比为 4 :9 , 两个相似多边形的对应边的比为 2: 3, 两个相似多边形的周长的比为 2: 3, 故选: B .4.(3 分)有 9 名同学参加歌咏比赛, 他们的预赛成绩各不相同,A . 2 : 3B .2:3C . 4:9D .16 :81现取其中前 4 名参加决赛,A .平均数B.方差C.中位数D.极差解:由于总共有 9 个人,且他们的分数互不相同,第 5 的成绩是中位数,要判断是否进入前 5 名,故应知道中位数的多少.故选:C .5.(3 分)二次函数x2 6x 图象的顶点坐标为(A. (3,0)B. ( 3,9)C.(3,9)D.(0,6)解:y x26x 26x 9 9 (x 3)2 9 ,二次函数y6 x 图象的顶点坐标为(3,9) .故选:C .B.120ABCD 内接于O ,若40 ,则C.135 D.140解:四边形 ABCD 内接于 O ,C A 180 ,C 180 40 140 .故选:D .7.(3 分)如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面 AB的2cm ,则该输水管的半径为(C. 6cm D.8cm解:如图所示:过点 O作OD AB于点 D,连接 OA,OD AB ,1AD AB 4cm , 2 设 OA r ,则 OD r 2 ,在 Rt AOD 中, OA 2OD 2AD 2,即 r 2(r 2)242, 解得 r 5cm .连接 OA ,OB , 则 OA OB 3 , B 3 2 , 2 2 2OA 2 OB 2AB 2,AOB 90 ,劣弧 AB 的度数是 90 ,优弧 AB 的度数是 360 90 270 , 弦 AB 对的圆周角的度数是 45 或 135 , 故选: D .9.(3分)如图,等边三角形 ABC 的边长为 5,D 、 E 分别是边 AB 、AC 上的点,将 ADE 沿 DE 折叠,点 A 恰好落在 BC 边上的点 F 处,若 BF 2 ,则 BD 的长是 ( )5cm ;O 中, 若弦 AB3 2 ,则弦 AB 所对的圆周角的度数为 ( ) 解: 如图所示, C . 30 或 150D . 45 或 135该输水管的半A . 3解: 二次函数 y (x 1)25的大致图象如下:B .3C .21824 D .7解: ABC 是等边三角形,C 60 , AB BC AC5,ADE FDE ,DFE A 60 , AD DF , AE EF , 设 BD x ,AD DF 5 x , CE y , AE5BF 2 , BC 5 ,CF 3 ,C 60 , DFE 60EFCFEC 120DFBEFC 120DFB FEC ,DBF ∽ FCE , BD BF DF ,CE EF,5 x,yFC 即x 3解得:即 BD21821,8,故选: C .10.( 3 分)已知二次函数(x0 时, y 的最小值为 2m ,大值为 2n ,则 m n 的值为 ( A .12B .C .2D .52A . 2 沿 DE 折叠 A 落在 BC 边上的点 F 上,yCBn 且 21)25 ,①当 m 0 x n 1时,当 x m 时, y 取最小值,即 2m(m 1)2 5, 解得m 2 .当x n 时, y 取最大值,即 2n (n 1)25 ,解得n 2或 n 2 (均不合题意,舍去) ;②当 m 0 x 1 n 时,当 x m 时, y 取最小值,即 2m (m 1)2 5, 解得m 2 .当x 1时, y 取最大值,即 2n (1 1)25,解得n 2.5 ,或x n 时, y 取最小值, x 1时, y 取最大值,2m 2(n 1)25,n 2.5 ,11 m 181, m 0 ,此种情形不合题意, 所以 m n 2 2.5 0.5 . 故选: A .二、填空题(本大题共 8 小题,每小题 2分,共 16分.不需写出解答过程,只需把答案直 接填写在答题卡上相应的位置)11.( 2 分)一元二次方程 x 24 0 的解是 x 2 . 解: 移项得 x 24 , x 2 . 故答案: x 2 .12.( 2 分)一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有3红球 6 只,且摸出红球的概率为 3,则袋中共有小球 10 只.5解: 设袋中共有小球只, 根据题意得 6 3 ,解得 x 10 ,x5 所以袋中共有小球 10 只. 故答案为 10.15m ,影长为 18m .此时,高为 50m 的旗杆的影长为 60 m . 解: 设旗杆的影长为 xm ,解得 x 60 , 即高为 50m 的旗杆的影长为 60m . 故答案为: 60. 14.( 2 分)已知一个圆锥底面圆的半径为 cm 2.(结果保留 )解:根据题意得,圆锥的母线 62 8210cm , 圆锥的底面周长 2r 12 cm ,圆锥的侧面积 1 lR 1 212 10 60 cm 2 .22故答案为 60 .15.( 2 分)在 ABCD中, ABC 的平分线 BF 交对角线 AC 于点 E ,交 AD 于点F .若13.( 2 分)某一时刻,一棵树高 由题意得, 50 15x 186cm ,高为 8cm ,则圆锥的侧面积为 60AFB EBC ,BF 是 ABC 的角平分线,EF 3;BF 8;故答案为: 3 .816.( 2分)已知关于 x 的方程 a (x m )2b 0(a 、b 、m 为常数, a 0) 的解是 x 1 2,x 21,那么方程 a(x2m 2)2b 0 的解 x 3 0 , x 4 3 .解: 关于 x 的方程a (x m)2b 0的解是x 1 2,x 2 1,(a ,m , b 均为常数, a 0) , 方程 a( x m 2) 2 b 0变形为 a[( x2)2m]2b 0,即此方程中 x 2 2或 x 2 1 , 解得 x 0 或x3.故答案为:x 30, x 4 3.17.( 2 分)如图,若一个半径为 1 的圆形纸片在边长为 6 的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为 6 3 当圆形纸片运动到与 A 的两边相切的位置时, 过圆形纸片的圆心 O 作两边的垂线,垂足分别为 D ,E ,AFE3 B CAF连接 AO ,则 Rt ADO 中, OAD 30 , OD 1 , AD 3 ,S四边形 ADOE2 SADO 3 ,DOE 120 ,S扇形 DOE 3,纸片不能接触到的部分面积为: 3( 3 3) 3 3SABC纸片能接触到的最大面积为:故答案为 6 3 18.(2分)如图,在边长为 4的菱形 ABCD 中, A 60 ,M 是AD 边的中点,点N 是AB 边上一动点, 将 AMN 沿MN 所在的直线翻折得到△ AMN ,连接 AC ,则线段 AC 长度的 最小值是 2 7 2解: 如图所示:在 N 的运动过程中 A 在以 M 为圆心, MA 的长为半径的圆上, MA 是定值, A C 长度取最小值时,即 A 在MC 上时, 过点 M 作 MF DC 于点 F ,在边长为 4 的菱形 ABCD 中, A 60 , M 为 AD 中点, MD 2 , FDM 60 , FMD 30 ,SADO12OD AD 23,FD 1 MD 1 ,2FM DM cos30 3,MCFM 2CF 22 7 ,AC MC MA2 72 .三、解答题(本大题共 10 小题,共 84 分.请在答题卡指定区域内作答, 字说明、证明过程或演算步骤) 19.( 8 分)解方程:2(1) x 22x 1 0 ;(2)(2x 1)24(2 x 1).解:( 1) x 22x 1 0 , x 22x 1 2 ,2(x 2)22 ,22) (2x 1)24(2x 1) , (2x 1 4)(2 x 1) 0 ,220.( 8分)已知关于 x 的方程 x 2(k 1)x 2k 0 ,若方程的一个根是 的值. 解: 关于 x 的方程 x 2(k 1)x 2k 0的一个根是 4 , 16 4(k 1) 2k 0 ,解得 k 2 ,2原方程为 x 23x 4 0 ,解得 x 4 或 x 1 ,解答时应写出文 4 ,求另一个根及 k故答案为: 2 7 2 .51 x 或 x22即方程的另一根为 1, k 的值为 2 .21.( 6分)在如图所示的方格纸中,每个小方格都是边长为 1 个单位长度的正方形, ABC 的顶点及点 O 都在格点上(每个小方格的顶点叫做格点).(1)以点 O 为位似中心,在网格区域内画出△ A B C ,使△ A B C 与 ABC 位似(A 、 B 、C 分别为 A、 B、 C的对应点),且位似比为 2:1 ;(2)△ A BC 的面积为 10 个平方单位;(3)若网格中有一格点 D (异于点 C ),且△ AB D 的面积等于△ ABC 的面积,请在图中标出所有符合条件的点 D .(如果这样的点 D 不止一个,请用 D1、 D2、、 D n 标出)12)△ A B C 的面积为 4 6 2 42 124224 4 4 6 10 ;故答案为: 10;3)如图所示,所有符合条件的点D 有 5 个.22.( 8 分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶 5 次,成绩统计如下:(1)根据上述信息可知:甲命中环数的中位数是8 环,乙命中环数的众数是环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击 1 次,命中 8 环,那么乙射击成绩的方差会.(填“变大” 、“变小”或“不变” )解:(1)把甲命中环数从小到大排列为7,8, 8,8,9,最中间的数是 8,则中位数是 8;在乙命中环数中, 6和 9都出现了 2次,出现的次数最多,则乙命中环数的众数是 6和 9;故答案为: 8, 6 和 9;(2)甲的平均数是:(7 8 8 8 9) 5 8 ,则甲的方差是:1[(72 2 28)23(8 8)2(9 8)2] 0.4 ,乙的平均数是:(6 69 9 10) 5 8 ,则乙的方差是:1[2(8)22(9 8)2(10 8)2]2.8 ,所以甲的成绩比较稳定;(3)如果乙再射击1 次,命中 8 环,那么乙的射击成绩的方差变小.故答案为:变小.23(. 8分)“2020比佛利”无锡马拉松赛将于 3月22 日鸣枪开跑,本次比赛设三个项目: A.全程马拉松; B .半程马拉松; C .迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为1;3(2)请利用树状图或列表法求两人被分配到同一个项目组的概率.解:(1)小明被分配到“迷你马拉松”项目组的概率为2)画树状图为:共有 9 种等可能的结果数,其中两人被分配到同一个项目组的结果数为OB OA , OA AC , BC AC , OA/ /BC , OBA ABC , ABC ABO ;3,所以两人被分配到同一个项目组的概率31 9324.( 8 分) 如图,已知直线 l O 于点 A , B O 上一点,过点 B 作 BC l ,垂足为 点 C ,连接 AB 、 OB . ABC ABO ;OBA OAB , 切 O 于 A ,AC1)求1 ,求 O 的半径.解答】(1)证明:连接设O 的半径为 R ,过 O 作 ODOD BC , BC AC , OA AC ,四边形 OACD 是矩形,在 Rt ODB 中,由勾股定理得:222OB 2 OD 3 BD 2,即 R 212(3 R)2,解得:R 4 ,3 O 的半径是 5 .解:( 1) 四边形 ABCD 是平行四边形, AD / / BC FGE FBC325.(8分)如图,在 ABCD 中,点E 是边 AD 上一点,延长CE 到点F ,使 且 FB 与 AD 相交于点 G .(2)用直尺和圆规在边 AD 上作出一点 P ,使 BPC ∽ CDP ,并加以证明.ODC DCA OAC 90 , FBC DCE ,2)解: OD AC 1, OA CDR ,在 RtA CB 中, AB 10 , AC 1 ,由勾股定理得: BC ( 10) 212 *3 FBC DCE ,作图要求:FGE DCEFEG DECD F .证明:作 BC 和 BF 的垂直平分线,交于点 O ,作 FBC 的外接圆,连接 BO 并延长交 AD 于点 P ,PCB 90AD / / BCCPD PCB 90由( 1)得 F DF BPCD BPCBPC ∽ CDP .26.( 10分)某商店购进一批成本为每件 30 元的商品.经调查发现,该商品每天的销售量 y (件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;( 2)若商店按单价不低于成本价且不高于50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800 元,试利用函数图象确定销售单价将点 (30,100) 、 (45,70) 代入一次函数表达式得: 30k b 100 45k b 70 解得: k2 b 160 ,故函数的表达式为: y 2x 160 ;1)求这个二次函数的表达式;52)若点 M 为 x 轴上一点,求 MD 5 MA 的最小值.y kx b ,2)由题意得: w (x 30)( 2x 160) 2(x 55)21250 , 2 0 ,故当 x 55 时, w 随 x 的增大而增大,而 当 x 50 时, w 有最大值,此时, w 1200 ,故销售单价定为 50 元时,该超市每天的利润最大,最大利润 1200元; (3)由题意得: (x 30)( 2x 160) 800 , 解得: x 70 , 销售单价最多为 70 元.227.( 10 分)如图,已知二次函数 y 4ax c(a 0)的图象交 x 轴于 A 、B 两点 (A 在 B 的左侧),交 y 轴于点 C .一次函数 y1 x b 的图象经过点 A ,与 y 轴交于点 D(0, 3) ,与这个二次函数的图象的另一个交点为 E ,且 AD : DE 3: 2 . 最多为多少x 之间的函数关系式55MD MD,1解:(1)把 D(0, 3)代入 y x b 得 b 3,2 1一次函数解析式为 y 2 x 3 ,1当 y 0 时, x 3 0 ,解得 x 6 ,则 A( 6,0) ,2作 EF x 轴于 F ,如图, OD / / EF , AO AD 3 , OF DE 2 ,2OF OA 4 ,3E 点的横坐标为 4,把 A( 6,0) , E(4, 5) 代入 y ax 24ax36a c 得36a24ac 0,1解得 a4 , 16a 16ac5c3抛物线解析式为 1 y42 x x3 ;(2)作 MH AD 于H , 作 D 点关于 x 轴的对称点 D , 如图,则D (0,3) ,MAH DAO , Rt AMH ∽ Rt ADO , AMAD MHMH OD ,5AM即AM 35 MH 3在 Rt OAD 中, AD 32 623 5 ,MD 5 MA MD MH ,5D DH ADO , Rt DHD ∽Rt DOA ,D H DD D H 6 12 5 ,即 ,解得 D H , OA DA 6 3 5 5 MD 5 MA 的最小值为 12 5 . 5528.(10 分)如图,在正方形 ABCD 中, AB 4,动点 P 从点 A 出发,以每秒 2 个单位的 速度,沿线段 AB 方向匀速运动, 到达点 B 停止.连接 DP 交 AC 于点 E ,以DP 为直径作 O 交 AC 于点 F ,连接 DF 、 PF . (1)求证: DPF 为等腰直角三角形; (2)若点 P 的运动时间 t 秒.①当t 为何值时,点 E 恰好为 AC 的一个三等分点;② 将 EFP 沿 PF 翻 折 , 得 到 QFP , 当 点 Q 恰 好 落 在 BC 上 时 , 求 t 的解答】 证明:( 1) 四边形 ABCD 是正方形, AC 是对角线, DAC 45 ,在 O 中, DF 所对的圆周角是 DAF 和 DPF ,DAF DPF ,当点 M 、 H 、 D 共线时, MD 5MA 5MD MHD H ,此时 MD 5MA 的值最小,DPF 45 ,DFP 90 ,FDP DPF 45 ,DFP 是等腰直角三角形;(2)①当 AE:EC 1: 2时,AB / /CD ,DCE PAE , CDE APE , DCE∽ PAE ,DC CE,PA AE ,4 2,2t 1,解得, t 1 ;当 AE : EC 2:1 时,AB / /CD ,DCE PAE , CDE APE , DCE∽ PAE ,DC CE,PA AE ,4 1,2t 2,解得, t 4 ,点 P 从点 A 到 B ,t 的最大值是 4 2 2 ,当 t 4 时不合题意,舍去;由上可得,当t为 1时,点E 恰好为 AC 的一个三等分点;②如右图所示,DPF 90 ,DPF OPF ,OPF 90 ,DPA QPB 90 ,DPA PDA 90 ,PDA QPB又 DP O 的直径,4ax c (a 0)的图象交 x 轴于 A 、B 两点 (A 在 B12x b 的图象经过点 A ,与 y 轴交于点 D (0,3) ,(1)求证: D F ;点 Q 落在 BC 上, DAP B 90 , DAP ∽ PBQ , DA DPPB PQ , DA AB 4 , AP 2t , DAP 90 DP 42 (2t) 2 2 4 t 2 , PB 4 设 PQ a ,则 PE a , DE DP a 2t , 2 2 t 2 a , AEP ∽ CED ,AP PE ,CD DE, 即 2t a4 2 4 t 2 a 解得, a 2t 4 t , 2t PQ 2 2t 4 t 22t 4 2 4 t 2 , 4 2t 2t 4 t 2 2t 解得, t 1 5 1(舍去), t 2 5 1 即 t 的值是 5 1 .。
2019-2020学年度第一学期九年级期末测试数学试题满分:130分 考试时间:120分钟一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一个是正确的,请将正确的选项编号填写在答.卷.纸.相应的位置处......) 1.方程(x -1)(x -2)=0的解是…………………………………………………………………………( ▲ ) A .x =1 B . x =2 C . x =1或x =2 D . x =-1或x =-2 2.若x y =25,则x +y y 的值为………………………………………………………………………………( ▲ )A . 25B . 72C . 57D . 753.若直线l 与半径为5的⊙O 相离,则圆心O 与直线l 的距离d 为…………………………………( ▲ ) A .d <5 B .d >5C .d =5D .d ≤54.在Rt △ABC 中,∠C =90°,AC =3,BC =1,则sin A 的值为……………………………………( ▲ )A .1010 B .31010 C .13 D .1035.若将二次函数y =x 2的图像先向左平移2个单位长度,再向下平移2个单位长度,则所得图像对应函数的表达式为……………………………………………………………………………………………( ▲ ) A .y =(x +2)2+2 B .y =(x -2)2-2 C .y =(x +2)2-2D .y =(x -2)2+26.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是…………………………( ▲ )A .65πcm 2B .90πcm2C .130πcm 2D .155πcm 27.国庆期间电影《我和我的祖国》第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把增长率记作x ,则方程可以列为……………………………………( ▲ ) A .3(1+x )=10 B .3(1+x )2=10 C .3+3(1+x )2=10 D .3+3(1+x )+3(1+x )2=108.如图,已知正五边形ABCDE 内接于⊙O ,连结BD ,CE 相交于点F ,则∠BFC 的度数是………( ▲ ) A .60° B .70°C .72°D .90°9.对于二次函数y =x 2-6x +10,下列说法不正确的是………………………………………………( ▲ ) A .其图像的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1.C .其图像与x 轴没有交点.D .当x <3时,y 随x 的增大而增大. 10.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则 ∠tan ACD 的值为…………………………………………………………………………………………………… ( ▲ ) A . 3 B .3+1 C .3-1 D . 2 3(第8题)二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案填写在答.卷.纸.的.相.应位置处....) 11.若x =1为一元二次方程x 2+mx +1=0的一个根,则m = ▲ . 12.若有一组数据为8、4、5、2、1,则这组数据的中位数为 ▲ .13.若关于x 的一元二次方程x 2-4x +m =0没有实数根,则m 的取值范围为 ▲ . 14.如图,在□ABCD 中,BE =DF =13BC ,若S △BEG =1,则S △ABF = ▲ .15.如图,△ABC 是⊙O 的内接三角形,∠BAC =45°, ⌒BC的长是5π4,则⊙O 的半径是 ▲ . 16.已知实数a 、b 、c 满足a ≠0,且a -b +c =0,9a +3b +c =0,则抛物线y =ax 2+bx +c 图像上的一点(-2,4)关于抛物线对称轴对称的点为 ▲ . 17.如图,由边长为1的小正方形组成的网格中,点A 、B 、C 、D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为 ▲ . 18.如图,已知二次函数y =-34(x +1)(x -4)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,P 为该二次函数在第一象限内的一点,连接AP ,交BC 于点K ,则PKAK的最大值为 ▲ .三、解答题(本大题共10小题,共84分.请在答卷纸上指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分,每小题4分)(1)计算: 12+(2020-π)0-2tan60° (2)解方程:x 2-2x -1=0 20.(本题满分8分)如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为点A (1,0)、B (3,0)、C (0,1). (1)△ABC 的外接圆圆心M 的坐标为 ▲ .(2)①以点M 为位似中心,在网格区域内画出△DEF ,使得△DEF 与△ABC 位似,且点D 与点A对应,位似比为2:1. ②点D 坐标为 ▲ .(3)△DEF 的面积为 ▲ 个平方单位.某校根据课程设置要求,开设了数学类拓展性课程.为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).请根据图中信息回答问题:(1)m = ▲ , n = ▲ ; (2)补全条形统计图;(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数.22.(本题满分8分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1、2、3、4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是 ▲ ;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于5的概率(请用画树状图或列表等方法求解) .23.(本题满分8分)如图,已知AB 是⊙O 的直径,C 是⊙O 上的点,点D 在AB 的延长线上,∠BCD =∠BAC .(1)求证:CD 是⊙O 的切线;(2)∠D =30°,BD =2,求图中阴影部分的面积.24.(本题满分8分)如图,∠ABD =∠BCD =90°,DB 平分∠ADC ,过点B 作BM ∥CD 交AD 于M ,连接CM 交DB 于N . (1)求证:BD 2=AD •CD ;(2)若CD =6,AD =8,求MN 的长.抽取的学生最喜欢课程内容的扇形统计图 A .趣味数学B.数学史话C.实验探究D.生活应用E.思想方法 C nA 20%B m D 30% E抽取的学生最喜欢课程内容的条形统计图 A O C B2019年12月27日,我国成功发射了“长征五号”遥三运载火箭.如图,“长征五号”运载火箭从地面A处垂直向上发射,当火箭到达B处时,从位于地面M处的雷达站测得此时仰角∠AMB=45°,当火箭继续升空到达C处时,从位于地面N处的雷达站测得此时仰角∠ANC=30°,已知MN=120km,BC=40km.(1)求AB的长;(2)若“长征五号”运载火箭在C处进行“程序转弯”,且∠ACD=105°,求雷达站N到其正上方点D的距离.26.(本题满分8分)无锡某高新产业公司一个部门投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.该部门按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元∕件.此产品年销售量y(万件)与售价x(元∕件)之间满足函数关系式y=-x+26.(1)求这种产品第一年的利润w1(万元)与售价x(元∕件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该部门将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元∕件.为保持市场占有率,该部门规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该部门第二年的利润w2至少为多少万元.如图,已知二次函数y=-x2+2mx+3m2(m>0)的图像与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)点B的坐标为▲ ,点D的坐标为▲ ;(用含有m的代数式表示)(2)连接CD、BC.①若CB平分∠OCD,求二次函数的表达式;②连接AC,若CB平分∠ACD,求二次函数的表达式.如图,在Rt △ABC 中,∠C =90°,AC =6,∠BAC =60°,AD 平分∠BAC 交BC 于点D ,过点D 作DE ∥AC 交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE ,AC 于点F 、G .(1)求CD 的长;(2)若点M 是线段AD 的中点,求EFDF的值;(3)请问当DM 的长满足什么条件时,在线段DE 上恰好只有一点P ,使得∠CPG =60°?备用图G。
九年级数学期末试卷 2020.01一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B 铅笔把答题卡上相应的答案.........涂黑.) 1.已知关于x 的一元二次方程2320x x -+=两实数根为1x 、2x ,则12x x +=( ▲ )A . 3B . ﹣3C . 1D . ﹣12.数据4,3,5,3,6,3,4的众数和中位数是 ( ▲ ) A .3,4 B .3,5 C .4,3 D .4,53.已知⊙O 的半径为6cm ,OP =8cm ,则点P 和⊙O 的位置关系是 ( ▲ ) A .点P 在圆内 B .点P 在圆上 C .点P 在圆外 D .无法判断4.在Rt △ABC 中,∠C =90°,sinA =,AC =6cm ,则BC 的长度为 ( ▲ ) A .6cm B .7cm C .8cm D .9cm5.如图是拦水坝的横断面,堤高BC 为6米,斜面坡度为1:2,则斜坡AB 的长为( ▲ ) A .米 B .米 C .米 D .24米6.小兵身高1.4m ,他的影长是2.1m ,若此时学校旗杆的影长是12m ,那么旗杆的高( ▲ ) A .4.5m B .6m C .7.2m D .8m7.如图,点D 在以AC 为直径的⊙O 上,如果∠BDC =20°,那么∠ACB 的度数为( ▲ ) A .20° B .40° C .60° D .70° 8.对于二次函数y=-12x 2+2x -3,下列说法正确的是 ( ▲ ) A .当x >0,y 随x 的增大而减少 B .当x =2时,y 有最大值-1 C .图像的顶点坐标为(2,-5) D .图像与x 轴有两个交点(第5题) (第7题) (第9题)9.如图,菱形ABCD 的边AB =20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO =10,则⊙O 的半径长等于 ( ▲ ) A .5 B .6 C .52 D .2310.如图,在平面直角坐标系中,直线l 的表达式是()0 6≠+k y=kx ,它与两坐标轴分别交于C 、D 两点,且∠OCD =60º,设点A 的坐标为(m ,0),若以A 为圆心,2为半径的⊙A 与直线l 相交于M 、N 两点,当MN =22时,m 的值为 ( ▲ )A .632-32 B .36-32C .632-32或63232+ D .36-32或3632+(第10题) (第15题) (第16题)二、填空题(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置.......上.) 11.在1:5000的地图上,某两地间的距离是20cm ,那么这两地的实际距离为 ▲ 千米. 12.已知3是一元二次方程x 2﹣2x +a =0的一个根,则a = ▲ .13.若一组数据1,2,x ,4的平均数是2,则这组数据的方差为 ▲ .14.圆锥侧面积为32π cm 2,底面半径为4cm ,则圆锥的母线长为 ▲ cm .15.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A 、B 、C 都在横格线上.若线段AB =6cm ,则线段BC = ▲ cm . 16.如图,在△ABC 中,∠ACB =90°,点G 是△ABC 的重心,且AG ⊥CG ,CG 的延长线交AB 于H .则S △AGH :S △ABC的值为 ▲ . 17.如图,已知在Rt △ABC 中,∠ACB =90°,∠B =30°,将△ABC 绕点C 顺时针旋转一定角度得△DEC ,此时CD ⊥AB ,连接AE ,则tan ∠EAC = ▲ . 18.如图,在四边形ABCD 中,AB =BD ,∠BDA =45°,BC =2,若BD ⊥CD 于点D ,则对角线AC 的最大值为 ▲ .(第17题) (第18题)三、解答题(本大题共10小题,共计84分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.) 19.(本题满分8分) (1)计算:﹣|﹣3|+cos 60°; (2)化简:()()121-22++a a20.(本题满分8分)解方程:(1)x 2+4x -1=0 (2)已知α为锐角,若()2315-αsin =,求α的度数.21.(本题满分8分)如图,在矩形ABCD 中,AB =3,AD =6,点E在AD 边上且AE =4,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF;(2)求EF的长.22.(本题满分8分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了▲名购买者;(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为▲度;(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?23.(本题满分8分)在“阳光体育”活动时间,甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中丙同学的概率为▲;(2)用画树状图或列表的方法,求恰好选中甲、乙两位同学进行比赛的概率.24.(本题满分8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现阶梯上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水平距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠1=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.25.(本题满分8分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若作OF⊥BD,OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)26.(本题满分8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用26m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设BC=x m.(1)若矩形花园ABCD的面积为165m2,求x的值;(2)若在P处有一棵树,树中心P与墙CD,AD的距离分别是13m和6m,要将这棵树围在花园内(考虑到树以后的生长,篱笆围矩形ABCD时,需将以P为圆心,1为半径的圆形区域围在内),求矩形花园ABCD面积S的最大值.27.(本题满分10分)如图,抛物线的表达式为y=ax2+4ax+4a-1(a≠0),它的图像的顶点为A,与x轴负半轴相交于点B、点C(点B在点C左侧),与y轴交于点D,连接AO交抛物线于点E,且S△AEC:S△CEO=1:3.(1)求点A的坐标和抛物线表达式;(2)在抛物线的对称轴上是否存在一点P,使得△BDP的内心也在对称轴上,若存在,求点P的坐标;若不存在,请说明理由;2为半径的圆与直线BD相切,求(3)连接BD,点Q是y轴左侧抛物线上的一点,若以Q为圆心,2点Q的坐标.备用图28.(本题满分10分)如图1,点A是x轴正半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连结AC,BC,CD,设点A的横坐标为t.(1)当t=2时,求CF的长;(2)①当t为何值时,点C落在线段BD上;②设△BCE的面积为S,求S与t之间的函数关系式;(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到△C′D′F′,再将A,B,C′,D′为顶点的四边形沿C′F′剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的点C′的坐标.图1九年级数学期末试卷答案 2020.011.A2. A3.C4.C5.B6.D7.D8.B9.C 10. C 11. 1 12. -3 13. 2314. 8 15. 18 16. 1:6 17. 33-6 18.15+ 19.()分分原式423132133-41……+=……×+=()分分原式432-4322144222……=……=a+a a++a+-a20.12x =-(2分)22x =- (4分)()分分475α36015-α2……=……=21. 解:(1)证明:∵四边形ABCD 是矩形, ∴∠A =∠D =90°, ∴∠AEB +∠ABE =90°,∵EF ⊥BE ,∴∠AEB +∠DEF =90°,∴∠DEF =∠ABE ,∴△ABE ∽△DEF ; …………………………………………………4分 (2)解:∵AB =3,AD =6,AE =4,∴BE=5,DE =AD ﹣AE =6﹣4=2, ∵△ABE ∽△DEF ,∴BE AB EFDE=,∴532EF =,解得:EF =103. ………………………………8分22.解:(1)200 ………………………………………………2分 (2)图略, 108゜(图2分) …………………………………………6分 (3)928答1分 …………………………………………………… 8分23.解:(1); ………………………………………2分 (2)画树状图得:………………………………………6分∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况, ……………7分 ∴P (恰好选中甲、乙两人的概率)==. …………………………………8分24.解:(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.∴OM=EH,∵∠EHF=90°,EF=4,∠2=45°,∴EH=FH=OM=4米.…………………………………………………3分(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2∵AB∥OD,∴=,∴=,∴OC=,∴AK=OB=+1,NK=m﹣2,在Rt△AKN中,∵∠1=60°,∴NK=AK,∴m﹣2=(+1),∴m=(14+8)米,∴MN=ON﹣OM=14+8﹣4=(14+4)米.……………………8分25.(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;………………………………………………………4分(2)解:在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=,∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=π﹣.……8分26.解:(1)∵AB=xm,则BC=(26﹣x)m,∴x(26﹣x)=165,解得:x1=11,x2=15,答:x的值为11m或15m;………………………………………………3分(2)由题意可得出:S =x (26﹣x )=﹣x 2+26x =﹣(x ﹣13)2+169, …………………5分 由题意得:14≤x ≤19, ………………………………………6分 ∵-1<0,14≤x ≤19∴S 随着x 的增大而减小,∴x =14时,S 取到最大值为:S =﹣(14﹣13)2+169=168,答:花园面积S 的最大值为168平方米. ……………………………………8分 27.(1)由抛物线y=ax 2+4ax +4a -1得对称轴为直线x=-2,当x=-2时,y=-1,∴A (-2,-1) ………………………………………………1分 ∵S △AEC :S △CEO =1:3 ∴AE :OE =1:3 ∴OE :OA =3:4过点E 作EF ⊥x 轴,垂足为点F ,设对称轴与x 轴交点为M ,∵EF//AM ∴△OFE ∽△OMA ∴43===OA OE OM OF AM EF ∴2343==OF EF , ∴)43-23-(,E ……………………………………2分 把点E 代入抛物线表达式得a =1∴抛物线表达式为y=x 2+4x +3 ………3分(2)由题意得∠BPM =∠DPM过点D 作DH ⊥AM ,垂足为点H ,设点P (-2,b )∵tan ∠BPM =tan ∠DPM ∴3--32-1=∴=∴=∴b bb HP DH PM BM∴P (-2,-3) ……………………………………6分(3)设Q (m ,m 2+4m +3) ①点Q 在BD 左上方抛物线上()()3,4-∴)1(-4,04-32223213 32122Q m m m m m m S BDQ 舍去整理得:△===+××=+•×= …………………………8分 ②点Q 在BD 下方抛物线上()方程无解整理得:△0432223213- -32122=++××=•×=m m m m S BDQ综上所述:Q (-4,3) …………………………10分28.解:(1)由题意,可证Rt △ACF ∽Rt △BAO ,∴.∵AB=2AM=2AC,∴CF=OA=t.当t=2时,CF=1.…………………………………………………1分(2)①由(1)知,Rt△ACF∽Rt△BAO,∴,∴AF=OB=2,∴FD=AF=2,.∵点C落在线段BD上,∴△DCF∽△DBO,∴,即,解得t=﹣2或t=﹣﹣2(小于0,舍去)∴当t=﹣2时,点C落在线段BD上;………………………………………3分②当0<t<8时,如题图1所示:S=BE•CE=(t+2)•(4﹣t)=t2+t+4;……………………………5分当t>8时,如答图1所示:S=BE•CE=(t+2)•(t﹣4)=t2﹣t﹣4.……………………………7分(3)符合条件的点C的坐标为:(12,4),(8,4)或(2,4).………………10分。
2019-2020学年江苏省无锡市九年级上册期末数学试卷题号一二三总分得分第I卷(选择题)一、选择题(本大题共10小题,共30.0分)1.一元二次方程x(x−2)+x−2=0的根是()A. −1B. 2C. 1和2D. −1和22.若yx =34,则x+yx的值是()A. 73B. 74C. −74D. 73.已知⊙O和直线l相交,圆心到直线l的距离为10cm,则⊙O的半径可能为()A. 11cmB. 10cmC. 9cmD. 8cm4.在Rt△ABC中,∠C=90°,若sinA=12,则BC∶AC∶AB等于()A. 1∶2∶5B. 1∶√3∶√5C. 1∶√3∶2D. 1∶2∶√35.将抛物线y=−3x2先向右平移4个单位,再向下平移5个单位,所得图象的解析式为()A. y=−3(x−4)2−5B. y=−3(x+4)2+5C. y=−3(x−4)2+5D. y=−3(x−4)2−56.一个圆锥高为4,母线长为5,则这个圆锥的侧面积为()A. 15πB. 12πC. 25πD. 20π7.某文具店二月销售签字笔40支,三月、四月销售量连续增长,四月销售量为90支,求月平均增长率,设月平均增长率为x,根据题意可列方程为()A. 40 (1+x2)=90B. 40 (1+2x)=90C. 40 (1+x)2=90D. 90 (1−x)2=408.如下图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A. 60°C. 72°D. 144°9.对于二次函数y=−x2−4x+5.以下说法正确的是()A. x<−1时,y随x的增大而增大B. x<−5或x>1时,y>0C. A(−4,y1),B(−√2,y2)在y=−x2−4x+5的图象上,则y1<y2D. 此二次函数的最大值为810.如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=4√2,CD=3√2,点P在四边形ABCD的边上.若点P到BD的距离为3,则点P的个数为()A. 2B. 3C. 4D. 5第II卷(非选择题)二、填空题(本大题共8小题,共16.0分)11.若x=2是方程x2+3x−2m=0的一个根,则m的值为.12.一组数据:16,5,11,9,5的中位数是______.13.若关于x的一元二次方程(2k−1)x2−6x+9=0没有实数根,则k的取值范围是______.14.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=9,则S△EFC等于______.15.等腰△ABC是⊙O的内接三角形,∠A=45°,底边BC=4,则弦BC所对弧长为______.16.下列关于二次函数y=−(x−m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=−x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y 随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是______.17.如图是由边长都是1的小正方形组成的网格,A、B、P、Q则线段AM的长为______.18.已知抛物线y=x2−2x−3与x轴交于点A、B,与y轴交于点C,P是抛物线对称轴上的一个动点,则当|PB−PC|达到最大值时,点P的坐标为______.三、解答题(本大题共10小题,共84.0分)19.计算:(−1)2019−√12+tan60°+(π−3.14)0.20.△ABC在平面直角坐标系中的位置如图所示(坐标系内正方形网格的单位长度为1):(1)在网格内画出和△ABC以点O为位似中心的位似图形△A1B1C1,使△A1B1C1和△ABC的位似比为2:1且△A1B1C1位于y轴左侧;(2)分别写出A1、B1、C1三个点的坐标:A1______、B1______、C1______;(3)求△A1B1C1的面积为______.21.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?22.一个不透明的盒子里有五张卡片,分别标有字母a,a,b,b,c,每张卡片除字母不同外其他都相同.(1)小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上字母相同的概率.(2)小玲从盒子中一次抽出两张卡片,用画树状图(或列表)的方法,求小玲抽出的两张卡片字母相同的概率.23.如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.24.如图,AE与BD交于点C,∠DME=∠A=∠B,且DM交AC于F,ME交BC于G.(1)求证:△AMF∽△BGM.(2)若∠DME=∠A=∠B=45°,点M是AB的中点,AB=4√2,AF=3.求FG.25.如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是60km,仰角是30°.n秒后,火箭到达B点,此时仰角是45°,求火箭在这n秒中上升的高度.26.某商品现在的售价为每件60元,每星期可卖出100件.市场调查反映:如调整价格,每降价1元,每星期可多卖出20件.已知商品的进价为每件30元,设每件降价x元(x为正整数),每星期可以卖y件.(1)求y与x的函数关系式,并指出自变量x的取值范围;(2)求每星期的利润w的最大值;(3)规定每件商品降价不超过18元,请直接写出x在什么范围内时,每星期的利润不低于5000元.27.已知二次函数y=ax2−9ax+18a的图象与x轴交于A,B两点(A在B的左侧),图象的顶点为C,直线AC交y轴于点D.(1)连接BD,若∠BDO=∠CAB,求这个二次函数的表达式;(2)是否存在以原点O为对称轴的矩形CDEF?若存在,求出这个二次函数的表达式,若不存在,请说明理由.28.如图,已知在△ABC中,AB=AC,tanB=12,BC=4,点E是在线段BA延长线上一点,以点E为圆心,EC为半径的圆交射线BC于点C、F(点C、F不重合),射线EF与射线AC交于点P.(1)求证:AE2=AP⋅AC;(2)当点F在线段BC上,设CF=x,△PFC的面积为y,求y关于x的函数解析式及定义域;(3)当FPEF =12时,求BE的长.答案和解析1.【答案】D【解析】【分析】本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).利用因式分解法解方程即可.【解答】解:,(x−2)(x+1)=0,x−2=0或x+1=0,所以x1=2,x2=−1.故选D.2.【答案】B【解析】解:yx =34,则x+yx =3+44=74,故选:B.根据合比性质计算即可.本题考查的是比例的性质,掌握比例的合比性质是解题的关键.3.【答案】A【解析】解:∵⊙O和直线l相交∴d<r又∵圆心到直线l的距离为10cm∴r>10cm故选:A.根据直线与圆的位置关系的判断的方法可求解.半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.4.【答案】C【解析】【分析】本题主要考查了锐角三角函数.根据正弦的定义和勾股定理可得比值.【解答】解:∵sinA=BCAB =12,∴设∠A的对边BC=x,则斜边AB=2x,根据勾股定理可得AC=√3x,∴BC:AC:AB=x:√3x:2x=1:√3:2.故选C.5.【答案】A【解析】【分析】直接利用二次函数的平移规律进而得出答案.此题主要考查了二次函数的几何变换,正确掌握平移规律是解题关键.【解答】解:将抛物线y=−3x2先向右平移4个单位,得到:y=−3(x−4)2,再向下平移5个单位,所得的图象解析式是:y=−3(x−4)2−5.故选A.6.【答案】A【解析】解:这个圆锥的底面圆的半径=√52−42=3,1先利用勾股定理计算出这个圆锥的底面圆的半径,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.【答案】C【解析】解:设月平均增长率为x,根据题意得:40(1+x)2=90.故选:C.设月平均增长率为x,根据二月及四月的销售量,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.【答案】C【解析】【分析】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n−2)×180°是解题的关键.根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.【解答】解:∵五边形ABCDE为正五边形,=108°,∴∠ABC=∠C=(5−2)×180°5∵CD=CB,∴∠CBD=180°−108°=36°,2∴∠ABD=∠ABC−∠CBD=72°,故选C.【解析】解:y=−x2−4x+5的对称轴为x=−2,∴x≤−2时,y随x的增大而增大;A不正确;−x2−4x+5=0时的两个根为x=−5,x=1,当−5<x<1时,y>0;B不正确;∵−4<−2,−√2>−2,点A到对称轴的距离大于点B到对称轴的距离,∴y1<y2;C正确;当x=−2时,y有最大值9;D不正确;故选:C.y=−x2−4x+5的对称轴为x=−2,x≤−2时,y随x的增大而增大;当−5<x<1时,y>0;点A到对称轴的距离大于点B到对称轴的距离,则y1<y2;当x=−2时,y有最大值9;本题考查二次函数的图象及性质;熟练掌握二次函数的图象与性质是解题的关键.10.【答案】B【解析】解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=4√2,CD=3√2,∴∠ABD=∠ADB=45°,∴∠CDF=90°−∠ADB=45°,∵sin∠ABD=AE,AB∴AE=AB⋅sin∠ABD=4√2⋅sin45°=4>3,CD=3,CF=√22∴所以在AB和AD边上有符合P到BD的距离为3的点各1个,还有点C满足条件,所以共计3个,故选:B.直接利用求出A点以及C点到BD的最短距离,进而得出得出答案.此题主要考查了解直角三角形的应用,正确得出A点以及C点到BD的最短距离是解题关键.【解析】解:把x=2代入,得22+3×2−2m=0,解得:m=5.故答案是:5.此题主要考查了一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.12.【答案】9【解析】解:将这组数据从小到大的顺序排列,处于中间位置的数是9,那么由中位数的定义可知,这组数据的中位数是9;故答案为:9.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);本题为统计题,考查中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.【答案】k>1【解析】解:∵关于x的一元二次方程(2k−1)x2−6x+9=0没有实数根,∴(−6)2−4×(2k−1)×9<0且2k−1≠0,解得:k>1,故答案为:k>1.根据方程没有实数根结合根的判别式可得出Δ<0,解不等式即可得出k的取值范围本题考查了根的判别式以及解一元一次不等式,解题的关键是根据方程无实数根找出关于k的一元一次不等式,注意二次项系数不为0.14.【答案】4【解析】解:∵四边形ABCD是平行四边形,∴BC//AD、BC=AD,而CE=2EB,∴△AFD∽△CFE,且它们的相似比为2:1,∴S△AFD:S△EFC=(32)2,而S△AFD=9,∴S△EFC=4.故答案为:4.由于四边形ABCD是平行四边形,所以得到BC//AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解.15.【答案】√2π或3√2π【解析】解:连接OB、OC,如图,∵∠A=45°,∴∠BOC=2∠A=90°,∴△OBC为等腰直角三角形,∴OB=√22BC=2√2,∴BC⏜的长度=90⋅π⋅2√2180=√2π,BAC⏜的长度=270⋅π⋅2√2180=3√2π,∴弦BC所对弧长为√2π或3√2π.故答案为√2π或3√2π.连接OB、OC,如图,先利用圆周角得到∠BOC=2∠A=90°,则可判断△OBC为等腰直角三角形得到OB=2√2,然后利用弧长公式计算BC⏜的长度和BAC⏜的长度即可.本题考查了三角形的外接圆与外心:熟练掌握三角形外心的定义与性质.也考查了等腰直角三角形的性质和圆周角定理.16.【答案】①②④【解析】【分析】本题考查二次函数的性质,一次函数的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.利用二次函数的性质一一判断即可.【解答】解:①∵二次函数y=−(x−m)2+m+1(m为常数)与函数y=−x2的二次项系数相同,∴该函数的图象与函数y=−x2的图象形状相同,故结论①正确;②∵在函数y=−(x−m)2+m2+1中,令x=0,则y=−m2+m2+1=1,∴该函数的图象一定经过点(0,1),故结论②正确;③∵y=−(x−m)2+m2+1,∴抛物线开口向下,对称轴为直线x=m,当x>m时,y随x的增大而减小,故结论③错误;④∵抛物线开口向下,当x=m时,函数y有最大值m2+1,∴该函数的图象的顶点在函数y=x2+1的图象上.故结论④正确,故答案为①②④.17.【答案】3√22【解析】解:如图,连接AP、PB、AQ,BQ.∵AP2=18、AB2=8、PB2=26,∴AP2+AB2=PB2,∴△PAB为直角三角形,∠PAB=90°,∵AQ2=10、AB2=8、BQ2=2,∴AB2+BQ2=AQ2,∴△ABQ为直角三角形,∠ABQ=90°,∵∠AMP=∠BMQ,∴△APM∽△BQM,∴AMBM =APBQ=√22=3,∴AMAB =34,即2√2=34,∴AM=3√22,故答案为:3√22.连接AP 、PB 、AQ 、BQ ,利用勾股定理逆定理证∠PAB =∠ABQ =90°,结合∠AMP =∠BMQ 证△APM∽△BQM ,得AM BM =AP BQ =3,即可知AM AB =34,据此可得答案.本题主要考查相似三角形的判定和性质,解题的关键是熟练掌握勾股定理逆定理及相似三角形的判定和性质. 18.【答案】(1,−6)【解析】解:当x =0时,y =x 2−2x −3=−3,则C(0,−3),当y =0时,x 2−2x −3=0,解得x 1=−1,x 2=3,则A(−1,0),B(3,0),∴抛物线的对称轴为直线x =1,如图,连接PA ,则PA =PB ,∴|PB −PC|=|PA −PC|≤AC(当点A 、C 、P 共线时取等号),延长AC 交直线x =1于点P′,如图,设直线AC 的解析式为y =mx +n ,把A(−1,0),C(0,−3)代入得{−m +n =0n =−3,解得{m =−3n =−3, ∴直线AC 的解析式为y =−3x −3,当x =1时,y =−3x −3=−6,即P′(1,−6),∴当|PB −PC|达到最大值时,点P 的坐标为(1,−6).故答案为(1,−6).计算自变量为0时的函数值可得到C(0,−3),通过解方程x 2−2x −3=0可得到A(−1,0),B(3,0),则抛物线的对称轴为直线x =1,如图,连接PA ,则PA =PB ,根据三角形三边的关系得|PB −PC|=|PA −PC|≤AC(当点A 、C 、P 共线时取等号),延长AC 交直线x =1于点P′,即P′点为所求,如图,然后利用待定系数法求出直线AC 的解析式,从而可得P′点坐标.本题考查抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c(a,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程问题.利用对称和三角形三边的关系解决了最短路径问题.19.【答案】解:原式=−1−2√3+√3+1=−√3.【解析】先计算乘方、化简二次根式、代入三角函数值、零指数幂,再计算加减可得.本题主要考查实数的运算,解题的关键是掌握乘方的定义、二次根式的性质及零指数幂的规定.20.【答案】解:(1)如图所示:△A1B1C1即为所求;(2)(−4,−8);(−2,−2);(−8,−2);(3)18.【解析】【分析】本题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用所画图形得出对应点坐标即可;(3)直接利用三角形面积求法得出答案.【解答】解:(1)见答案;(2)由图可得:A1坐标为(−4,−8)、B1坐标为(−2,−2)、C1坐标为(−8,−2);故答案为:(−4,−8);(−2,−2);(−8,−2);×6×6=18,(3)△A1B1C1的面积为:12故答案为18.21.【答案】解:(1)观察条形统计图与扇形统计图知:喜欢跳绳的有10人,占25%,故总人数有10÷25%=40人;(2)喜欢足球的有40×30%=12人,喜欢跑步的有40−10−15−12=3人,故条形统计图补充为:=90人.(3)全校最喜爱篮球的人数比最喜爱足球的人数多1200×15−1240【解析】(1)用喜欢跳绳的人数除以其所占的百分比即可求得被调查的总人数;(2)用总人数乘以足球所占的百分比即可求得喜欢足球的人数,用总数减去其他各小组的人数即可求得喜欢跑步的人数,从而补全条形统计图;(3)用样本估计总体即可确定最喜爱篮球的人数比最喜爱足球的人数多多少.本题考查了扇形统计图、条形统计图及用样本估计总体的知识,解题的关键是能够读懂两种统计图并从中整理出进一步解题的有关信息,难度不大.22.【答案】解:(1)如图:总情况有25种,字母相同法有9种,概率为9;25(2)如图:总情况有20种,字母相同法有4种,概率为420=15.【解析】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.(1)先画树状图展示所有25种等可能的结果数,再找出两次抽出的卡片上的字母相同的结果数,然后根据概率公式求解;(2)先画树状图展示所有25种等可能的结果数,再找出两次抽出的卡片上的字母相同的结果数,然后根据概率公式求解;23.【答案】(1)证明:连接OA,则∠COA=2∠B,∵AD=AB,∴∠B=∠D=30°,∴∠COA=60°,∴∠OAD=180°−60°−30°=90°,∴OA⊥AD,即CD是⊙O的切线;(2)解:∵BC=4,∴OA=OC=2,在Rt△OAD中,OA=2,∠D=30°,∴OD=2OA=4,AD=2√3,所以S△OAD=12OA⋅AD=12×2×2√3=2√3,因为∠COA=60°,所以S扇形COA =60π⋅22360=23π,所以S阴影=S△OAD−S扇形COA=2√3−2π3.【解析】(1)连接OA,则得出∠COA=2∠B=2∠D=60°,可求得∠OAD=90°,可得出结论;(2)可利用△OAD的面积−扇形AOC的面积求得阴影部分的面积.本题主要考查切线的判定及扇形面积的计算,证明切线时,连接过切点的半径是解题的关键.24.【答案】(1)证明:∵∠DMB是△AMF的外角,∴∠DMB=∠AFM+∠A,∵∠DMB=∠BMG+∠DME,且∠A=∠DME,∴∠AFM=∠BMG,∵∠A=∠B,∴△AMF∽△BGM;(2)解:当∠DME=∠A=∠B=45°时,可得AC⊥BC且AC=BC,∵M为AB的中点,∴AM=BM=2√2.∵△AMF∽△BGM,∴AMBG =AFBM,∴BG =AM⋅BM AF =2√2×2√23=83, ∵AC =BC ,AC 2+BC 2=AB 2=(4√2)2=32,∴AC =BC =4,∴CG =BC −BG =4−83=43,CF =AC −AF =4−3=1, ∴FG =√CF 2+CG 2=√12+(43)2=53.【解析】本题考查了相似三角形的判定与性质,属于较难题.(1)根据题意,可得∠AFM =∠BMG ,即可证得△AMF∽△BGM ;(2)由∠DME =∠A =∠B =45°,可得AC ⊥BC 且AC =BC ,又由△AMF∽△BGM ,即可求得BG 的长,进而可求得CF 与CG 的长,然后由勾股定理求得FG 的长. 25.【答案】解:在Rt △ARL 中,∵LR =AR ⋅cos30°=60×√32=30√3(km),AL =AR ⋅sin30°=30(km),在Rt △BLR 中,∵∠BRL =45°,∴RL =LB =30√3,∴AB =LB −AL =(30√3−30)km ,答:火箭在这n 秒中上升的高度为(30√3−30)km【解析】分别在Rt △ALR ,Rt △BLR 中,求出AL 、BL 即可解决问题.本题考查的是解直角三角形的应用−仰角俯角问题,锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的概念解决问题.26.【答案】解:(1)依题意,得y =(60−30−x)⋅(100+20x)=−20x 2+500x +3000, 1≤x ≤30,且x 为正整数;(2)y =−20x 2+500x +3000=−20(x −12.5)2+6125,∵1≤x ≤30,且x 为正整数,∴当x 取12或13时,有最大值,为6120,∴6120元是最大利润.(3)当y =5000时,−20(x −12.5)2+6125=5000,解得:x 1=5,x 2=20,又∵x ≤18,∴当5⩽x ⩽18且x 为正整数时,w ⩾5000即每星期的利润不低于5000元.【解析】本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.(1)根据利润y =每件利润×销售量,每件利润=60−30−x ,销售量=100+20x ,即可得y 与x 的函数关系式以及自变量x 的取值范围;(2)根据(1)的关系式配方后确定最大利润即可;(3)当y =5000时x 有两个解,可推出5≤x ≤20时,y ≥5000.再由每件商品降价不超过18元,确定x 的在什么范围内.27.【答案】解:(1)∵y =ax 2−9ax +18a =a(x −92)2−94a ,∴顶点C(92,−94a).作CM ⊥x 轴于M ,则OM =92,CM =|−94a|.当y =0时,ax 2−9ax +18a =0,解得x 1=3,x 2=6,∴A(3,0),B(6,0).∵∠BDO =∠CAB ,∠CAB =∠DAO ,∴∠DAO =∠BDO .在△ODA 与△OBD 中,{∠DAO =∠BDO ∠AOD =∠DOB =90∘, ∴△ODA∽△OBD ,∴OD OB =OA OD ,即OD 6=3OD ,∴OD =3√2.∵CM//OD ,∴OD CM =OA AM ,即3√2CM =392−3,∴CM =3√22, ∴|−94a|=3√22, ∴a =±2√23, ∴二次函数的解析式为y =2√23x 2−6√2x +12√2或y =−2√23x 2+6√2x −12√2;(2)存在.连接OC ,则OC =OD .∴∠ODC =∠OCD .∵CM//OD ,∴∠ODC =∠DCM ,∴∠OCD =∠DCM .作AN ⊥OC 于N ,AN =AM =32.∵sin∠AON =AN OA =323=12, ∴∠AON =30°,∴CM =OM ⋅tan30°=92×√33=3√32, ∴|−94a|=3√32, ∴a =±2√33, ∴二次函数的解析式为y =2√33x 2−6√3x +12√3或y =−2√33x 2+6√3x −12√3.【解析】(1)利用配方法求出抛物线y =ax 2−9ax +18a 的顶点C 的坐标为(92,−94a).作CM ⊥x 轴于M ,则OM =92,CM =|−94a|.求出A(3,0),B(6,0).再证明△ODA∽△OBD ,根据相似三角形对应边成比例求出OD =3√2.根据平行线分线段成比例定理得出OD CM =OA AM ,求得CM =3√22,那么|−94a|=3√22,求出a ,即可得到二次函数的解析式;(2)连接OC ,根据矩形的性质得出OC =OD ,那么∠ODC =∠OCD.再证明∠OCD =∠DCM.作AN ⊥OC 于N ,根据角平分线的性质得出AN =AM =32.由sin∠AON =AN OA =12,得出∠AON =30°,求出CM =OM ⋅tan30°=3√32,那么|−94a|=3√32,求出a ,即可得到二次函数的解析式.本题是二次函数的综合题,其中涉及到二次函数的性质,二次函数图象上点的坐标特征,相似三角形的判定与性质,平行线分线段成比例定理,平行线的性质,角平分线的性质,三角函数定义等知识,综合性较强,有一定难度.利用方程思想与数形结合是解题的关键. 28.【答案】证明:(1)∵AB =AC ,∴∠B =∠ACB .∵EF =EC ,∴∠EFC =∠ECF ,∵∠EFC=∠B+∠BEF,又∵∠ECF=∠ACB+∠ACE,∴∠BEF=∠ACE,∵∠EAC是公共角,∴△AEP∽△ACE,∴AEAC =APAE,∴AE2=AP⋅AC,(2)∵∠B=∠ACB,∠ECF=∠EFC,∴△ECB∽△PFC.∴S△PFCS△ECB =(FCCB)2,过点E作EH⊥CF于点H,∵EH经过圆心,EH⊥CF,∴CH=12FC=12x.∴BH=4−12x,在Rt△BEH中,∵tan∠B=EHBH =12,∴EH=2−14x.∴S△ECB=12BC⋅EH=12×4×(2−14x)=4−12x,∴y4−12x=(x4)2.∴y=8x2−x332(0<x<4),(3)①当点F在线段BC上时,∵FPEF =12,∴PEEF =PEEC=12,∵△AEP∽△ACE.∴AEAC =PEEC,∴AE=12AC,过点A作AM⊥BC,垂足为点M.∵AB=AC,BC=4,∴BM=12BC=2,在Rt△ABM中,∵tan∠B=12,∴AM=1,AB=AC=√5∴AE=√52,∴BE=3√52,②当点F在线段BC延长线上时,∵∠EFC=∠ECF,∠EFC=∠FCP+∠P,∠ECF=∠B+∠BEC.又∵∠B=∠ACB,∠ACB=∠FCP,∴∠B=∠FCP.∴∠P=∠BEC.∵∠EAC是公共角,∴△AEP∽△ACE,∴AEAC =PEEC,∵FPEF =12,∴PEEF =PEEC=32,∴AE=32AC=32√5,∴BE=5√52,综上所述,BE=3√52或5√52.【解析】此题是圆的综合题,主要考查了圆的性质,锐角三角函数,相似三角形的判定和性质,判断出△AEP∽△ACE是解本题的关键.(1)先判断出∠EFC=∠ECF,再判断出∠BEF=∠ACE,即可得出结论;(2)先判断出CH=12FC=12x.进而得出BH=4−12x,即可得出结论;(3)分两种情况,判断出两三角形相似,得出比例式进而得出AE与AC的关系,即可得出结论.。
2019-2020学年江苏省无锡市惠山区九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.已知关于x的一元二次方程x2−3x+2=0两实数根为x1、x2,则x1+x2=()A. 3B. −3C. 1D. −12.数据4,3,5,3,6,3,4的众数和中位数是()A. 3,4B. 3,5C. 4,3D. 4,53.已知⊙O的半径为6cm,OP=8cm,则点P和⊙O的位置关系是()A. 点P在圆内B. 点P在圆上C. 点P在圆外D. 无法判断4.在Rt△ABC中,∠C=90°,sinA=4,AC=6cm,则BC的长度为()5A. 6cmB. 7cmC. 8cmD. 9cm5.如图是拦水坝的横断面,堤高BC为6米,斜面坡度为1:2,则斜坡AB的长为()A. 4√3米B. 6√5米C. 12√5米D. 24米6.小兵身高1.4m,他的影长是2.1m,若此时学校旗杆的影长是12m,那么旗杆的高度()A. 4.5mB. 6mC. 7.2mD. 8m7.如图,点D在以AC为直径的⊙O上,如果∠BDC=20°,那么∠ACB的度数为()A. 20°B. 40°C. 60°D. 70°x2+2x−3,下列说法正确的是()8.对于二次函数y=−12A. 当x>0,y随x的增大而减少B. 当x=2时,y有最大值−1C. 图象的顶点坐标为(2,−5)D. 图象与x轴有两个交点9. 如图,菱形ABCD 的边AB =20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO =10,则⊙O 的半径长等于( )A. 5B. 6C. 2√5D. 3√2 10. 如图,在平面直角坐标系中,直线l 的表达式是y =kx +6(k ≠0),它与两坐标轴分别交于C 、D 两点,且∠OCD =60°,设点A 的坐标为(m,0),若以A 为圆心,2为半径的⊙A 与直线l 相交于M 、N 两点,当MN =2√2时,m 的值为( )A. 2√3−23√6B. 2√3−√63 C. 2√3−23√6或2√3+23√6D. 2√3−√63或2√3+√63二、填空题(本大题共8小题,共16.0分)11. 在1:5000的地图上,某两地间的距离是20cm ,那么这两地的实际距离为______千米.12. 已知3是一元二次方程x 2−2x +a =0的一个根,则a = ______ .13. 若一组数据1,2,x ,4的平均数是2,则这组数据的方差为 ______ .14. 圆锥侧面积为32πcm 2,底面半径为4cm ,则圆锥的母线长为______.15. 如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A 、B 、C 都在横格线上.若线段AB =6cm ,则线段BC = ______ cm .16.如图,在△ABC中,∠ACB=90°,点G是△ABC的重心,且AG⊥CG,CG的延长线交AB于H.则S△AGH:S△ABC的值为______ .17.如图,已知在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C顺时针旋转一定角度得△DEC,此时CD⊥AB,连接AE,则tan∠EAC=______ .18.如图,在四边形ABCD中,AB=BD,∠BDA=45°,BC=2,若BD⊥CD于点D,则对角线AC的最大值为______三、解答题(本大题共10小题,共84.0分)19.(1)计算:√16−|−3|+√3cos60°;(2)化简:(2a−1)2+2(a+1)20.解方程:(1)x2+4x−1=0(2)已知α为锐角,若sin(α−15°)=√3,求α的度数.221.如图,在矩形ABCD中,AB=3,AD=6,点E在AD边上,且AE=4,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF;(2)求EF的长.22.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查,调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他.该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了______名购买者:(2)请补全条形统计图:在扇形统计图中A种支付方式所对应的圆心角为______度;(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?23.在“阳光体育”活动时间,甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中丙同学的概率;(2)用画树状图或列表的方法,求恰好选中甲、乙两位同学进行比赛的概率.24.如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4√6米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.25.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)26.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用26m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设BC=xm.(1)若矩形花园ABCD的面积为165m2,求x的值;(2)若在P处有一棵树,树中心P与墙CD,AD的距离分别是13m和6m,要将这棵树围在花园内(考虑到树以后的生长,篱笆围矩形ABCD时,需将以P为圆心,1为半径的圆形区域围在内),求矩形花园ABCD面积S的最大值.27.如图,抛物线的表达式为y=ax2+4ax+4a−1(a≠0),它的图象的顶点为A,与x轴负半轴相交于点B、点C(点B在点C左侧),与y轴交于点D,连接AO交抛物线于点E,且S△AEC:S△CEO=1:3.(1)求点A的坐标和抛物线表达式;(2)在抛物线的对称轴上是否存在一点P,使得△BDP的内心也在对称轴上,若存在,求点P的坐标;若不存在,请说明理由;(3)连接BD,点Q是y轴左侧抛物线上的一点,若以Q为圆心,2√2为半径的圆与直线BD相切,求点Q的坐标.28.如图1,点A是x轴正半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连结AC,BC,CD,设点A的横坐标为t.(1)当t=2时,求CF的长;(2)①当t为何值时,点C落在线段BD上;②设△BCE的面积为S,求S与t之间的函数关系式;(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到△C′D′F′,再将A,B,C′,D′为顶点的四边形沿C′F′剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的点C′的坐标.答案和解析1.【答案】A【解析】解:∵关于x的一元二次方程x2−3x+2=0两实数根为x1、x2,∴x1+x2=−(−3)=3.故选:A.直接根据根与系数的关系求解即可.本题考查了根与系数的关系,二次项系数为1,常用以下关系:x1,x2是方程x2+px+ q=0的两根时,x1+x2=−p,x1x2=q.2.【答案】A【解析】解:在这组数据中出现次数最多的是3,即众数是3;把这组数据按照从小到大的顺序排列3,3,3,4,4,5,6,∴中位数为4;故选:A.在这组数据中出现次数最多的是6,得到这组数据的众数;把这组数据按照从小到大的顺序排列,中间的数是中位数.本题考查一组数据的中位数和众数,一组数据中出现次数最多的数据叫做众数;在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.3.【答案】C【解析】解:∵点P到圆心的距离OP=8cm,小于⊙O的半径6cm,∴点P在在圆外.故选:C.要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系,设点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.4.【答案】C【解析】【分析】根据三角函数的定义求得BC和AB的比值,设出BC、AB,然后利用勾股定理即可求解.本题考查了三角函数与勾股定理,正确理解三角函数的定义是关键.【详解】解:∵sinA=BCAB =45,∴设BC=4x,AB=5x,又∵AC2+BC2=AB2,∴62+(4x)2=(5x)2,解得:x=2或x=−2(舍),则BC=4x=8cm,故选C.5.【答案】B【解析】解:∵斜面坡度为1:2,BC=6m,∴AC=12m,则AB=√AC2+BC2=√122+62=6√5(m).故选:B.根据斜面坡度为1:2,堤高BC为6米,可得AC=12m,然后利用勾股定理求出AB 的长度.本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数的知识求解.6.【答案】D【解析】解:设旗杆的高度为xm,根据题意得:1.42.1=x12,解得:x=8,即旗杆的高度为8m,由于光线是平行的,影长都在地面上,那么可得身高与影长构成的三角形和旗杆和影长构成的三角形相似,利用对应边成比例可得旗杆的高度.本题考查了相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.7.【答案】D【解析】解:∵AC是⊙O的直径,∴∠ABC=90°,∵∠BAC=∠BDC=20°,∴∠ACB=90°−∠BAC=70°.故选:D.由AC是⊙O的直径,根据直径所对的圆周角是直角,即可得∠ABC=90°,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BAC的度数,继而求得答案.此题考查了圆周角定理.此题难度不大,注意掌握数形结合思想的应用.8.【答案】B【解析】解:∵y=−12x2+2x−3=−12(x−2)2−1,∴当x>2时,y随x的增大而减小,∴当x>0,y随x的增大而减少的说法错误,即A选项错误;∵抛物线的顶点坐标为(2,−1),且a<0,∴当x=2时,y有最大值−1,故B选项正确,C选项错误;∵b2−4ac=22−4×(−12)×(−3)=−2<0,∴抛物线与x轴没有交点,故D选项错误;故选:B.将二次函数解析式配方成顶点式,再利用二次函数的图象与性质逐一判断可得.本题主要考查抛物线与x轴的交点,解题的关键是熟练掌握二次函数的图象与性质.【解析】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB⋅DH=320,∴DH=16,在Rt△ADH中,AH=√AD2−DH2=12,∴HB=AB−AH=8,在Rt△BDH中,BD=√DH2+BH2=8√5,设⊙O与AB相切于F,连接OF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴OABD =OFBH,∴8√5=OF8,∴OF=2√5.故选:C.如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得OABD =OFBH,即可解决问题.本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.10.【答案】C【解析】解:∵直线l的表达式是y=kx+6(k≠0),它与两坐标轴分别交于C、D两点,∴D(0,6),∴OD=6,∵∠OCD=60°,∴tan60°=ODOC ,即√3=6OC,∴OC=2√3,如图1,当A在C的左面时,作AE⊥CD于E,∴ME=NE=√2,∵AM=2,∴AE=√AM2−ME2=√22−(√2)2=√2,在Rt△ACE中,∵∠OCD=60°,∴AC=AEsin60∘=√2√32=2√63,∴OA=2√3−2√63,∵点A的坐标为(m,0),∴m=2√3−2√63,如图2,当A在C的,右面时,同理证得AC=2√63,∴OA=2√3+2√63,∴m=2√3+2√63,故选:C.由直线的解析式求得D的坐标,解直角三角形求得OC,关键垂径定理求得ME=√2,利用勾股定理求得AE,然后解直角三角形求得AC,即可求得OA,从而求得m的值.本题考查了一次函数的性质,一次函数图象上点的坐标特征,垂径定理的应用,勾股定理的应用以及解直角三角形等,分类讨论是解题的关键.11.【答案】1【解析】【分析】本题考查了比例尺,利用比例尺的意义是解题关键,注意把厘米化成千米.根据比例尺的意义,可得答案.【解答】解:设两地的实际距离是x厘米,则:1:5000=20:x,∴x=100000,∵100000cm=1千米,∴两地的实际距离是1千米.故答案为1.12.【答案】−3【解析】解:∵x=3是一元二次方程x2−2x+a=0的一个根,∴9−2×3+a=0,∴a=−3.故答案为:−3.由于x=3是一元二次方程x2−2x+a=0的一个根,把x=3代入原方程即可求出a的值.此题主要考查了一元二次方程的解的定义,解题的关键是把方程的解代入原方程即可求出待定字母的取值.13.【答案】32【解析】解:∵数据1,2,x,4的平均数是2,∴(1+2+x+4)÷4=2,解得:x=1,∴这组数据是1,1,2,4,∴这组数据的方差为(1−2)2×2+(2−2)2+(4−2)24=32,故答案为:32.先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.14.【答案】8cm【解析】解:设圆锥的母线长为lcm,则12×2π×4×l=32π,解得,l=8,故答案为:8cm.设圆锥的母线长为lcm,根据扇形面积公式计算即可.本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.15.【答案】18【解析】解:∵BD//CE,∴ABAC =ADAE,即6AC=28,解得,AC=24,∴BC=AC−AB=18,故答案为:18.根据平行线分线段成比例定理列出比例式,代入计算即可.本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.16.【答案】1:6【解析】解:∵点G是△ABC的重心,∴CG=2HG,∴HG=13CH,∴S△AHG=13S△ACH,∵CH为AB边上的中线,∴S△ACH=12S△ABC,∴S△AHG=16S△ABC,∴S△AGH:S△ABC=1:6.故答案为:1:6.由点G是△ABC的重心,得到CG=2HG,于是得到HG=13CH,求得S△AHG=13S△ACH,根据CH为AB边上的中线,于是得到S△ACH=12S△ABC,推出S△AHG=16S△ABC,即可得到结论.本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查相似三角形的判定与性质.17.【答案】6−3√3【解析】解:如图,过点E作EF⊥AC,交AC延长线于点F,∵∠ACB=90°,∠B=30°,∴BC=√3AC,∠BAC=60°∵将△ABC绕点C顺时针旋转一定角度得△DEC,∴BC=CE=√3AC,∠DCE=90°,∴CE⊥CD,且CD⊥AB,∴AB//CE,∴∠ECF=∠BAC=60°,∴CF=12CE=√32AC,EF=√3CF=32AC,∴tan∠EAC=EFAF =32ACAC+√32AC=6−3√3,故答案为:6−3√3.过点E作EF⊥AC,交AC延长线于点F,由旋转的性质可得BC=CE=√3AC,∠DCE=90°,由直角三角形的性质可得CF=12CE=√32AC,EF=√3CF=32AC,即可得求解.本题考查了旋转的性质,锐角三角函数,直角三角形的性质,灵活运用旋转的性质是本题的关键.18.【答案】√5+1【解析】解:以BC为直角边,点B为直角顶点作等腰直角三角形CBE(点E在BC下方),则BC=BE,∠CBE=90°,连接DE,如图:∵AB=BD,∠BDA=45°,∴∠BAD=45°,∴∠ABD=90°,∴∠ABD=∠CBE,∴∠ABD+∠CBD=∠CBE+∠CBD,∴∠ABC=∠DBE,在△ABC和△DBE中,{AB=DB∠ABC=∠DBE, BC=BE,∴△ABC≌△DBE(SAS),∴AC=DE,∴DE的最大值即为对角线AC的最大值.∵BC=2,BD⊥CD,即∠ADC=90°,∴点D在以BC为直径的圆上运动,如上图所示,当点D在BC上方,DE经过BC的中点O时,DE有最大值,∴OD=OB=12BC=1,在Rt△BOE中,OB=1,BE=BC=2,∴OE=√BE2+OB2=√22+12=√5,∴DE=OE+OD=√5+1,∴对角线AC的最大值为√5+1.故答案为:√5+1.以BC为直角边,点B为直角顶点作等腰直角三角形CBE(点E在BC下方),连接DE,先证明△ABC≌△DBE(SAS),从而AC=DE,求DE的最大值即可.以BC为直径作圆,当点D在BC上方,DE经过BC的中点O时,DE有最大值.在Rt△BOE中,由勾股定理求得OE的值,再加上OD即为DE的值,则问题得解.本题考查了勾股定理、等腰直角三角形的性质、全等三角形的判定与性质及圆的性质等知识点,正确作出辅助线构造全等三角形并运用转化的思想是解题的关键.19.【答案】解:(1)√16−|−3|+√3cos60°=4−3+√3×1 2=1+√3 2(2)(2a−1)2+2(a+1)=4a2−4a+1+2a+2=4a2−2a+3【解析】(1)首先计算开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.【答案】解:(1)∵x2+4x=1,∴x2+4x+4=1+4,即(x+2)2=5,则x+2=±√5,∴x1=−2+√5,x2=−2−√5;(2)∵sin(α−15°)=√32,∴α−15°=60°,∴α=75°.【解析】(1)利用配方法求解可得;(2)根据特殊锐角的三角函数值求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.【答案】(1)证明:在矩形ABCD中,∠A=∠D=90°,∴∠1+∠2=90°,∵EF⊥BE,∴∠2+∠3=180°−90°=90°,∴∠1=∠3,又∵∠A=∠D=90°,∴△ABE∽△DEF;(2)解:∵AB=3,AE=4,∴BE=√AB2+AE2=√32+42=5,∵AD=6,AE=4,∴DE=AD−AE=6−4=2,∵△ABE∽△DEF,∴DEAB =EFBE,即23=EF5,解得EF=103.【解析】(1)根据矩形的性质可得∠A=∠D=90°,再根据同角的余角相等求出∠1=∠3,然后利用两角对应相等,两三角形相似证明;(2)利用勾股定理列式求出BE,再求出DE,然后根据相似三角形对应边成比例列式求解即可.本题考查了相似三角形的判定与性质,矩形的性质,利用同角的余角相等求出相等的锐角是证明三角形相似的关键.22.【答案】解:(1)56÷28%=200(名),即本次一共调查了200名购买者;故答案为:200;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200−56−44−40=60(人),补全的条形统计图如右图所示,=108°,在扇形统计图中A种支付方式所对应的圆心角为:360°×60200故答案为:108;=928(名),(3)1600×60+56200答:使用A和B两种支付方式的购买者共有928名.【解析】(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数即可;(3)根据样本估计总体计算即可.本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是:1;3(2)画树状图得:∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,∴恰好选中甲、乙两人的概率为:212=16.【解析】(1)由甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两人的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】解:(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.∴OM=EH,∵∠EHF=90°,EF=4√6,∠2=45°,∴EH=FH=OM=4√3米.(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2∵AB//OD,∴ABOD =BCOC,∴2m =1OC,∴OC=m2,∴AK=OB=m+1,NK=m−2,2在Rt△AKN中,∵∠1=60°,∴NK=√3AK,+1),∴m−2=√3(m2∴m=(14+8√3)米,∴MN=ON−OM=14+8√3−4√3=(14+4√3)米.【解析】(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.解Rt△EHF求出EH即可解决问题;(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2,想办法构建方程求出m即可解决问题;本题考查解直角三角形的应用,轴对称的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题,属于中考常考题型.25.【答案】(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=√3,∵OF⊥BD,∴BD=2BF=2√3,∠BOD=2∠BOF=120°,∴S阴影=S扇形OBD−S△BOD=120π×22360−12×2√3×1=43π−√3.【解析】(1)首先连接OD,由BC是⊙O的切线,可得∠ABC=90°,又由CD=CB,OB= OD,易证得∠ODC=∠ABC=90°,即可证得CD为⊙O的切线;(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的长,∠BOD的度数,又由S阴影=S扇形OBD−S△BOD,即可求得答案.此题考查了切线的判定与性质、垂径定理以及扇形的面积.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.26.【答案】解:(1)∵BC=xm,则AB=(26−x)m,∴x(26−x)=165,解得:x1=11,x2=15,答:x的值为11m或15m;(2)由题意可得出:S=x(26−x)=−x2+26x=−(x−13)2+169,∵在P处有一棵树与墙CD,AD的距离分别是13m和6m,考虑到树的生长,篱笆围矩形ABCD时,要将以P为圆心,1为半径的圆围在内,∴14≤x≤19,S=−x2+26x=−(x−13)2+169,∴x=14时,S取到最大值为:S=−(14−13)2+169=168,答:花园面积S的最大值为168平方米.【解析】(1)直接利用矩形面积求法结合一元二次方程的解法得出答案;(2)首先得出S与x之间的关系,进而利用二次函数增减性得出答案.此题主要考查了二次函数的应用以及一元二次方程的解法,正确结合二次函数增减性求出最值是解题关键.27.【答案】解:(1)由抛物线y =ax 2+4ax +4a −1得对称轴为直线x =−2, 当x =−2时,y =−1,∴A(−2,−1),∵S △AEC :S △CEO =1:3,∴AE :OE =1:3,∴OE :OA =3:4,过点E 作EF ⊥x 轴,垂足为点F ,设对称轴与x 轴交点为M ,∵EF//AM ,∴△OFE∽△OMA , ∴EF AM =OF OM =OE OA =34, ∴EF =34,OF =32,∴E(−32,−34), 把点E(−32,−34)代入抛物线表达式y =ax 2+4ax +4a −1,得,a =1,∴抛物线表达式为y =x 2+4x +3;(2)在y =x 2+4x +3中,当x =0时,y =3;当y =0时,x 1=−3,x 2=−1,∴B(−3,0),C(−1,0),D(0,3),由题意得∠BPM =∠DPM ,如图2,过点D 作DH ⊥AM ,垂足为点H ,设点P(−2,b)∵tan∠BPM =tan∠DPM ,∴BM PM =DH HP ,∴1−b =23−b ,∴b =−3,∴P(−2,−3);(3)设Q(m,m 2+4m +3)①如图3−1,点Q在BD左上方抛物线上,过点Q作y轴的垂线,交BD于点N,设直线BD的解析式为y=kx+3,将点B(−3,0)代入,得,k=1,∴直线BD的解析式为y=x+3,设Q(m,m2+4m+3),则N(m2+4m,m2+4m+3),∴S△BDQ=12BD⋅QK=12QN⋅OD,即12×3√2×2√2=12(m2+3m)×3,解得,m1=−4,m2=1(舍去),∴Q(−4,3);②如图3−2,当点Q在BD下方抛物线上时,过点Q作x 轴的垂线交BD于点N,则N(m,m+3),∴S△BDQ=12BD⋅QK=12QN⋅OB,即12×3√2×2√2=12(−m2−3m)×3,整理得,m2+3m+4=0,△=32−4×4=−7<0,∴方程无解,综上所述:Q(−4,3).【解析】(1)由抛物线y=ax2+4ax+4a−1得对称轴为直线x=−2,过点E作EF⊥x 轴,垂足为点F,设对称轴与x轴交点为M,证△OFE∽△OMA,求出点E的坐标,代入抛物线表达式即可求出a的值,进一步写出抛物线的表达式;(2)由题意得∠BPM=∠DPM,如图2,过点D作DH⊥AM,垂足为点H,设点P(−2,b),通过tan∠BPM=tan∠DPM,列出比例式,求出b的值即可;(3)设Q(m,m2+4m+3),求出点B,C,D的坐标,分情况讨论:①如图3−1,点Q 在BD左上方抛物线上,过点Q作y轴的垂线,交BD于点N,求出直线BD的解析式,设Q(m,m2+4m+3),则N(m2+4m,m2+4m+3),由S△BDQ=12BD⋅QK=12QN⋅OD可求出m的值,即可写出Q的坐标;②如图3−2,当点Q在BD下方抛物线上时,过点Q作x轴的垂线交BD于点N,则N(m,m+3),由S△BDQ=12BD⋅QK=12QN⋅OB可列出方程,由于方程无解,故此情况不存在.本题考查了三角形的内心,解直角三角形,二次函数的图象及性质,切线的性质定理,三角形的面积等,综合性较强,解题的关键是能够熟练掌握各性质定理,并能灵活运用等.28.【答案】解:(1)由题意,易证Rt△ACF∽Rt△BAO,∴CFOA =ACAB.∵AB=2AM=2AC,∴CF=12OA=12t.当t=2时,CF=1.(2)①由(1)知,Rt△ACF∽Rt△BAO,∴AFOB =ACAB=12,∴AF=12OB=2,∴FD=AF=2,.∵点C落在线段BD上,∴△DCF∽△DBO,∴CFOB =DFOD,即12t4=2t+4,解得t=2√5−2或t=−2√5−2(小于0,舍去)∴当t=2√5−2时,点C落在线段BD上;②当0<t<8时,如题图1所示:S=12BE⋅CE=12(t+2)⋅(4−12t)=−14t2+32t+4;当t>8时,如答图1所示:S=12BE⋅CE=12(t+2)⋅(12t−4)=14t2−32t−4.(3)符合条件的点C的坐标为:(12,4),(8,4)或(2,4).理由如下:在△CDF沿x轴左右平移的过程中,符合条件的剪拼方法有三种:方法一:如答图2所示,当F′C′=AF′时,点F′的坐标为(12,0),根据△C′D′F′≌△AHF′,△BC′H为拼成的三角形,此时C′的坐标为(12,4);方法二:如答图3所示,当点F′与点A重合时,点F′的坐标为(8,0),根据△OC′A≌△BAC′,可知△OC′D′为拼成的三角形,此时C′的坐标为(8,4);方法三:当BC′=F′D′时,点F′的坐标为(2,0),根据△BC′H≌△D′F′H,可知△AF′C′为拼成的三角形,此时C′的坐标为(2,4).【解析】(1)由Rt△ACF∽Rt△BAO,得CF=12OA=12t,由此求出CF的值;(2)①由Rt△ACF∽Rt△BAO,可以求得AF的长度;若点C落在线段BD上,则有△DCF∽△DBO,根据相似比例式列方程求出t的值;②有两种情况,需要分类讨论:当0<t≤8时,如题图1所示;当t>8时,如答图1所示.(3)本问涉及图形的剪拼.在△CDF沿x轴左右平移的过程中,符合条件的剪拼方法有三种,需要分类讨论,分别如答图2−4所示.本题考查了坐标平面内几何图形的多种性质,是一道难度较大的中考压轴题.涉及到的知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转、平移、对称)、图形的剪拼、解方程等,非常全面;分类讨论的思想贯穿第(2)②问和第(3)问,第(3)问还考查了几何图形的空间想象能力.本题涉及考点众多,内涵丰富,对考生的数学综合能力要求较高.。
2019-2020学年九年级(上)月考数学试卷一.选择题(共10小题)1.下列方程是一元二次方程的是()A.x2+2x﹣3 B.x2+3=0 C.(x2+3)2=9 D.2.关于x的一元二次方程3x2=2x﹣1的二次项系数、一次项系数、常数项分别是()A.3,﹣2,﹣1 B.3,2,﹣1 C.﹣3,﹣2,1 D.3,﹣2,13.若⊙O的弦AB等于半径,则AB所对的圆心角的度数是()A.30°B.60°C.90°D.120°4.已知⊙O的半径为r=5,点P和圆心O之间的距离为d,且方程x2﹣=0没有实数根.则点P 与⊙O的位置关系是()A.在圆上B.在圆内C.在圆外D.不能确定5.若一个三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的一根,则这个三角形的周长为()A.7 B.3或7 C.15 D.11或156.某厂一月份生产产品150台,计划二、三月份共生产该产品450台,设二、三月平均每月增长率为x,根据题意列出方程是()A.150(1+x)2=450B.150(1+x)+150(1+x)2=450C.150(1+2x)2=450D.150(1+x)2=6007.如图,⊙O的半径为5,AB=8,则圆上到弦AB所在的直线距离为1的点有()个.A.4 B.3 C.2 D.18.以下命题:①直径是弦;②长度相等的弧是等弧;③相等的弦所对的弧也相等;④圆的对称轴是直径;其中正确的个数是()A.4 B.3 C.2 D.19.如图放置等腰Rt△ABC,其中C在⊙O上,AC过点O,若DE=2,BC=7,则OC为()A.B.C.3 D.10.如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M 使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为()A.B.C.D.二.填空题(共8小题)11.若(a+b):b=3:2,则a:b=.12.若x=4的一元二次方程x2﹣2x+m=0的一个根,则另一个根为.13.关于x的一元二次方程kx2+2x﹣3=0有实数根,则k的取值范围是.14.如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为.15.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.16.如果m、n是两个不相等的实数,且满足m2﹣2m=1,n2﹣2n=1,那么代数式2m2+4n2﹣4n+2019的值为.17.如图,平面直角坐标系中,分别以点A(2,3)、点B(3,4)为圆心,以1、3为半径作⊙A、⊙B,M,N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值为.18.在平面直角坐标系中,点A(﹣5,0),以OA为直径在第二象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,作点A关于点B的对称点D,过点D作x轴垂线,分别交直线OB、x轴于点E、F,点F为垂足,当DF=4时,线段EF=.三.解答题(共10小题)19.计算:(1)(2)(a﹣2b)2﹣2b(a+2b)20.解方程:(1)x2﹣6x﹣3=0(2)2x2﹣3x﹣3=021.已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?22.在一个不透明的布袋里装有4个标有数字为﹣3、﹣1、2、4的小球,它们的材质、形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求出点P(x,y)满足x+y>1的概率.23.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,(1)求⊙O的半径;(2)求O到弦BC的距离.24.已知△ABC中,∠C=90°.(1)请你用没有刻度的直尺和圆规,在线段AB上找一点F,使得点F到边AC的距离等于FB.(注:不写作法,保留作图痕迹,对图中涉及到的点的用字母进行标注)(2)在(1)的情况下,若BC=5,AC=12,则AF=.25.某大型水果超市销售无锡水蜜桃,根据前段时间的销售经验,每天的售价x(元/箱)与销售量y(箱)有如表关系:每箱售价x(元)68 67 66 65 (40)每天销量y(箱)40 45 50 55 (180)已知y与x之间的函数关系是一次函数.(1)求y与x的函数解析式;(2)水蜜桃的进价是40元/箱,若该超市每天销售水蜜桃盈利1600元,要使顾客获得实惠,每箱售价是多少元?(3)七月份连续阴雨,销售量减少,超市决定采取降价销售,所以从7月17号开始水蜜桃销售价格在(2)的条件下,下降了m%,同时水蜜桃的进货成本下降了10%,销售量也因此比原来每天获得1600元盈利时上涨了2m%(m<100),7月份(按31天计算)降价销售后的水蜜桃销售总盈利比7月份降价销售前的销售总盈利少7120元,求m的值.26.在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE 是AM和AN的比例中项.(1)如图1,求证:∠ANE=∠DCE;(2)如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;(3)连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.27.在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.(1)若四边形OABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.28.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D、E、F分别是AC、AB、BC的中点.点P从点D 出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P、Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当点P在DE上,若S△PBQ=,求t的值.(2)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;(3)连结PG,当PG∥AB时,请直接写出t的值.。
无锡外国语学校2019—2020学年度第一学期期末考试
初三数学试卷 2020.1
出卷人:夏威 审卷人:潘锋
一、选择题(共30分)
1.sin 60°的值是 ( )
A .33
B .23
C .21
D .3
2.一元二次方程x 2-3x +k =0的一个根为x =2,则k 的值为 ( )
A .1
B .2
C .3
D .4
3.抛物线y =(x -1)2+2的顶点坐标是 ( )
A .(-1,2)
B .(1,-2)
C .(1,2)
D .(-1,-2)
4.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是 ( )
A .2
B .3
C .4
D .5
5.某果园2014年水果产量为100吨,2016年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为 ( )
A .144(1-x )2=100
B .100(1-x )2=144
C .144(1+x )2=100
D .100(1+x )2=144 6.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC =50°,则∠ADC 为 ( )
A .40°
B .50°
C .80°
D .100°
7.如图,在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是 ( )
8.已知二次函数y =x 2+mx +n 的图象经过点(-1,-3),则代数式mn +1有 ( )
A .最小值-3
B .最小值3
C .最大值-3
D .最大值3
A B C D
9.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则
a +
b 的值为 ( )
A .37
B .432+
C .3314
D .3
322
10.已知关于x 的一元二次方程()()02
1=---b x a x ()b a <的两个跟为2
1
x x 、则实数21x x b a 、、、的大小关系为 ( )
A .21x b x a <<<
B .b x x a <<<21
C .b x a x <<<21
D .21x b a x <<<
二、填空题(共16分)
11.已知21x x 、是关于 x 的方程 x 2 +4x -5=0 的两个根,则 21x x += . 12.将抛物线y =(x +2)2-5向右平移2个单位所得抛物线解析式为 .
13.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为 cm 2.
14.如图,港口A 在观测站O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距
离(即OB 的长)为 km .
15.若点M (-1,1y ),N (1,2y ),P (2
7,3y )都在抛物线y =-mx 2+4mx +m 2+1(m >0)上,则y 1、y 2、y 3大小关系为 (用“>”连接).
(第6题) (第9题)
16.如图,在由边长为1的小正方形组成的网格中.点A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为 . 17.如图,在边长为6的等边△ABC 中,D 为AC 上一点,AD =2,P 为BD 上一点,连接CP ,以CP 为
边,在PC 的右侧作等边△CPQ ,连接AQ 交BD 延长线于E ,当△CPQ 面积最小时,QE = .
18.如图,在等腰△ABC 中,AB =AC=5,BC=6,点D 、E 分别是AB 、AC 上两动点,且AD =CE ,连接CD 、BE ,CD +BE 最小值为 .
三、解答题(共84分)
19.(8分)计算:(1)2sin 30°+cos 45°-3tan 60° (2)︒+-30tan 21
3(2
2-0)().
20.(8分)解方程:(1)
x 2
-
8x +6=0 (2)()()01312
=---x x
(第16题) (第17题) (第18题)。