MBA数学概念总结归纳
- 格式:doc
- 大小:398.50 KB
- 文档页数:8
mba管综数学知识点MBA管综数学知识点一、线性代数线性代数是数学中的一个重要分支,也是MBA管综数学中的一项基础知识。
它主要研究向量、矩阵以及线性变换等概念和性质。
线性代数在MBA管综数学中的应用非常广泛,比如在最优化问题、统计学、金融学等领域都有重要的应用。
二、微积分微积分是数学中的另一个重要分支,它主要研究函数的极限、导数和积分等概念和性质。
在MBA管综数学中,微积分也是必不可少的一项知识点。
它在解决实际问题中起着重要的作用,比如在经济学中的边际分析、风险管理中的概率分布等方面。
三、概率论与数理统计概率论与数理统计是MBA管综数学中的另一项核心知识。
概率论研究的是随机现象的概率规律,而数理统计则是通过对随机样本的观察和分析,对总体的性质和参数进行推断。
在MBA管综数学中,概率论与数理统计被广泛应用于市场调研、风险评估、投资决策等领域。
四、线性规划线性规划是运筹学中的一种数学方法,也是MBA管综数学中的一项重要内容。
它主要研究线性约束条件下目标函数的最优化问题。
在线性规划中,通过建立数学模型,可以有效地解决资源配置、生产计划等问题,对企业的决策提供有力的支持。
五、离散数学离散数学是数学中的一个分支,它主要研究离散对象的性质和关系。
在MBA管综数学中,离散数学被广泛应用于信息管理、网络优化等领域。
比如在项目管理中的关键路径分析、在网络优化中的最短路径算法等方面。
六、统计推断统计推断是数理统计中的一个重要内容,它主要研究从样本中推断总体参数的方法和技巧。
在MBA管综数学中,统计推断被广泛应用于市场调研、品质管理等方面。
通过对样本数据的分析,可以对总体的特征和趋势进行推断,从而为决策提供依据。
七、决策分析决策分析是MBA管综数学中的一项重要内容,它主要研究决策问题的建模和求解方法。
在决策分析中,通过建立数学模型,可以对不同决策方案进行评估和比较,从而选择最优的方案。
决策分析在项目管理、运营管理等领域有着广泛的应用。
MBA联考数学基础知识重点汇总(一)数学知识点:集合的概念把一些能确定的对象看成一个整体,就说这个整体是由这些对象组成的一个集合,构成集合的每个对象叫做这个集合的元素。
用大写英文字母表示集合,小写英文字母表示组成集合的元素。
当a是集合A的元素时,则说a属于集合A,记做a∈A;当a不是集合A的元素时,则说a不属于集合A,记做a∉A。
组成集合的元素具有确定性、互异性,且无排列顺序。
当两个集合A,B的元素完全相同时,称这两个集合相等,记做A=B。
常用R表示实数集,Q表示有理数集,Z表示整数集,N表示自然数集,符号∅表示不含任何元素的空集。
由离散元素组成的集合,可以用列举法表示,如自然数集N={0,1,2,…,n,…},方程(x-1)(x一2)=0的解集为{1,2},方程组x-y=1与x+y=2的解集为{(3/2,1/2)}。
用集合中所有元素的共性来描述集合的方法叫做描述法.如不等式x²-2x-3>0的解集为{x│x²-2x-3>0}.偶数集为{n│n=2k,k∈Z}。
方程组x²+y²=10与x+y=2的解集可以用描述法表示为{(x,y)│x²+y²=10与x+y=2},也可以用列举法表示为{(3,一1),(一1,3)}。
实数集及其子集可以用区间表示,如R=(-∞,+∞),不等式的解集为x²-2x-3≥0的解集为(-∞,-1]∪[3,+∞),集合{x│-≤x<3}=[-1,3)。
数学知识点:集合间的关系定义4.1:对于两个集合A,B.若任意a∈A,都有a∈B,则称集合A被集合B所包含(或集合B包含集合A),记做A⊆B,此时称集合A是集合B的子集。
由定义4.1可得空集是任意集合的子集,即∅⊆A。
定义4.2:若A⊆B,且存在a∈B但a∉A则称集合A是集合B的真子集,记做A⊂B.由定义4.2可得,空集是任意非空集合的真子集。
2024年考研mba数学知识点随着社会的不断发展,MBA(Master of Business Administration)正逐渐成为越来越多人的选择。
而考研MBA作为申请MBA研究生的途径之一,其数学部分是不可避免的考核要素。
以下是2024年考研MBA数学部分的知识点,供大家参考学习。
1.高等数学高等数学是数学领域中非常重要的一门学科,也是MBA数学考试的重点内容。
主要包括微积分、多元函数、级数、常微分方程等内容。
在考研MBA数学考试中,可以通过对这些知识点的掌握和理解,解决一些实际问题并提高计算能力。
2.线性代数线性代数是MBA数学考试中的另一个重点部分。
主要包括线性方程组、矩阵和行列式、向量空间、特征值和特征向量等内容。
通过对线性代数的学习,可以帮助我们理解和解决一些与线性相关的问题。
3.概率论与数理统计概率论与数理统计是MBA数学考试中的另一个重要内容。
概率论主要包括基本概念、随机事件、概率分布、随机变量、概率密度函数等内容;数理统计主要包括抽样与统计量、参数估计、假设检验、方差分析等内容。
通过对概率论与数理统计的学习,可以帮助我们理解和分析数据,从而做出科学的决策。
4.运筹学与优化运筹学与优化是MBA数学考试中的一门重要学科。
它主要关注如何有效地解决各种决策问题。
其中,线性规划是其中的一个重点内容,涉及到目标函数、约束条件、最优解等方面。
通过对运筹学与优化的学习,可以帮助我们提高决策能力和问题解决能力。
5.金融数学金融数学是MBA数学考试中的一个新兴学科。
它主要研究与金融相关的数学模型和方法。
其中,常见的内容包括金融工程、衍生品定价、风险管理等。
通过对金融数学的学习,可以帮助我们更好地理解和分析金融市场,提高金融的决策能力。
以上是2024年考研MBA数学部分的主要知识点。
在备考过程中,我们需要注重理论知识的学习和积累,并结合实际问题进行练习和应用。
同时,我们也需要注重解题技巧的培养和题型的熟悉,通过大量的练习来提高解题的速度和准确性。
3MBAMPA管理类联考数学部分知识点归纳
一、概率和统计
1.概率的基本概念:样本空间、事件、概率的计算方法(古典概型、
几何概型、全概率公式、贝叶斯公式等)
2.随机变量与分布:随机变量的定义和分类、离散型和连续型随机变量、随机变量的分布函数、常见离散分布(二项分布、泊松分布等)、常
见连续分布(正态分布、指数分布等)
3.数理统计:样本、总体的概念、统计量与抽样分布(t分布、F分布、卡方分布等)、参数估计方法(极大似然估计、最小二乘法等)、假
设检验(单样本、双样本检验和方差分析等)
二、线性代数
1.线性方程组:线性方程组的概念、线性方程组的解集(唯一解、无
穷解、无解)、线性方程组的求解方法(高斯消元法、矩阵法等)
2.矩阵与向量:矩阵的定义和运算、矩阵的性质(转置、逆等)、矩
阵的秩与行列式、向量的定义和运算、向量的线性相关与线性无关
3.特征值与特征向量:特征值和特征向量的概念、特征值和特征向量
的计算方法、对角化与相似矩阵、矩阵的特征值和特征向量的应用
三、微积分
1.函数的极限和连续:函数的极限概念和计算方法、无穷小与无穷大、连续函数的定义和判定、间断点的分类
2.导数与微分:导数的定义和计算方法、导数的几何意义、高阶导数、隐函数求导、微分的概念和运算法则
3.积分与微积分基本定理:不定积分和定积分的概念、积分的运算法则、换元积分法、分部积分法、定积分的计算方法、微积分基本定理和牛
顿-莱布尼茨公式
以上是3MBAMPA管理类联考数学部分的主要知识点归纳。
在备考过程中,应重点理解和掌握这些知识点,并进行大量的习题练习和题型分析,
以提升数学解题能力。
mba初等数学知识点汇总mba初等数学知识点汇总【mba加油站】1、非负性:即|a|≥0,任何实数a的绝对值非负。
归纳:所有非负性的变量(1)正的偶数次方(根式)a,a,,a2,a4(2)负的偶数次方(根式)a,a,(3),a,a23、二、比和比例1、增长率p%上升率为p%2、等比定理:3、多寡性acea+c+ea==⇒=.bdfb+d+fbaaa+maa+ma>10),0(m>0)bbb+mbb+mb4、注意本部分的应用题(见专题讲义)三、平均值1、当x1,x2,⋯⋯,xn为n个正数时,它们的算术平均值不大于它们的几何平均值,即为x1+x2+⋯+xn≥x1·x2⋯xn(xi>0i=1,⋯,n)当且仅当x1=x2=⋯⋯=xn时,等号设立。
⎧a>0,b>0≥ab⎧另一端就是常数2、2⎧等号能设立≥2(ab>0),ab同号a4、n个正数的算术平均值与几何平均值成正比时,则这n个正数成正比,且等同于算术平均值。
3、根与系数的关系x1,x2就是方程ax+bx+c=0(a≠0)的两个根,则x1,x2是方程ax2+bx+c=0(a≠0)的两根4、韦达定理的应用领域利用韦达定理可以求出关于两个根的对称轮换式的数值来:(1)11x1+x2x1x2x1x22、特别注意对任一x都设立的情况(1)ax+bx+c>0对任意x都成立,则有:a>0且△(2)ax+bx+ccn=cn,即:与首末等距的两项的二项式系数相等2、cn+cn++cn=2n,即为:展开式各项二项式系数之和为2n3、常用计算公式(1)p=m⋅(m-1)(m-n+1)(2)p=1m(3)cm=(4)cn=cn=(5)cn=cn1(6)cn=cn2n-24、通项公式(△5、展开式系数(1)当n二项式系数最大,其为tn=(2)当n为奇数时,展开式共计(n+1)项(偶数),则中间两项,即为第 n-1n+1n+1n+3和第(+1=)项的二项式系数最小,其为tn+1=cn2或tn+3=cn2 5、内容列表归纳如下:s-s(n≥2)⎧nn-12、等差数列(核心)(1)通项an=a1+(n-1)d=ak+(n-k)d=nd+(a1-d)f(x)=xd+(a1-d)⇒an=f(n)比如说:未知am及an,谋d.(m,am)与(n,an)共线斜率d=n-m(2)前n项和sn(梯形面积)a1+ann(n-1)dd⨯n=na1+d=⋅n2+(a1-)n2222ddsn=⋅n2+(a1-)n抽象成关于n的二次函数f(x)=x2+(a1-)x,sn=f(n)函数的特点:(1)无常数项,即过原点(2)二次项系数为如sn=2n2-3n,d=4(3)开口方向由d同意sn=3.重要公式及性质(1)1sn2a=bk4(1)通项:(2)前nst2k-1(3)5.等比数列性质(1)通项性质:当m+n=k+t时,则am⋅an=ak⋅at6、特定数列议和。
mba考试知识点总结MBA考试是管理学硕士研究生入学考试,对于想要深造管理学的同学来说,MBA考试是非常重要的一关。
为了帮助考生更好地备考MBA考试,下面我们来总结一下MBA考试的知识点,希望能给大家带来一些帮助。
一、数学知识1.代数代数主要包括方程与不等式、函数、集合、数列等。
在MBA考试中,常考的代数知识点有方程与不等式的求解、函数的性质、集合的运算等。
2.几何几何包括平面和空间几何两个部分。
在MBA考试中,常考的几何知识点有平面几何中的三角形、圆的性质等,空间几何中的立体几何、空间向量等。
3.概率与统计概率与统计是MBA考试中的一个重要知识点。
考生需要掌握基本的概率与统计原理,以及应用这些原理解决实际问题的能力。
4.导数与积分导数与积分是微积分的两个主要部分,也是MBA考试的重点知识点。
考生需要掌握导数与积分的基本概念和运算方法,以及应用它们解决实际问题的能力。
5.排列组合与概率排列组合与概率是组合数学的两个主要部分,也是MBA考试的重点知识点。
考生需要掌握排列组合与概率的基本原理和运用方法,以及应用它们解决实际问题的能力。
二、英语知识1.阅读理解阅读理解是MBA考试的重点部分之一。
考生需要掌握阅读理解的技巧,能够快速准确地理解英语文章的内容,抓住文章的主旨和主要观点。
2.写作写作是MBA考试的另一个重点部分。
考生需要掌握写作的基本原理和技巧,能够独立撰写一篇文章、一封信或一份报告。
3.词汇与语法词汇与语法是MBA考试的基础知识,也是MBA考试中的重要考点。
考生需要掌握大量的英语词汇,并且熟练掌握英语语法的基本规则。
三、逻辑知识逻辑部分主要包括逻辑推理和逻辑填空两个部分。
在MBA考试中,常考的逻辑知识点有各种逻辑问题的推理和解题方法,以及逻辑填空题目的解题技巧。
四、管理学知识管理学知识是MBA考试的重点考点之一。
管理学知识包括管理学的基本概念、管理学的基本原理、管理学的基本技能等。
考生需要熟悉管理学的基本理论和方法,掌握管理学的基本技能。
MBA 数学概念总结一、 函数1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。
二次函数c bx ax y ++=2的图象的对称轴方程是ab x 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,。
用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx ax x f ++=2)(,(零点式))()()(21x x x x a x f -⋅-=和n m x a x f +-=2)()((顶点式)。
2、 幂函数nmx y = ,当n 为正奇数,m 为正偶数,m<n 时,其大致图象是3、 函数652+-=x x y 的大致图象是由图象知,函数的值域是)0[∞+,,单调递增区间是)3[]5.22[∞+,和,,单调递减区间是]35.2[]2(,和,-∞。
二、 不等式1、若n 为正奇数,由b a <可推出nnb a <吗? ( 能 )若n 为正偶数呢? (b a 、仅当均为非负数时才能) 2、同向不等式能相减,相除吗 (不能) 能相加吗? ( 能 )能相乘吗? (能,但有条件)3、两个正数的均值不等式是:ab ba ≥+2三个正数的均值不等式是:33abc c b a ≥++n 个正数的均值不等式是:nn n a a a na a a 2121≥+++4、两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系是2211222b a b a ab b a +≤+≤≤+4、 双向不等式是:b a b a b a +≤±≤-左边在)0(0≥≤ab 时取得等号,右边在)0(0≤≥ab 时取得等号。
三、 数列1、等差数列的通项公式是d n a a n )1(1-+=,前n 项和公式是:2)(1n n a a n S +==d n n na )1(211-+。
2、等比数列的通项公式是11-=n n q a a ,前n 项和公式是:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn3、当等比数列{}n a 的公比q 满足q <1时,n n S ∞→lim =S=qa -11。
目录第一部分算术 (2)一、比和比例 (2)二、指数和对数的性质 (3)第二部分初等代数 (4)一、实数 (4)二、代数式的乘法公式与因式分解 (5)三、方程与不等式 (5)四、数列 (8)五、排列、组合、二项式定理和古典概率 (10)第三部分几何 (13)一、常见平几何图形 (13)二、平面解析几何 (15)第一部分 算术一、比和比例1.比例具有以下性质:(1)bc ad = (2)ac bd = (3)d d c b b a +=+ (4)d dc b b a -=- (5)dc dc b a b a -+=-+(合分比定理) 2.增长率问题设原值为, 变化率为,若上升%p )(现值%1p a +=⇒ 若下降升%p )(现值%1p a -=⇒注意:p%%乙甲甲是乙的=⇔p 3.增减性)0.......(1><++⇒>m b am b m a b a )0.......(10>>++⇒<<m ba mb m a b a本题目可以用: 所有分数, 在分子分母都加上无穷(无穷大的符号无关)时, 极限是1来辅助了解。
助记:二、指数和对数的性质(一)指数 1. 2.3. 4、 5. 6、 7、100=≠a a 时,当 (二)对数)1,0,(log ≠>a a N a 1.对数恒等式2、N M MN a a a log log )(log +=3、N M NMa a a log log )(log -= 4、M n M a na log )(log = 5、M nM a nalog 1log =6.换底公式7、1log 01log ==a a a ,第二部分 初等代数一、实数(一)绝对值的性质与运算法则 1. 2. 3. 4.5、)0.........(≠=b ba b a6.(二)绝对值的非负性即负,任何实数的绝对值非0≥a归纳: 所有非负的变量1.正的偶数次方(根式), 如: 2、负的偶数次方(根式), 如: 3.指数函数考点:若干个非负数之和为0, 则每个非负数必然都为0. (三)绝对值的三角不等式b a b a b a +≤+≤- 时成立且左边等号当且仅当时成立右边等号当且仅当b a ab ab >≤≥00二、代数式的乘法公式与因式分解221()()a b a b a b +-=-、 (平方差公式)2. (二项式的完全平方公式 3、 (巧记: 正负正负) 4. (立方差公式)5、ac bc ab c b a c b a 222)(2222+++++=++三、 方程与不等式(一)一元二次方程设一元二次方程为, 则1.判别式二次函数的图象的对称轴方程是 , 顶点坐标是。
MBA数学基础知识点汇总已经进入备考复习的重要阶段了,无论那一时刻的备考复习,切记千万不能在后期忘记基础的理论知识点。
越到后期就必须要好好巩固前面学习过的知识。
这样子才会,对数学的知识点更加牢固的。
冠军华章MBA小编为各位考生整理了MBA数学的基础知识点,可以在系统强化难点重点突破阶段和冲刺阶段,有更好的基础。
一、什么是充分条件有两个命题A、B,若A 成立,一定可以推出B 成立,则A 是B 的充分条件。
如图: A B例, A:x= 1;B:x2 + x − 2 = 0思考:A: a>b B: a2>b2 A与B是什么关系?那A满足什么条件才是B的充分条件?思考:如果B成立,一定可以推出A成立,则B是A的什么条件?A又是B的什么条件?二、充分性判断的解题说明本题要求判断所给出的条件能否充分支持题干中陈述的结论。
阅读每小题中的条件(1)和(2)后选择:例,ab > 0成立第1 题.(1)a > 0,b > 0;(2)a > 0,b < 0第2 题.(1)a > 0,b < 0;(2)a > 0,b > 0第3 题.(1)a > 0;(2)b > 0第4 题.(1)a > 0,b > 0;(2)a < 0,b < 0第5 题.(1)a > 0;(2)b < 0A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和(2)单独都不充分,条件(1)(2)联合起来也不充分大纲内容——算术本章节结构图历年考试主要以考察基本概念为主,非考试的要点学员着重区别相关易混淆的概念即可。
绝对值与比例关系式本章节的难念,特别是绝值对在整式与分式及其不等式运算比较中的应用,学习时注意与以后的章节融会贯通。
第一章:实 数一、数的分类:0⎧⎧⎧⎫⎪⎪⎬⎪⎨⎪⎭⎪⎪⎪⎪⎨⎪⎩⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩正整数自然数整数有理数负整数实数正分数分数负分数无理数(无限不循环小数)二、质数:大于1的正整数,如果除了1和自身,没有其他约数的数就称为质数或素数,否则就称为合数。
则:最小的质数为2,最小的合数为4,1既不是质数也不是合数。
常见的质数:2、3、5、7、11、13、17、19、21、23、29等。
三、奇数偶数运算性质:奇数±奇数=偶数, 奇数±偶数=奇数, 偶数±偶数=偶数; 奇数×奇数=奇数, 奇数×偶数=偶数, 偶数×偶数=偶数。
四、正整数除法中的商数与余数:设正整数n 被正整数除的商数为,余数为r ,则可以表示为 :m s n ms r=+(和为自然数,).特例,能被整除是指s r 0r m ≤<n m 0r =. 性质:能被2整除的数:个位数字为0,2,4,6,8能被3整除的数:各位数字之和必能被3整除能被4整除的数:末两位(个位和十位)数字必能被4整除 能被5整除的数:个位数字为0或5能被6整除的数:同时满足能被2和3整除的条件 能被10整除的数:个位数字为0五、绝对值定义:实数a 的绝对值定义为:,(0)||,(0)a a a a a ≥⎧=⎨−<⎩【性质】(1)0x ≥,0x x +≥,0x x −≥.(2)x x =⇔0x ≥; ⇔0x ≤.(3)x x >⇔0x <;x x >−⇔0x >.(4)三角不等式:||||x y −≤x y x y +≤+;x x =−00特别的:a 、||||||x y x y xy +=+⇒≥b 、|| ||||x y x y xy −=+⇒≤c 、x y x y +≤−⇔0xy ≤.d 、||x a ≤()的解为0a >a x a −≤≤;||x a >的解为x a <−或x a >.e 、||x b a −≤()的解为0a >b a x a b −≤≤+;||x b a −>的解为x b a <−或x a b>+六、算术平均值:给定n 个数,,…,,称1a 2a n a 1211nn i i a a a a a n n=++⋅⋅⋅+==∑为这个数的算术平均值。
精心整理2019年-9月MBA 数学概念总结一、 函数 1、若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。
23二、 1若n 为正偶数呢? (b a 、仅当均为非负数时才能) 2、同向不等式能相减,相除吗 (不能)能相加吗? ( 能 )能相乘吗? (能,但有条件)3、两个正数的均值不等式是:ab ba ≥+2三个正数的均值不等式是:33abc c b a ≥++精心整理2019年-9月n 个正数的均值不等式是:nn n a a a na a a 2121≥+++4、两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系是 4、双向不等式是:b a b a b a +≤±≤-左边在)0(0≥≤ab 时取得等号,右边在)0(0≤≥ab 时取得等号。
三、 数列1=na 1+23{}n a 4m a a +5、等差数列{}n a 中,若S n =10,S 2n =30,则S 3n =60;6、等比数列{}n a 中,若S n =10,S 2n =30,则S 3n =70;四、 排列组合、二项式定理1、 加法原理、乘法原理各适用于什么情形?有什么特点? 加法分类,类类独立;乘法分步,步步相关。
2、排列数公式是:m n P =)1()1(+--m n n n =!!)(m n n -;......排列数与组合数的关系是:m n m n C m P ⋅=!组合数公式是:m n C =mm n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅; 组合数性质:m n C =m n n C - m n C +1-m n C =m n C 1+∑=nr rn C=n 2 r n rC =11--r n nC3、二项式定理: nn n r r n r n n n n nn n n b C b a C b a C b a C a C b a ++++++=+--- 222110)(二项展开式的通项公式:r r n r n r b a C T -+=1)210(n r ,,, = 五、 解析几何 1、 沙尔公式:A B x x AB -=2、 数轴上两点间距离公式:A B x x AB -=3、 直角坐标平面内的两点间距离公式:22122121)()(y y x x P P -+-=4、若点P 分有向线段21P P 成定比λ,则λ=21PP PP 5、 若点),(),(),(222111y x P y x P y x P ,,,点P 分有向线段21P P 成定比λ,则:λ=x x x x --21=yy y y --21; 6、 x =λλ++121x x y =λλ++121y y 若),(),(),(332211y x C y x B y x A ,,,则△ABC 的重心G 的坐标是⎪⎭⎫⎝⎛++++33321321y y y x x x ,。
6、求直线斜率的定义式为k=αtg ,两点式为k=1212x x y y --。
7、直线方程的几种形式:点斜式:)(00x x k y y -=-, 斜截式:b kx y +=精心整理 2019年-9月两点式:121121x x x x y y y y --=--, 截距式:1=+bya x 一般式:0=++C By Ax经过两条直线0022221111=++=++C y B x A l C y B x A l :和:的交点的直线系方程是:0)(222111=+++++C y B x A C y B x A λ8、直线222111b x k y l b x k y l +=+=:,:,则从直线1l 到直线2l 的角θ满足:tg θtg θ9、1011⎭⎝思考:方程022=++++F Ey Dx y x 在0422=-+F E D 和0422<-+F E D 时各表示怎样的图形?12、若),(),(2211y x B y x A ,,则以线段AB 为直径的圆的方程是 经过两个圆011122=++++F y E x D y x ,022222=++++F y E x D y x......的交点的圆系方程是:经过直线0=++C By Ax l :与圆022=++++F Ey Dx y x 的交点的圆系方程是:0)(22=+++++++C By Ax F Ey Dx y x λ13、圆),(00222y x P r y x 的以=+为切点的切线方程是一般地,曲线)(00022y x P F Ey Dx Cy Ax ,的以点=++-+为切点的切线方程是:0220000=++⋅++⋅-+F y y E x x D y Cy x Ax 。
例如,抛物线x y 42=的以点)21(,P 为切点的切线方程是:2142+⨯=x y ,即:1+=x y 。
注意:这个结论只能用来做选择题或者填空题,若是做解答题,只能按照求切线方程的常规过程去做。
14、研究圆与直线的位置关系最常用的方法有两种,即:①判别式法:Δ>0,=0,<0,等价于直线与圆相交、相切、相离;②考查圆心到直线的距离与半径的大小关系:距离大于半径、等于半径、小于半径,等价于直线与圆相离、相切、相交。
15、抛物线标准方程的四种形式是:,,px y px y 2222-==16、抛物线px y 22=的焦点坐标是:⎪⎭⎫⎝⎛02,p ,准线方程是:2p x -=。
若点),(00y x P 是抛物线px y 22=上一点,则该点到抛物线的焦点的距离(称为焦半径)是:20px +,过该抛物线的焦点且垂直于抛物线对称轴的弦(称为通径)的长是:p 2。
17、椭圆标准方程的两种形式是:12222=+b y a x 和12222=+bx a y)0(>>b a 。
18、椭圆12222=+b y a x )0(>>b a 的焦点坐标是)0(,c ±,准线方程是c a x 2±=,离心率是ace =,通径的长是a b 22。
其中222b a c -=。
精心整理2019年-9月19、若点),(00y x P 是椭圆12222=+by a x )0(>>b a 上一点,21F F 、是其左、右焦点,则点P 的焦半径的长是01ex a PF +=和02ex a PF -=。
20、双曲线标准方程的两种形式是:12222=-b y a x 和12222=-bx a y)00(>>b a ,。
21、双曲线12222=-y x 的焦点坐标是)0(,c ±,准线方程是a x 2±=,离心率是ace =,22232425P在原坐标系下的坐标是,),(y x 在新坐标系下的坐标是),(y x '',则x '=h x -,y '=k y -。
六、 立体几何 1、体积公式:柱体:h S V ⋅=,圆柱体:h r V ⋅=2π。
......斜棱柱体积:l S V ⋅'=(其中,S '是直截面面积,l 是侧棱长); 锥体:h S V ⋅=31,圆锥体:h r V ⋅=231π。
台体:)(31S S S S h V '+'⋅+⋅=, 圆台体:)(3122r r R R h V +⋅+=π球体:334r V π=。
4、侧面积:直棱柱侧面积:h c S ⋅=,斜棱柱侧面积:l c S ⋅'=; 正棱锥侧面积:h c S '⋅=21,正棱台侧面积:h c c S ''+=)(21; 圆柱侧面积:rh h c S π2=⋅=,圆锥侧面积:rl l c S π=⋅=21, 圆台侧面积:l r R l c c S )()(21+='+=π,球的表面积:24r S π=。
5、几个基本公式:弧长公式:r l ⋅=α(α是圆心角的弧度数,α>0); 扇形面积公式:r l S ⋅=21;圆锥侧面展开图(扇形)的圆心角公式:πθ2⋅=lr ; 圆台侧面展开图(扇环)的圆心角公式:πθ2⋅-=l rR 。
经过圆锥顶点的最大截面的面积为(圆锥的母线长为l ,轴截面顶角是θ): 十一、比例的几个性质 1、比例基本性质:bc ad dcba =⇔= 2、反比定理:c d ab dc ba =⇔= 3、更比定理:dbc ad c b a =⇔= 5、合比定理;dd c b b a d c ba +=+⇒=精心整理 2019年-9月6、 分比定理:ddc b b ad c b a -=-⇒=7、 合分比定理:dc dc b a b ad c ba -+=-+⇒= 8、 分合比定理:dc dc b a b ad c ba +-=+-⇒=9、等比定理:若nn b a b a b a b a ==== 332211,0321≠++++n b b b b ,则11321321b a b b b b a a a a n n =++++++++ 。
十二、复合二次根式的化简当B A B A ->>200,,化简比较方便。