第七章芳环上的亲电和亲核取代反应[1]
- 格式:doc
- 大小:330.50 KB
- 文档页数:8
芳环上的取代反应:(1)亲电取代反应(2)亲核取代反应 一、芳环的亲电取代反应 A 、芳环上的亲电取代历程:芳香族与亲电试剂作用时,亲电试剂先与离域的π电子结合,生成π络合物,接着亲电试剂从苯环的π体系中得到两个π电子与苯环的一个碳原子形成σ键,生成σ络合物。
此时这个碳原子由sp2杂化变成sp3杂化,苯环中的六个碳原子形成的闭合共轭体系被破环,变成四个π电子离域在五个碳原子上。
根据共轭共振论的观点,σ络合物是三个碳正离子共振结构的共振杂化体,其能量比苯环高,不稳定。
它很容易从sp3杂化碳原子上失去一个质子,碳原子由sp3杂化变成sp2杂化,再形成六个π电子离域的闭合共轭体系——苯环,从而降低了苯环的能量,产物比较稳定,生成取代苯。
1、亲电试剂的产生HNO 3+2H 2SO4NO 2++H 3O ++2HSO 4-亲电试剂2、π-络合物的形成+NO 2π-络合物23、σ-络合物的形成NO 2+HNO2σ-络合物硝基所在碳为sp 3杂化 4、消去-H ++NO 2H NO 2快B 、苯环上亲电取代反应的定位规律:从反应速度和取代基进入的位置进行考虑1、 第一类定位基(邻,对位定位基):(除卤素外,卤素对芳环有致钝作用)具有+I 或是+C 效应,其作用是增大芳环的电子云密度。
致活基NH 2NHR2OHORNHCROPhR致钝基F Cl BrI2、 第二类定位基(间位定位基):具有-I 或-C 效应,使芳环上的电子云密度降低,均为致钝基NO 2NR 3COOHCOORSO 3HCNCHOCROCCl 3C 、影响亲电取代的因素:(1)芳环上取代基对于E +进入芳环位置的影响第一类定位基-邻对位定位基第二类定位基-间位定位基共振式越多, 正电荷分散程度越大,芳正离子越稳定。
(2) 动力学控制与热力学控制: α位取代-动力学控制产物; β位取代-热力学控制产物。
(3) 邻位和对位定向比:a 亲电试剂的活性越高,选择性越低。
有机化学中的芳香亲核取代与芳香亲电取代芳香亲核取代和芳香亲电取代是有机化学中的两个重要反应类型。
这两种反应是有机芳香化合物中的氢原子被置换为另一种原子或基团的过程。
本文将详细介绍芳香亲核取代和芳香亲电取代的原理、机理和应用。
一、芳香亲核取代芳香亲核取代反应是指芳香化合物中的氢原子被一个亲核试剂取代的过程。
亲核试剂可能是氢氧根离子、卤素离子、芳基负离子等。
这种反应一般需要在碱性条件下进行。
芳香亲核取代反应的机理是由共轭碳氢键的特殊性质决定的。
芳香环中的π电子可以共享给亲核试剂,而由于环上的π电子非常稳定,取代反应的活性较低,因此需要在碱性条件下进行。
常见的芳香亲核取代反应有苯酚的溴化反应、苯的硝化反应等。
苯酚的溴化反应以环境中的溴离子为亲核试剂,生成溴苯和溴化氢。
苯的硝化反应以硝酸为亲核试剂,生成硝基苯和水。
这些反应在有机合成中具有重要意义,可以用于合成药物、香料等化合物。
二、芳香亲电取代芳香亲电取代反应是指芳香化合物中的氢原子被一个亲电试剂取代的过程。
亲电试剂可能是正离子、电子不足的分子等。
这种反应一般需要在酸性条件下进行。
芳香亲电取代反应的原理是由共轭芳香体系的特殊稳定性决定的。
共轭芳香体系能够吸引亲电试剂的正电荷,使其参与反应。
芳香环上的π电子提供了稳定性和活性中心,使得亲电试剂能够与芳香化合物反应。
常见的芳香亲电取代反应有苯的硝化反应、苯的磺化反应等。
苯的硝化反应以浓硝酸为亲电试剂,在酸性条件下发生取代反应,生成硝基苯和水。
苯的磺化反应以浓硫酸为亲电试剂,生成苯磺酸和水。
这些反应在有机合成中也具有重要意义,可以用于合成各种化合物。
三、芳香亲核取代与芳香亲电取代的比较芳香亲核取代和芳香亲电取代在机理和反应条件上有明显的区别。
芳香亲核取代需要在碱性条件下进行,而芳香亲电取代需要在酸性条件下进行。
此外,芳香亲核取代的亲核试剂通常是负离子,而芳香亲电取代的亲电试剂通常是正离子或电子不足的分子。
两种反应类型在有机合成中有着不同的应用。
亲电取代和亲核取代例子以亲电取代和亲核取代是有机化学中的两个重要概念,它们描述了在化学反应中发生的两种取代反应。
亲电取代是指一个亲电子试图取代一个离子或亲核物质中的一个原子或基团的反应。
亲核取代是指一个亲核试图取代一个分子中的一个原子或基团的反应。
下面将分别列举亲电取代和亲核取代的例子。
亲电取代的例子:1. 酸催化的醇酯化反应:酸催化下,醇和酸发生酯化反应,醇中的亲电子攻击酸中的羰基碳,形成酯。
2. 酮和醛的氧化还原反应:还原剂(如金属氢化物)提供亲电子,被酮或醛中的亲电子接受,形成醇。
3. 烯烃的电子亲加反应:亲电试剂(如卤素)攻击烯烃的π电子,形成加成产物。
4. 亲电芳香取代反应:亲电试剂(如卤素)攻击芳香化合物的芳环,取代芳环上的氢原子。
5. 酰氯酯化反应:酰氯作为亲电试剂,攻击醇中的亲电子,形成酯。
6. 羟基磺酸酯化反应:羟基磺酸作为亲电试剂,攻击醇中的亲电子,形成磺酸酯。
7. 酰基氯醇酯化反应:酰基氯作为亲电试剂,攻击醇中的亲电子,形成酯。
8. 亲电取代的氯化反应:亲电试剂(如氯化氢)攻击有机物中的亲电子,取代有机物中的原子或基团。
9. 亲电取代的溴化反应:亲电试剂(如溴化氢)攻击有机物中的亲电子,取代有机物中的原子或基团。
10. 亲电取代的碘化反应:亲电试剂(如碘化氢)攻击有机物中的亲电子,取代有机物中的原子或基团。
亲核取代的例子:1. 醇的亲核取代反应:亲核试剂(如卤代烃)攻击醇中的醇氧原子,形成醚。
2. 醛和酮的亲核取代反应:亲核试剂(如胺)攻击醛或酮中的羰基碳,形成亲核加合物。
3. 烯烃的亲核加成反应:亲核试剂(如水或醇)攻击烯烃的π电子,形成加成产物。
4. 亲核取代的碱性水解反应:碱催化下,亲核试剂(如水或醇)攻击酯或酰氯中的羰基碳,形成醇或酸。
5. 亲核取代的酸性水解反应:酸催化下,亲核试剂(如水或醇)攻击酯或酰氯中的羰基碳,形成醇或酸。
6. 亲核取代的酸性醇酯化反应:酸催化下,亲核试剂(如醇)攻击酯中的羰基碳,形成醚和酸。
有机化学基础知识亲电加成和亲核取代反应有机化学是研究有机分子结构、性质和反应的科学,而亲电加成和亲核取代反应是有机化学中常用的两种反应类型。
本文将介绍亲电加成和亲核取代反应的基本概念、机制和应用。
一、亲电加成反应亲电加成反应是指亲电试剂通过与亲电中心形成共价键来加成到底物中的反应。
亲电试剂通常是带有正电荷或弱键的化合物,如卤化物、硫酰氯、羰基化合物等。
亲电中心通常是部分正电荷的碳、氧或者氮原子。
亲电加成反应的机制可以分为两个步骤:亲电试剂的亲电攻击和生成中间物,最后由中间物与剩余部分发生质子转移或者消除反应。
经典的亲电加成反应有酯的加成反应、醛和酮的加成反应等。
亲电加成反应具有广泛的应用。
例如,酯的加成反应可以用于合成醇、酮等有机化合物;醛和酮的加成反应是合成醇的一种重要方法。
此外,亲电加成反应还可以用于药物合成、天然产物合成等领域。
二、亲核取代反应亲核取代反应是指亲核试剂通过攻击底物中部分正电荷的原子而替代其中的原子或基团的反应。
亲核试剂通常是带有负电荷或强键的化合物,如氧负离子、硫负离子、氨基等。
而底物中的亲电中心通常是部分正电荷的碳原子。
亲核取代反应的机制可以分为三个步骤:亲核试剂的亲核攻击、中间物的生成,以及从中间物中离去基团或质子转移。
经典的亲核取代反应有酰卤的亲核取代反应、醇的亲核取代反应等。
亲核取代反应在有机化学中应用广泛。
例如,酰卤的亲核取代反应可用于合成酰胺、醇等化合物;醇的亲核取代反应是制备醚的重要方法。
此外,亲核取代反应还可用于农药、染料、合成材料等的合成。
三、亲电加成和亲核取代反应的比较亲电加成和亲核取代反应都是有机化学中常见的反应类型,二者在机制和应用上存在一些差异。
1.机制上的差异:亲电加成反应是通过亲电试剂的亲电攻击形成共价键,而亲核取代反应则是亲核试剂的亲核攻击替代原子或基团。
2.反应条件的差异:亲电加成反应通常需要较强的亲电试剂和较强的酸或碱条件,而亲核取代反应可以在温和的条件下进行。
亲核反应有机反应的一类,电负性高的亲核基团向反应底物中的带正电的部分进攻而芳环上亲核取代反应历程使反应发生,这种反应为亲核反应。
与之相对的为亲电反应。
即在相互作用的两个体系之间,由于一个体系对另一个体系的原子核的吸引所引起的化学反应。
这些反应属于离子反应。
反应试剂在反应过程中,对与之相互作用的原子或体系给予或共享其电子对者,称为亲核试剂。
由亲核试剂如HO、:NR3、CN、H2N、…等与有机分子相互作用而发生的取代反应,称为亲核取代反应(SN)。
在亲核取代反应中,亲核试剂Nu进攻被作用物中的饱和碳原子,取代此饱和碳原子上的一个原子团L芳环上亲核取代反应历程能量变化。
Nu供给碳原子一对电子,生成新的共价键,碳原子与L之间的共价键破裂,L带着一对电子离去:Nu:+RL─→NuR+:L式中R为烷基。
Nu:和L:都带有孤电子对,它们可以是负离子或中性分子。
由亲核试剂HCN、H2O、丙二酸二乙酯等与世轭不饱和醛或酮进行的加成反应称亲核加成反应。
例如共轭不饱和酮与HCN加成,形成氰酮:亲电反应electrophilic reaction亲电反应指缺电子(对电子有亲和力)的试剂进攻另一化合物电子云密度较高(富电子)区域引起的反应。
亲电反应属于离子型反应(ionic reaction)的一种,是有机化学的基本反应之一。
[1]在相互作用的两个体系之间,由于一个体系对另一个体系的电子的吸引所引起的化学反应。
这些反应属于离子反应。
反应试剂在反应过程中,从与之相互作用的原子或体系得到或共享电子对者,称为亲电试剂(E+)。
凡由亲电试剂如HNO3、H2SO4、Cl2、Br2等与有机分子相互作用而发生的取代反应,称为亲电取代反应(SE):E++RX─→RE+X+式中R为烷基。
上述类型的正离子取代反应属于SE类型反应。
例如,CH3:MgBr与溴反应时,溴分子的正电荷部分(相当于上式中的E+)与带着一对电子的甲基反应:CH3:|MgBr+Br+|:Br-─→CH3Br+MgBr2亲电反应在芳香族化合物亲电取代反应中,亲电试剂进攻芳香环,生成σ络合物,然后离去基团变成正离子离开,离去基团在多数情况下为质子:一般,第二步的速率比第一步高(k2》k1,k)。
第七章芳香亲核取代反应12芳香亲核取代反应芳香亲核取代反应机理3芳香亲核取代反应(S N 2Ar)离去基团邻对位含有强吸电子取代基芳香化合物的亲核取代反应反应机理: (S N 2Ar)1)常见S N 2Ar 反应致活基团N 2+> +NR 3>NO>NO 2>CF 3>COR>CN>CO 2H>SO 3->Cl>Br>I>CO 2->Ph 2)常见的亲核试剂H -, HS -, RO -, -CN, -SCN, -OH, -CH 2R, -CHXR, NR 3, M-CH 2R 3)芳环上可被亲核试剂取代的基团F>NO 2>Cl, Br, I>-N 2+>OSO 2R>+NR 3>OAr>OR, SR, SAr>SO 2R>NR 24芳香亲核取代反应对位含有硝基芳环上的亲核取代反应反应机理: (S N 2Ar)芳环上可被亲核试剂取代的基团的活性F > Cl, Br, I由于亲核加成是速控步, L 的吸电子能力越强, 与其相连的碳原子电正性越大,对反应越有利.从反应机理看, 芳环的邻对位有吸电子取代基可以稳定中间体环己二烯负离子,对反应有利.5芳香亲核取代反应芳环上的亲核取代反应(S N 2Ar )L + Nu :-Nu + L :-Cl10% NaOH 360o C pressure H 2O +OHCl 135-160 o C H 2O +OHO 2N O 2N NaOH, H 2O Cl 100 o CH 2O +OH O 2N O 2N Na 2CO 3, H 2O NO 2NO 2Cl H 2O +OH O 2N O 2NH 2O NO 2NO 2NO 2NO 2RT硝基的影响吸电子的诱导效应吸电子的共轭效应S N 2Ar 反应硝基为邻对位致活基团6芳香亲核取代反应芳香硝基化合物的芳香亲核取代反应Cl 是好的离去基团, 不好的活化基团.硝基是好的离去基团, 也是好的活化基团Cl 位于2个硝基的邻对位, 易离去.NO 2NO 2OHNO 2NH 2NO 25% NaOHNH 3ClNO 2OMeNO 2NHNH 2NO 2H 2NNH 2NO 2NO 2NO 2MeONa MeOH7芳香亲核取代反应芳香硝基化合物的芳香亲核取代反应实例:NMe 2HNO 2NMe 2KOHONOH + Me 2NHONFO 2N OMe 93%O 2N MeONa MeOH 25o C O 2NOEt NO 2O 2N X +NO 2PhNH 2180o CO 2N NHPh + EtOH NO 2O 2NN NO 2HN + HXX= Cl, BrX= NO 2X= OC 6H 4OMe-489芳香亲核取代反应(S N 1Ar 机理)芳香重氮盐参与的芳香亲核取代反应(无铜催化无强碱)(S N 1Ar)重氮盐热不稳定,0 o C 分解较慢, 温度升高酸性增大均可以加速分解反应.同位素标记证明第一步反应可逆.X -的亲核性不能比:Nu -的强,才有利于形成Ar-Nu ;否则会有利于生成Ar-X.X -可以为HSO 4-,BF 4-,BCl 4-,BBr 4-,Cl -,Br -,I 3-等.10芳香亲核取代反应(S N 1Ar)芳香重氮盐参与的芳香亲核取代反应(无铜催化无强碱)(S N 1Ar)芳环上取代基对反应的影响: (主要看速控步)1)吸电子取代基不利于苯正离子稳定, 对反应不利; 2)给电子取代基有利于苯正离子稳定, 对反应有利;相对速度: p -NO 2< m -Cl < H < p -Mev 1/240 1/24 1 4.53) 邻对位有易形成共轭效应的给电子取代基时, 增加了C-N 键的双键性质, 不利于氮气离去, 因此对反应不利.N N Cl -+RH 2O, 29oCR+ N 2+ Cl -+11芳香亲核取代反应(S N 1Ar)芳香重氮盐的水解(S N 1Ar 机理)HSO 4-的亲核性比H 2O 弱, 只得到酚; 若用HCl, HNO 3代替H 2SO 4还会生成副产物PhCl, PhONO 2.12芳香亲核取代反应(S N 1Ar)Schiemann 反应(制备ArF)13芳香亲核取代反应(S N 1Ar)Schiemann-Olah 反应(制备ArCl, ArBr, ArI)Olah 将该反应推广到制备ArCl 和ArBr1415芳香亲核取代反应(苯炔中间体)苯炔与芳香亲核取代反应机理一.苯炔的结构sp 2-sp 2重叠很弱二.以苯炔为中间体的芳香亲核取代反应离去基团邻对位无强吸电子取代基,但邻位有氢芳香化合物在强碱条件下的亲核取代。
第七章芳环上的亲电和亲核取代反应7.1芳环的亲电取代反应
7.1.1芳环上的亲电取代历程
1、亲电试剂的产生
亲电试剂
2、π-络合物的形成
芳环上电子云密度R
3、σ-络合物的形成
硝基所在碳为sp3杂化
4、消去-H+
σ-络合物的证据
已分离出C+
通过红外和核磁等可鉴定中间体的结构。
7.1.2苯环上亲电取代反应的定位规律
从反应速度和取代基进入的位置进行考虑
1、第一类定位基(邻,对位定位基)
2、第二类定位基(间位定位基)
均为致钝基
7.1.3定位规律在有机合成中的应用
7.1.4典型的芳香亲电取代反应
1.硝化反应
硝化试剂有HNO3-H2SO4
真正的硝化试剂为硝酰正离子。
混酸体系有强氧化性
如用混酸将得氧化产物
同时还有部分氧化产物HNO3/CCl4低温时的硝化速度较快
温和的硝化试剂HNO2/C(NO2)4
可避免间位硝化与氧化
2.磺化反应
亲电试剂为SO3或(共轭酸)
特点:(1)可逆反应,可用于芳环的定向取代(占位)。
(2)置换反应,合成一些难于合成的物质。
发生间接硝化
3.卤化反应
(1)卤素作卤化剂
(2)N-卤代酰胺或N-卤代磺酰胺作卤化剂
等
其卤化性能较差,只与活泼芳烃反应,可避免氧化反应发生(芳胺和酚)。
而在非极性CCl4等溶剂中是自由基引发剂
自由基取代反应。
1. Fridel-Crafts反应
(1) 烃基化
亲电试剂产生
催化剂活性 AlCl3>FeCl3>SbCl5>SnCl4>BF3>TiCl4>ZnCl2
特点
A. 易发生重排反应
亲电试剂发生重排
B. 易发生多烷基化
C. 可逆反应
动力学条件下,遵守定位规律,热力学控制条件下得稳定的间位产物。
D. 钝化的芳烃不发生烷基化
E.-OH,-NH2和-OR等与路易斯酸配位,使催化剂难于发生烷基化,可改用烯作烷基化剂,以酚铝或苯胺铝作催化剂
(2)酰基化反应
1 用酰氯时,ACl3的量要大于1mol,用酸酐时ACl3要大于2mol。
2 酚的酰化是Fries重排
3 不会发生重排
5.重氮盐的偶联反应
ArN2+X-极弱的亲电试剂,只能与高活性的酚和芳胺反应,通常为对位缩合或同环缩合。
当重氮盐的邻对位有强吸电基时,其亲核性提高,可与芳醚或均三甲基反应。
6.氯甲基化反应
活泼芳烃才能发生反应
7.2芳香族亲核取代反应
由于芳环上的电子云密度较高,因此亲核取代比亲电取代困难得多,只有当芳环上存在较紧张的吸电子基团(-NO2,-SO3H等)时较易发生亲核取代反应。
7.2.1加成-消除历程
吸电基有利于降低芳环的电子云密度,特别是邻、对位电子云密度降低得更为显著,从而有利于亲核试剂对这些位置发生亲核加成,生成离域的碳负离子中间体(即Meisenheimer络合物).
又称为SNAr2历程
meisenheimer已被分离出
80%
7.2.2消去-加成(苯炔历程)
现象
50% 50%
57% 43%
因为没有邻位氢,推断不能发生消除反应。
历程
中间体证据(捕获,Diels-Alder反应)
7.2.3芳基重氮离子的单分子亲核取代(SNAr1)
SNAr1
证据
①v=k[PhN2+] 一级反应
②芳环上的供电基有利于反应,吸电基不利于反应,说明有正离子形成
③ 同位素标记。