2019年辽宁省沈阳市沈北新区中考数学二模试卷 解析版
- 格式:doc
- 大小:565.88 KB
- 文档页数:30
辽宁省沈阳市2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣b|的结果是( )A .a+bB .﹣a ﹣cC .a+cD .a+2b ﹣c2.小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25% ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克.若设早上葡萄的价格是 x 元/千克,则可列方程( ) A .()16.516.50.5x 125%x +=+B .()16.516.50.5x 1-25%x +=C .()16.516.5-0.5x 125%x =+D .()16.516.5-0.5x 1-25%x =3.若代数式3xx -的值为零,则实数x 的值为( ) A .x =0 B .x≠0C .x =3D .x≠34.在实数225,,0,36,-1.41472π,,有理数有( ) A .1个B .2个C .3个D .4个5.下列运算正确的( ) A .(b 2)3=b 5B .x 3÷x 3=xC .5y 3•3y 2=15y 5D .a+a 2=a 36.根据如图所示的程序计算函数y 的值,若输入的x 值是4或7时,输出的y 值相等,则b 等于( )A .9B .7C .﹣9D .﹣77.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .408.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设∠CAB =α,那么拉线BC 的长度为( )A .sin hαB .cos hαC .tan hαD .cot hα9.如图,△A′B′C′是△ABC 以点O 为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC 的面积比是4:9,则OB′:OB 为( )A .2:3B .3:2C .4:5D .4:910.如图:将一个矩形纸片ABCD ,沿着BE 折叠,使C D 、点分别落在点11,C D 处.若150C BA ∠=︒,则ABE ∠的度数为( )A .15︒B .20︒C .25︒D .30°11.如图,已知二次函数y=ax 2+bx 的图象与正比例函数y=kx 的图象相交于点A (1,2),有下面四个结论:①ab >0;②a ﹣b >﹣23;③sinα=1313;④不等式kx≤ax 2+bx 的解集是0≤x≤1.其中正确的是( )A.①②B.②③C.①④D.③④12.估计3﹣2的值应该在()A.﹣1﹣0之间B.0﹣1之间C.1﹣2之间D.2﹣3之间二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C的坐标(﹣25,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿O→A→B路线向终点B匀速运动,动点N从O点开始,以每秒2个单位长度的速度沿O→C→B→A路线向终点A匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t秒(t>0),△OMN的面积为S.则:AB的长是_____,BC的长是_____,当t=3时,S的值是_____.14.如图,已知函数y=x+2的图象与函数y=kx(k≠0)的图象交于A、B两点,连接BO并延长交函数y=kx(k≠0)的图象于点C,连接AC,若△ABC的面积为1.则k的值为_____.15.计算:﹣1﹣2=_____.16.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在0.25,那么可以推算出a大约是_________.17.如图,已知⊙O1与⊙O2相交于A、B两点,延长连心线O1O2交⊙O2于点P,联结PA、PB,若∠APB=60°,AP=6,那么⊙O2的半径等于________.18.如图,点E 在正方形ABCD 的外部,∠DCE=∠DEC ,连接AE 交CD 于点F ,∠CDE 的平分线交EF 于点G ,AE=2DG .若BC=8,则AF=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y (台)与售价x (元/台)之间的函数关系式及售价x 的取值范围; 售价(元/台) 月销售量(台) 400 200 250 x(2)当售价x (元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w (元)最大?最大利润是多少?20.(6分)有一个n 位自然数...abcd gh 能被x 0整除,依次轮换个位数字得到的新数bcd...gha 能被x 0+1整除,再依次轮换个位数字得到的新数cd...ghab 能被x 0+2整除,按此规律轮换后,d...ghabc 能被x 0+3整除,…,...habc g 能被x 0+n ﹣1整除,则称这个n 位数a ...bcd gh 是x 0的一个“轮换数”. 例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”. (1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”. (2)若三位自然数abc 是3的一个“轮换数”,其中a=2,求这个三位自然数abc . 21.(6分)如图,在△ABC 中,AB >AC ,点D 在边AC 上.(1)作∠ADE,使∠ADE=∠ACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)(2)若BC=5,点D是AC的中点,求DE的长.22.(8分)如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.(1)求证:∠BDA=∠ECA.(2)若m=2,n=3,∠ABC=75°,求BD的长.(3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)(4)试探究线段BF,AE,EF三者之间的数量关系。
辽宁省沈阳市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =41°,∠D =30°,斜边AB =4,CD =1.把三角板DCE 绕着点C 顺时针旋转11°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .42.下面几何的主视图是( )A .B .C .D .3.小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )A .B .C .D .4.如图,在Y ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=( )A .2:5B .2:3C .3:5D .3:25.小亮家与姥姥家相距24 km ,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是()A.小亮骑自行车的平均速度是12 km/hB.妈妈比小亮提前0.5 h到达姥姥家C.妈妈在距家12 km处追上小亮D.9:30妈妈追上小亮6.下列实数中,在2和3之间的是()A.πB.2π-C.325D.3287.若关于x的一元二次方程2210x x kb-++=有两个不相等的实数根,则一次函数y kx b=+的图象可能是:A.B. C.D.8.关于x的方程3x+2a=x﹣5的解是负数,则a的取值范围是()A.a<52B.a>52C.a<﹣52D.a>﹣529.二次函数y=x2+bx–1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2–2x–1–t=0(t为实数)在–1<x<4的范围内有实数解,则t的取值范围是A.t≥–2 B.–2≤t<7C.–2≤t<2D.2<t<710.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为()A.B.C.D.11.如图,△ABC中,D、E分别为AB、AC的中点,已知△ADE的面积为1,那么△ABC的面积是()A.2 B.3 C.4 D.512.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为().A.50°B.40°C.30°D.25°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=_______.14.受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为_____.15.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.16.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣12PC的最大值为_____.17.如图,在矩形ABCD中,AB=2,E是BC的中点,AE⊥BD于点F,则CF的长是_________.18.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)12 10 8 合计/kg小菲购买的数量/kg 2 2 2 6小琳购买的数量/kg 1 2 3 6从平均价格看,谁买得比较划算?()A.一样划算B.小菲划算C.小琳划算D.无法比较三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.()1求每辆A,B两种自行车的进价分别是多少?()2现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.20.(6分)如图,AB是⊙O的直径,点E是»AD上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.21.(6分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.22.(8分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=12∠BAC=60°,于是BCAB=2BDAB=3迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.(1)求证:△ADB≌△AEC;(2)若AD=2,BD=3,请计算线段CD的长;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.(3)证明:△CEF是等边三角形;(4)若AE=4,CE=1,求BF的长.23.(8分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,BC的延长线于过点A的直线相交于点E,且∠B=∠EAC.(1)求证:AE是⊙O的切线;(2)过点C作CG⊥AD,垂足为F,与AB交于点G,若AG•AB=36,tanB=22,求DF的值24.(10分)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB 相交于点E,与边CD相交于点F.(1)求证:OE=OF;(2)如图2,连接DE,BF,当DE⊥AB时,在不添加其他辅助线的情况下,直接写出腰长等于12BD的所有的等腰三角形.25.(10分)问题提出(1)如图1,在△ABC中,∠A=75°,∠C=60°,AC=62,求△ABC的外接圆半径R的值;问题探究(2)如图2,在△ABC中,∠BAC=60°,∠C=45°,AC=86,点D为边BC上的动点,连接AD以AD为直径作⊙O交边AB、AC分别于点E、F,接E、F,求EF的最小值;问题解决(3)如图3,在四边形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=123,连接AC,线段AC的长是否存在最小值,若存在,求最小值:若不存在,请说明理由.26.(12分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元.(1)求一台A型无人机和一台B型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.①求y与x的关系式;②购进A型、B型无人机各多少台,才能使总费用最少?27.(12分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD113故选A.考点: 1.旋转;2.勾股定理.2.B【解析】【分析】主视图是从物体正面看所得到的图形.解:从几何体正面看故选B . 【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图. 3.C 【解析】 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解: 【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:A 、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;B 、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;C 、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;D 、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误. 故选C 【点睛】考核知识点:正方体的表面展开图. 4.B 【解析】 【详解】∵四边形ABCD 是平行四边形, ∴AB ∥CD∴∠EAB=∠DEF ,∠AFB=∠DFE ∴△DEF ∽△BAF∴()2DEF ABF S S DE AB ∆∆=::∵DEF ABF S S 425∆∆=::, ∴DE :AB=2:5 ∵AB=CD , ∴DE :EC=2:35.D【解析】【分析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.【详解】解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选D.【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键.6.C【解析】【详解】分析:先求出每个数的范围,逐一分析得出选项.详解:A、3<π<4,故本选项不符合题意;B、1<π−2<2,故本选项不符合题意;C、,故本选项符合题意;D、<4,故本选项不符合题意;故选C.点睛:本题考查了估算无理数的大小,能估算出每个数的范围是解本题的关键.7.B【解析】【分析】【详解】由方程2210x x kb ++=-有两个不相等的实数根,可得()4410kb =-+V>, 解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B. 8.D 【解析】 【分析】先解方程求出x ,再根据解是负数得到关于a 的不等式,解不等式即可得. 【详解】解方程3x+2a=x ﹣5得 x=522a--, 因为方程的解为负数,所以522a--<0, 解得:a >﹣52.【点睛】本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变. 9.B 【解析】 【分析】利用对称性方程求出b 得到抛物线解析式为y=x 2﹣2x ﹣1,则顶点坐标为(1,﹣2),再计算当﹣1<x <4时对应的函数值的范围为﹣2≤y <7,由于关于x 的一元二次方程x 2﹣2x ﹣1﹣t=0(t 为实数)在﹣1<x <4的范围内有实数解可看作二次函数y=x 2﹣2x ﹣1与直线y=t 有交点,然后利用函数图象可得到t 的范围. 【详解】抛物线的对称轴为直线x=﹣2b=1,解得b=﹣2, ∴抛物线解析式为y=x 2﹣2x ﹣1,则顶点坐标为(1,﹣2), 当x=﹣1时,y=x 2﹣2x ﹣1=2;当x=4时,y=x 2﹣2x ﹣1=7, 当﹣1<x <4时,﹣2≤y <7,而关于x 的一元二次方程x 2﹣2x ﹣1﹣t=0(t 为实数)在﹣1<x <4的范围内有实数解可看作二次函数y=x 2﹣2x ﹣1与直线y=t 有交点,∴﹣2≤t <7,故选B .【点睛】本题考查了二次函数的性质、抛物线与x 轴的交点、二次函数与一元二次方程,把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程是解题的关键. 10.B【解析】【分析】匀速直线运动的路程s 与运动时间t 成正比,s-t 图象是一条倾斜的直线解答.【详解】∵甲、乙两人分别以4m/s 和5m/s 的速度,∴两人的相对速度为1m/s ,设乙的奔跑时间为t (s ),所需时间为20s ,两人距离20s×1m/s=20m , 故选B .【点睛】此题考查函数图象问题,关键是根据匀速直线运动的路程s 与运动时间t 成正比解答.11.C【解析】【分析】根据三角形的中位线定理可得DE ∥BC ,DE BC =12,即可证得△ADE ∽△ABC ,根据相似三角形面积的比等于相似比的平方可得ADE ABC S S ∆∆=14,已知△ADE 的面积为1,即可求得S △ABC =1. 【详解】∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,DE BC =12, ∴△ADE ∽△ABC , ∴ADE ABC S S ∆∆=(12)2=14, ∵△ADE 的面积为1,∴S △ABC =1.故选C .【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,先证得△ADE∽△ABC,根据相似三角形面积的比等于相似比的平方得到ADEABCSS∆∆=14是解决问题的关键.12.B【解析】【详解】解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B.【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.5【解析】在Rt△ABC中,225AC=AB+BC,∵将△ABC折叠得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.设B′E=BE=x,则CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得32x=.14.5.5×1.【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解:5.5亿=5 5000 0000=5.5×1,故答案为5.5×1.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.15.43【解析】试题分析:1204=2180rππ⨯,解得r=43.考点:弧长的计算.16.1【解析】分析: 由PD−12PC =PD−PG≤DG ,当点P 在DG 的延长线上时,PD−12PC 的值最大,最大值为DG =1. 详解: 在BC 上取一点G ,使得BG =1,如图,∵221PB BG ==,422BC PB ==, ∴PB BC BG PB =, ∵∠PBG =∠PBC ,∴△PBG ∽△CBP ,∴12PG BG PC PB ==, ∴PG =12PC , 当点P 在DG 的延长线上时,PD−12PC 的值最大,最大值为DG 2243+1. 故答案为1点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.172【解析】试题解析:∵四边形ABCD 是矩形,90ABE BAD ∴∠=∠=o ,∵AE ⊥BD , 90AFB ∴∠=o ,90BAF ABD ABD ADB ∴∠+∠=∠+∠=o ,BAE ADB ∴∠=∠, ∴△ABE ∽△ADB , AD AB AB BE,∴= ∵E 是BC 的中点, 2AD BE ∴=, 2222BE AB ∴==, 12BE BC ∴=∴=,,22223,6AE AB BE BD BC CD ∴+==+=,6.3AB BE BF AE ⋅∴== 过F 作FG ⊥BC 于G ,FG CD ∴P , BFG BDC V V ∽,∴ FG BF BG CD BD BC ∴==,22,3FG BG ∴==, 43CG ∴=, 22 2.CF FG CG ∴=+=故答案为 2.18.C【解析】试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.考点:平均数的计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)每辆A 型自行车的进价为2 000元,每辆B 型自行车的进价为1 600元;(2)当购进A 型自行车34辆,B 型自行车66辆时获利最大,最大利润为13300元.【解析】【分析】(1)设每辆B 型自行车的进价为x 元,则每辆A 型自行车的进价为(x+10)元,根据题意列出方程,求出方程的解即可得到结果;(2)由总利润=单辆利润×辆数,列出y 与x 的关系式,利用一次函数性质确定出所求即可.【详解】(1)设每辆B 型自行车的进价为x 元,则每辆A 型自行车的进价为(x+10)元,根据题意,得=,解得x=1600,经检验,x=1600是原方程的解,x+10=1 600+10=2 000,答:每辆A 型自行车的进价为2 000元,每辆B 型自行车的进价为1 600元;(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根据题意,得,解得:33≤m≤1,∵m为正整数,∴m=34,35,36,37,38,39,1.∵y=﹣50m+15000,k=﹣50<0,∴y随m的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.【点睛】本题主要考查一次函数的应用、分式方程的应用及一元一次不等式组的应用.仔细审题,找出题目中的数量关系是解答本题的关键.20.(1)证明见解析(2)BC=【解析】【分析】(1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O 的切线;(2)可证明△ABC∽△BDC,则BC CDCA BC=,即可得出10.【详解】(1)∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴BC CDCA BC=,即BC2=AC•CD=(AD+CD)•CD=10,∴10.考点:1.切线的判定;2.相似三角形的判定和性质.21.(1)(2)证明见解析【解析】【分析】(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.【详解】解:如图 1 中,在AB 上取一点M,使得BM=ME,连接ME.在Rt△ABE 中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴,∴x=(负根已经舍弃),∴AB=AC=(2+ )•,∴BC= AB= +1.作CQ⊥AC,交AF 的延长线于Q,∵ AD=AE ,AB=AC ,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【点睛】本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22.(1)见解析;(2)CD =233;(3)见解析;(4)23【解析】试题分析:迁移应用:(1)如图2中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;(2)结论:CD=3AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=3 2AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=3AD+BD,即可解决问题;拓展延伸:(3)如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;(4)由AE=4,EC=EF=1,推出AH=HE=2,FH=3,在Rt△BHF中,由∠BFH=30°,可得HFBF=cos30°,由此即可解决问题.试题解析:迁移应用:(1)证明:如图2,∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,DA=EA,∠DAB=∠EAC,AB=AC,∴△DAB≌△EAC,(2)结论:CD=3AD+BD.理由:如图2-1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=32AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=3AD+BD=233+.拓展延伸:(3)如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,(4)∵AE=4,EC=EF=1,∴AH=HE=2,FH=3,在Rt△BHF中,∵∠BFH=30°,∴HFBF=cos30°,∴3 3=23.(1)见解析;(2)3【解析】分析:(1)欲证明AE是⊙O切线,只要证明OA⊥AE即可;(2)由△ACD∽△CFD,可得DF CDCD AD=,想办法求出CD、AD即可解决问题.详解:(1)证明:连接CD.∵∠B=∠D,AD是直径,∴∠ACD=90°,∠D+∠1=90°,∠B+∠1=90°,∵∠B=∠EAC,∴∠EAC+∠1=90°,∴OA⊥AE,∴AE是⊙O的切线.(2)∵CG⊥AD.OA⊥AE,∴CG∥AE,∴∠2=∠3,∵∠2=∠B,∴∠3=∠B,∵∠CAG=∠CAB,∴△ABC∽△ACG,∴AC AB AG AC=,∴AC2=AG•AB=36,∴AC=6,∵tanD=tanB=22,在Rt△ACD中,tanD=ACCD=2CD=2=62,AD=()22662+=63,∵∠D=∠D,∠ACD=∠CFD=90°,∴△ACD∽△CFD,∴DF CD CD AD=,∴3点睛:本题考查切线的性质、圆周角定理、垂径定理、相似三角形的判定和性质、解直角三角形等知识,解题关键是灵活运用所学知识解决问题,属于中考常考题型.24.(1)证明见解析;(2)△DOF,△FOB,△EOB,△DOE.【解析】【分析】(1)由四边形ABCD是平行四边形,可得OA=OC,AB∥CD,则可证得△AOE≌△COF(ASA),继而证得OE=OF ;(2)证明四边形DEBF 是矩形,由矩形的性质和等腰三角形的性质即可得出结论.【详解】(1)∵四边形ABCD 是平行四边形,∴OA=OC ,AB ∥CD ,OB=OD ,∴∠OAE=∠OCF ,在△OAE 和△OCF 中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ),∴OE=OF ;(2)∵OE=OF ,OB=OD ,∴四边形DEBF 是平行四边形,∵DE ⊥AB ,∴∠DEB=90°,∴四边形DEBF 是矩形,∴BD=EF ,∴OD=OB=OE=OF=12BD , ∴腰长等于12BD 的所有的等腰三角形为△DOF ,△FOB ,△EOB ,△DOE . 【点睛】本题考查了等腰三角形的性质与平行四边形的性质,解题的关键是熟练的掌握等腰三角形的性质与平行四边形的性质.25.(1)△ABC 的外接圆的R 为1;(2)EF 的最小值为2;(3)存在,AC 的最小值为92.【解析】【分析】(1)如图1中,作△ABC 的外接圆,连接OA ,OC .证明∠AOC=90°即可解决问题;(2)如图2中,作AH ⊥BC 于H .当直径AD 的值一定时,EF 的值也确定,根据垂线段最短可知当AD 与AH 重合时,AD 的值最短,此时EF 的值也最短;(3)如图3中,将△ADC 绕点A 顺时针旋转90°得到△ABE ,连接EC ,作EH ⊥CB 交CB 的延长线于H ,设BE=CD=x .证明EC=AC ,构建二次函数求出EC 的最小值即可解决问题. 【详解】解:(1)如图1中,作△ABC 的外接圆,连接OA ,OC .∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=12,∴OA=OC=1,∴△ABC的外接圆的R为1.(2)如图2中,作AH⊥BC于H.∵AC=86,∠C=45°,∴AH=AC•sin45°=86×22=83,∵∠BAC=10°,∴当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短,如图2﹣1中,当AD⊥BC时,作OH⊥EF于H,连接OE,OF.∵∠EOF=2∠BAC=20°,OE=OF,OH⊥EF,∴EH=HF,∠OEF=∠OFE=30°,∴EH=OF•cos30°=43•3=1,∴EF=2EH=2,∴EF的最小值为2.(3)如图3中,将△ADC绕点A顺时针旋转90°得到△ABE,连接EC,作EH⊥CB交CB的延长线于H,设BE=CD=x.∵∠AE=AC,∠CAE=90°,∴EC2AC,∠AEC=∠ACE=45°,∴EC的值最小时,AC的值最小,∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,∴∠∠BEC+∠BCE=10°,∴∠EBC=20°,∴∠EBH=10°,∴∠BEH=30°,∴BH=12x,EH=32x,∵CD+BC=3,CD=x,∴BC=3x∴EC2=EH2+CH23)2+211232x x⎛⎫+⎪⎝⎭=x2﹣3x+432,∵a=1>0,∴当x=﹣1232-=3时,EC的长最小,此时EC=18,∴AC=22EC=2,∴AC 的最小值为.【点睛】本题属于圆综合题,考查了圆周角定理,勾股定理,解直角三角形,二次函数的性质等知识,解题的关键是学会添加常用辅助线,学会构建二次函数解决最值问题,属于中考压轴题.26.(1)一台A 型无人机售价800元,一台B 型无人机的售价1000元;(2)①y =﹣200x+50000;②购进A 型、B 型无人机各16台、34台时,才能使总费用最少.【解析】【分析】(1)根据3台A 型无人机和4台B 型无人机共需6400元,4台A 型无人机和3台B 型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;(2)①根据题意可以得到y 与x 的函数关系式;②根据①中的函数关系式和B 型无人机的数量不少于A 型无人机的数量的2倍,可以求得购进A 型、B 型无人机各多少台,才能使总费用最少.【详解】解:(1)设一台A 型无人机售价x 元,一台B 型无人机的售价y 元,346400436200x y x y +=⎧⎨+=⎩, 解得,8001000x y =⎧⎨=⎩, 答:一台A 型无人机售价800元,一台B 型无人机的售价1000元;(2)①由题意可得,y 800x 100050x 200x 50000++=(﹣)=﹣,即y 与x 的函数关系式为y 200x 50000+=﹣; ②∵B 型无人机的数量不少于A 型无人机的数量的2倍,50x 2x ﹣∴≥, 解得,2163x ≤, y 200x 50000+Q =﹣,∴当x 16=时,y 取得最小值,此时y 20016500004680050x 34⨯+=﹣=,﹣=, 答:购进A 型、B 型无人机各16台、34台时,才能使总费用最少.【点睛】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答.27.(1)DD′=1,A′F= 4;(2)154;(1)754. 【解析】【分析】(1)①如图①中,∵矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A'B'C'D',只要证明△CDD′是等边三角形即可解决问题;②如图①中,连接CF ,在Rt △CD′F 中,求出FD′即可解决问题;(2)由△A′DF ∽△A′D′C ,可推出DF 的长,同理可得△CDE ∽△CB′A′,可求出DE 的长,即可解决问题;(1)如图③中,作FG ⊥CB′于G ,由S △ACF =12•AC•CF=12•AF•CD ,把问题转化为求AF•CD ,只要证明∠ACF=90°,证明△CAD ∽△FAC ,即可解决问题;【详解】解:(1)①如图①中,∵矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC =4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,∴DD′=CD=1.②如图①中,连接CF .∵CD=CD′,CF=CF ,∠CDF=∠CD′F=90°,∴△CDF ≌△CD′F ,∴∠DCF=∠D′CF=12∠DCD′=10°. 在Rt △CD′F 中,∵tan ∠D′CF=''D F CD ,∴,∴A′F=A′D′﹣D′F=4(2)如图②中,在Rt △A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF ∽△A′D′C ,∴''''A D DF A D CD =,∴243DF =, ∴DF=32. 同理可得△CDE ∽△CB′A′,∴'''CD ED CB A B =,∴343ED =, ∴ED=94,∴EF=ED+DF=154. (1)如图③中,作FG ⊥CB′于G .∵四边形A′B′CD′是矩形,∴GF=CD′=CD=1. ∵S △CEF=12•EF•DC=12•CE•FG , ∴CE=EF ,∵AE=EF ,∴AE=EF=CE ,∴∠ACF=90°.∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴AC AD AF AC,∴AC2=AD•AF,∴AF=254.∵S△ACF=12•AC•CF=12•AF•CD,∴AC•CF=AF•CD=754.。
2019届辽宁沈阳沈河区中考二模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. |-2|的绝对值的相反数是()A. -2B. 2C. -3D. 3二、选择题2. 如图,在数轴上标注了四段范围,则表示的点落在()A.①段 B.②段 C.③段 D.④段3. 下列几何体的主视图既是中心对称图形又是轴对称图形的是()4. 生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为()A.0.432×10-5 B.4.32×10-6 C.4.32×10-7 D.43.2×10-75. 不等式组的解集在数轴上表示正确的是()6. 下列事件是确定事件的是()A.任买一张电影票,座位是偶数B.在一个装有红球和白球的箱子中,任摸一个球是红色的C.随意掷一枚均匀的硬币,正面朝上D.三根长度分别为2cm、3cm、5cm的木棒能摆成三角形7. 如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3等于()A.55° B.60° C.65° D.70°8. 计算一组数据:8,9,10,11,12的方差为()A.1 B.2 C.3 D.49. 上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元.下列所列方程中正确的是()A.168(1+a)2=128 B.168(1-a%)2=128C.168(1-2a%)=128 D.168(1-a2%)=12810. 如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是()A.x<1 B.x>1 C.x<3 D.x>3三、填空题11. 分解因式:2x2-4x+2= .12. 如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD= .13. 如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y 轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(2a,b+1),则a与b的数量关系为.14. 一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.15. 用配方法求抛物线y=x2-4x+1的顶点坐标,配方后的结果是.16. 如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE 的长是.四、计算题17. 计算:()-2-6sin30°-()0++||.五、解答题18. 如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:CE=CF.(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.19. 为了解学生的课余生活,某中学在全校范围内随机抽取部分学生进行问卷调查,问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类.调查后将数据绘制成扇形统计图和条形统计图(如图所示).(1)请根据所给的扇形图和条形图,直接填写出扇形图中缺失的数据,并把条形图补充完整;(2)在扇形统计图中,音乐类选项所在的扇形的圆心角的大小为°;(3)这所中学共有学生1200人,求喜欢音乐和美术类的课余生活共有多少人?(4)在问卷调查中,小丁和小李分别选择了音乐类和美术类,校学生会要从选择音乐类和美术类的学生中分别抽取一名学生参加活动,用列表或画树状图的方法求小丁和小李恰好都被选中的概率.20. 如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA=75厘米.展开小桌板使桌面保持水平,此时CB⊥AO,∠AOB=∠ACB=37°,且支架长OB与桌面宽BC的长度之和等于OA的长度.求小桌板桌面的宽度BC.(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)21. 某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?(1)根据题意,甲和乙两同学都先假设该校购买的乒乓球拍与羽毛球拍的数量能相同,并分别列出的方程如下:甲:;乙:,根据两位同学所列的方程,请你分别指出未知数x,y表示的意义:甲:x表示;乙:y表示;(2)该校购买的乒乓球拍与羽毛球拍的数量能相同吗?说明理由(写出完整的解答过程).22. 已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧上取一点E使∠EBC=∠DEC,延长BE依次交AC于点G,交⊙O于H.(1)求证:AC⊥BH;(2)若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长.23. 一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.24. 已知:如图1,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足为E,点F是点E关于AB的对称点,连接AF,BF.(1)AE的长为,BE的长为;(2)如图2,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′.①在旋转过程中,当A′F′与AE垂直于点H,如图3,设BA′所在直线交AD于点M,请求出DM的长;②在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q,是否存在这样的P、Q两点,使△DPQ为以PQ为底的等腰三角形?请直接写出DQ的长.六、计算题25. 已知:如图,抛物线y=ax2+bx+2与x轴交于点A(4,0)、E(-2,0)两点,连结AB,过点A作直线AK⊥AB,动点P从A点出发以每秒个单位长度的速度沿射线AK运动,设运动时间为t秒,过点P作PC⊥x轴,垂足为C,把△ACP沿AP对折,使点C落在点D处.(1)求抛物线的解析式;(2)当点D在△ABP的内部时,△ABP与△ADP不重叠部分的面积为S,求S与t之间的函数关系式,并直接写出t的取值范围;(3)若线段AC的长是线段BP长的,请直接写出此时t的值;(4)是否存在这样的时刻,使动点D到点O的距离最小?若存在请直接写出这个最小距离;若不存在,说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
数学(文科)参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数,选择题和填空题不给中间分.一、选择题1. D2. A3. A4. B5. C6. B7. D 8. B 9. A 10. B 11. D 12. C二、填空题13. 8 14. 2 15. 16.三、解答题17.解:(Ⅰ)由正弦定理得:所以,,………………………………3分所以所以………………………………………………6分(Ⅱ)设,则,所以解得:所以………………………………………12分18. 解:(I)估计第一车间生产时间小于75min的人数为(人)……..2分估计第二车间生产时间小于75min的人数为(人)…………………………………………………….4分(II)第一车间生产时间平均值约为(min) (5)分第二车间生产时间平均值约为(min) (6)分∵,∴第二车间工人生产效率更高………………………………………..8分(III)由题意得,第一车间被统计的生产时间小于75min的工人有6人,其中生产时间小于65min的有2人,分别用A1、A2代表生产时间小于65min的工人,用B1、B2、B3、B4代表生产时间大于或等于65min,且小于75min的工人.抽取2人基本事件空间为{(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B),(B2,B3),(B2,B4),(B3,B4)}共15个基本事4件,……………………………………………..9分设事件A=“2人中至少1人生产时间小于65min”,则事件={(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B),(A2,B2),(A2,B3),(A2,B4)}共9个基本事1件…………………………………………………10分∴ (12)分19. (I)证明:在等腰梯形ABCD中,连接BD,交AE于点O,,∴四边形ABCE为平行四边形,∴AE=BC=AD=DE,∴△ADE为等边三角形,∴在等腰梯形ABCD中,,∴在等腰中,∴即,∴,…2分翻折后可得:,又,,,……4分,;………5分(II)设点C到平面PAB的距离为d,由题意得,时,四棱锥P-ABCE体积最大,………6分,,,,……………………………………7分……………………8分,……………10分…………………………12分20.解:(I),,又,且,,,因此椭圆C的方程为.……………4分(II)法一:设,,,,直线:……①直线:……②由①,②解得:,又,,……………8分四边形的面积,……………10分,当时,的最大值为.………………………12分法二:设直线:,则直线:……①直线与椭圆C:的交点M的坐标为,……6分则直线的斜率为,直线:……②由①,②解得N点的横坐标为,…………………………8分四边形的面积,……………………………………………………………………………………10分当且仅当时,取得最大值.………………………………12分21.解:(Ⅰ) (1)分∵,∴当时,取最大值,∴,∵,∴ (2)分∴此时,在上,,单调递减,在上,,单调递增,∴的极小值点为,无极大值点. (4)分(Ⅱ)∵其中且,∴在上,,单调递减,在上,,单调递增,∴ (6)分∵关于的不等式有解,∴,∵,∴ (7)分令,∴,………………………………………9分在上,,单调递增,在上,,单调递减,∴, (10)分∴等价于且∴的取值范围是且.………………………………………………………12分22.解:(Ⅰ)直线的参数方程为,即(为参数)………………………………………2分设,,即,即,所以.……………………………………………5分(Ⅱ)将的参数方程代入的直角坐标方程中,……………………………7分即,为方程的两个根,所以,………………9分所以.…………………………………………10分23.解:(Ⅰ)①当时,………1分②当时,………………2分③当时,………………3分综上:的解集为……………………………5分(II)法一:由(I)可知,即………………………………………………………………………6分又且,则,设,,,,,同理:,,,……8分,,即,……9分当且仅当时,取得最大值.……………………10分法二:由(I)可知,即……………………………………………………6分且,………………………………………………………………………………9分当且仅当时,取得最大值.……………………10分法三:由(I)可知,即…………………………………………6分,…………7分由柯西不等式可知即………………………………9分当且仅当,即时,取得最大值.………………………………10分 高难拉分攻坚特训(一)1.已知椭圆M :x 2a 2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,设圆C 在点P 处的切线斜率为k 1,椭圆M 在点P 处的切线斜率为k 2,则k 1k 2的取值范围为( )A .(1,6)B .(1,5)C .(3,6)D .(3,5)答案 D解析 由于椭圆M :x 2a 2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,所以⎩⎨⎧a 2>6-a 2,6-a 2>1,解得3<a 2<5.设椭圆M :x 2a 2+y 2=1与圆C :x 2+y 2=6-a 2在第一象限的公共点P (x 0,y 0),则椭圆M 在点P 处的切线方程为x 0xa 2+y 0y =1,圆C 在P 处的切线方程为x 0x +y 0y =6-a 2,所以k 1=-x 0y 0,k 2=-x 0a 2y 0,k 1k 2=a 2,所以k 1k 2∈(3,5),故选D. 2.已知数列{a n }满足a 1=4,a n +1=4-4a n,且f (n )=(a 1-2)(a 2-2)+(a 2-2)(a 3-2)+(a 3-2)(a 4-2)+…+(a n -1)(a n +1-2),若∀n ≥3(n ∈N *),f (n )≥m 2-2m 恒成立,则实数m 的最小值为________.答案 -1解析 ∵a 1=4,a n +1=4-4a n,∴2a n +1-2=24a n -4a n -2=a n a n -2=1+2a n -2,又2a 1-2=1,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2a n -2是以1为首项,1为公差的等差数列,∴2a n -2=1+n -1=n ,a n -2=2n ,令b n =(a n -2)(a n +1-2)=2n ·2n +1=4⎝ ⎛⎭⎪⎫1n -1n +1,∴f (n )=(a 1-2)(a 2-2)+(a 2-2)(a 3-2)+(a 3-2)·(a 4-2)+…+(a n -2)(a n +1-2)=b 1+b 2+…+b n =4×⎝⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=4n n +1. 若∀n ≥3(n ∈N *),f (n )≥m 2-2m 恒成立, 则f (n )min ≥m 2-2m . 易知f (n )=4nn +1在[3,+∞)上是增函数, ∴f (n )min =f (3)=3,即m 2-2m -3≤0, 解得-1≤m ≤3, ∴实数m 的最小值为-1.3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点F 和上顶点B 在直线3x -3y +3=0上,A 为椭圆上位于x 轴上方的一点且AF ⊥x 轴,M ,N 为椭圆C 上不同于A 的两点,且∠MAF =∠NAF .(1)求椭圆C 的标准方程;(2)设直线MN 与y 轴交于点D (0,d ),求实数d 的取值范围. 解 (1)依题意得椭圆C 的左焦点为F (-1,0),上顶点为B (0,3), 故c =1,b =3,所以a =b 2+c 2=2, 所以椭圆C 的标准方程为x 24+y 23=1.(2)设直线AM 的斜率为k , 因为∠MAF =∠NAF ,所以AM ,AN 关于直线AF 对称, 所以直线AN 的斜率为-k , 易知A ⎝ ⎛⎭⎪⎫-1,32,所以直线AM 的方程是y -32=k (x +1), 设M (x 1,y 1),N (x 2,y 2), 联立⎩⎪⎨⎪⎧y -32=k (x +1),x 24+y 23=1,消去y ,得(3+4k 2)x 2+(12+8k )kx +(4k 2+12k -3)=0, 所以x 1=-4k 2-12k +33+4k 2,将上式中的k 换成-k ,得x 2=-4k 2+12k +33+4k 2,所以k MN =y 1-y 2x 1-x 2=k [(x 1+x 2)+2]x 1-x 2=k ⎝ ⎛⎭⎪⎫-8k 2+63+4k 2+2-24k 3+4k 2=-12,所以直线MN 的方程是y =-12x +d ,代入椭圆方程x 24+y 23=1,得x 2-dx +d 2-3=0, 所以Δ=(-d )2-4(d 2-3)>0, 解得-2<d <2,又因为MN 在A 点下方, 所以-1×12+32>d ⇒d <1, 所以-2<d <1.4.已知函数f (x )=(x -1)e x -ax 2(e 是自然对数的底数). (1)讨论函数f (x )的极值点的个数,并说明理由;(2)若对任意的x >0,f (x )+e x ≥x 3+x ,求实数a 的取值范围. 解 (1)f ′(x )=x e x -2ax =x (e x -2a ).当a ≤0时,由f ′(x )<0得x <0,由f ′(x )>0得x >0,∴f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴f (x )有1个极值点;当0<a <12时,由f ′(x )>0得x <ln 2a 或x >0,由f ′(x )<0得0>x >ln 2a , ∴f (x )在(-∞,ln 2a )上单调递增,在(ln 2a,0)上单调递减,在(0,+∞)上单调递增,∴f (x )有2个极值点; 当a =12时,f ′(x )≥0, ∴f (x )在R 上单调递增, ∴f (x )没有极值点;当a >12时,由f ′(x )>0得x <0或x >ln 2a ,由f′(x)<0得0<x<ln 2a,∴f(x)在(-∞,0)上单调递增,在(0,ln 2a)上单调递减,在(ln 2a,+∞)上单调递增,∴f(x)有2个极值点.综上,当a≤0时,f(x)有1个极值点;当a>0且a≠12时,f(x)有2个极值点;当a=12时,f(x)没有极值点.(2)由f(x)+e x≥x3+x得x e x-x3-ax2-x≥0.当x>0时,e x-x2-ax-1≥0,即a≤e x-x2-1x对任意的x>0恒成立.设g(x)=e x-x2-1x,则g′(x)=(x-1)(e x-x-1)x2.设h(x)=e x-x-1,则h′(x)=e x-1.∵x>0,∴h′(x)>0,∴h(x)在(0,+∞)上单调递增,∴h(x)>h(0)=0,即e x>x+1,∴g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴g(x)≥g(1)=e-2,∴a≤e-2,∴实数a的取值范围是(-∞,e-2].。
辽宁省沈阳市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()①∠CDE=∠DFB;②BD>CE;③BC=2CD;④△DCE与△BDF的周长相等.A.1个B.2个C.3个D.4个2.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个3.如图,在Y ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=()A.2:3 B.4:9 C.2:5 D.4:254.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为()A.100°B.80°C.50°D.20°5.如图,BD为⊙O的直径,点A为弧BDC的中点,∠ABD=35°,则∠DBC=()A .20°B .35°C .15°D .45°6.下列各数中是有理数的是( )A .πB .0C .2D .35 7.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为( ) A .0.72×106平方米B .7.2×106平方米C .72×104平方米D .7.2×105平方米8.如图,用一个半径为6cm 的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G 向下移动了3πcm ,则滑轮上的点F 旋转了( )A .60°B .90°C .120°D .45°9.如图,在△ABC 中,∠ACB=90°,点D 为AB 的中点,AC=3,cosA=13,将△DAC 沿着CD 折叠后,点A 落在点E 处,则BE 的长为( )A .5B .42C .7D .5210.在Rt ABC ∆中,90︒∠=C ,2AC =,下列结论中,正确的是( )A .2sin AB A =B .2cos AB A =C .2tan BC A =D .2cot BC A =11.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h 与时间t 之间的关系的图象是( )A .B .C .D .12.下列几何体中,俯视图为三角形的是( )A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm1.(结果保留π).14.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求观光塔的高CD是______m.15.对于一元二次方程2520x x-+=,根的判别式24b ac-中的b表示的数是__________.16.若分式方程x a2x4x4=+--的解为正数,则a的取值范围是______________.17.今年“五一”节日期间,我市四个旅游景区共接待游客约303000多人次,这个数据用科学记数法可记为_____.18.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=3CG2;③若AF=2DF,则BG=6GF.其中正确的结论有_____.(填序号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;若菜园面积为384m2,求x的值;求菜园的最大面积.20.(6分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.21.(6分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.(1)求证;∠BDC=∠A.(2)若∠C=45°,⊙O的半径为1,直接写出AC的长.22.(8分)根据函数学习中积累的知识与经验,李老师要求学生探究函数y=1x+1的图象.同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整.(1)函数y=1x+1的图象可以由我们熟悉的函数的图象向上平移个单位得到;(2)函数y=1x+1的图象与x轴、y轴交点的情况是:;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是.23.(8分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.(结果精确到0.1米,3 1.732).24.(10分)如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.25.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?26.(12分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,12),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.27.(12分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正确;由折叠可得,DE=AE=3,∴2222-=,DE CE∴BD=BC﹣DC=4﹣221,∴BD>CE,故②正确;∵BC=42CD=4,∴2CD,故③正确;∵AC=BC=4,∠C=90°,∴2,∵△DCE的周长22,由折叠可得,DF=AF,∴△BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=42+(4﹣2)2,∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2.C【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.D【解析】试题分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,从而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25试题解析:∵四边形ABCD是平行四边形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.4.B【解析】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B.点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.5.A【解析】【分析】∠的根据∠ABD=35°就可以求出»AD的度数,再根据»180=,可以求出»AB,因此就可以求得ABCBD︒度数,从而求得∠DBC【详解】解:∵∠ABD=35°,∴的度数都是70°,∵BD为直径,∴的度数是180°﹣70°=110°,∵点A为弧BDC的中点,∴的度数也是110°,∴的度数是110°+110°﹣180°=40°,∴∠DBC==20°,故选:A.【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力.6.B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.【详解】A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C2是无理数,故本选项错误;D35故选B.【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.7.D【解析】试题分析:把一个数记成a×10n (1≤a<10,n 整数位数少1)的形式,叫做科学记数法. ∴此题可记为1.2×105平方米.考点:科学记数法8.B【解析】【分析】由弧长的计算公式可得答案.【详解】 解:由圆弧长计算公式l=180n r π,将l=3π代入, 可得n =90o ,故选B.【点睛】本题主要考查圆弧长计算公式l=180n r π,牢记并运用公式是解题的关键. 9.C【解析】【分析】连接AE ,根据余弦的定义求出AB ,根据勾股定理求出BC ,根据直角三角形的性质求出CD ,根据面积公式出去AE ,根据翻转变换的性质求出AF ,根据勾股定理、三角形中位线定理计算即可. 【详解】解:连接AE ,∵AC=3,cos ∠CAB=13, ∴AB=3AC=9,由勾股定理得,22AB AC -2,∠ACB=90°,点D 为AB 的中点,∴CD=12AB=92,S △ABC =12×3×, ∵点D 为AB 的中点,∴S △ACD =12S △ABC =2,由翻转变换的性质可知,S 四边形ACED ,AE ⊥CD ,则12×CD×,解得,,∴,由勾股定理得,=72, ∵AF=FE ,AD=DB ,∴BE=2DF=7,故选C .【点睛】本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10.C【解析】【分析】直接利用锐角三角函数关系分别计算得出答案.【详解】∵90︒∠=C ,2AC =, ∴2cos AC A AB AB==, ∴2cos AB A =, 故选项A ,B 错误, ∵tan 2BC BC A AC ==, ∴2tan BC A =,故选项C 正确;选项D 错误.故选C .【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.11.C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。
辽宁省沈阳市2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若2<2a -<3,则a 的值可以是( )A .﹣7B .163C .132D .122.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有() A .180人 B .117人 C .215人 D .257人3.实数213-的倒数是( ) A .52- B .52 C .35- D .354.如图,AB 是⊙O 的直径,D ,E 是半圆上任意两点,连接AD ,DE ,AE 与BD 相交于点C ,要使△ADC 与△BDA 相似,可以添加一个条件.下列添加的条件中错误的是( )A .∠ACD =∠DAB B .AD =DEC .AD·AB =CD·BD D .AD 2=BD·CD 5.a 的倒数是3,则a 的值是( )A .13B .﹣13C .3D .﹣36.实数a 在数轴上对应点的位置如图所示,把a ,﹣a ,a 2按照从小到大的顺序排列,正确的是( )A .﹣a <a <a 2B .a <﹣a <a 2C .﹣a <a 2<aD .a <a 2<﹣a7.某商品价格为a 元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为( )A .0.96a 元B .0.972a 元C .1.08a 元D .a 元8.如图,AB//CD ,130∠=o ,则2∠的大小是( )A .30oB .120oC .130oD .150o9.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )A.B.C.D.10.下列运算结果正确的是()A.x2+2x2=3x4B.(﹣2x2)3=8x6C.x2•(﹣x3)=﹣x5D.2x2÷x2=x11.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )A.60海里B.45海里C.203海里D.303海里12.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B,如果60APB∠=o,8PA=,那么弦AB的长是()A.4B.3C.8D.83二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球.14.设[x)表示大于x的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是______ .(填写所有正确结论的序号)①[0)=0;②[x)−x的最小值是0;③[x)−x的最大值是0;④存在实数x,使[x)−x=0.5成立.15242x-=的根是__________.16.如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线6yx=(x>0)交AB于点E,AE︰EB=1︰3.则矩形OABC的面积是__________.17.一个圆的半径为2,弦长是23,求这条弦所对的圆周角是_____.18.如图,在△ABC中,AB=AC=25,BC=1.点E为BC边上一动点,连接AE,作∠AEF=∠B,EF 与△ABC的外角∠ACD的平分线交于点F.当EF⊥AC时,EF的长为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,∠C = 90°,E是BC上一点,ED⊥AB,垂足为D.求证:△ABC∽△EBD.20.(6分)如图,已知A(﹣4,12),B(﹣1,m)是一次函数y=kx+b与反比例函数y=nx图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)求m的值及一次函数解析式;(2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.21.(6分)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.分别求出y1,y2与x之间的关系式;当甲、乙两个商场的收费相同时,所买商品为多少件?当所买商品为5件时,应选择哪个商场更优惠?请说明理由.22.(8分)已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且与AB、CD分别相交于点E、F,连接EC、AF.(1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由.23.(8分)解不等式组223252x xx x≤+⎧⎨-≤+⎩①②,请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式的解集为.24.(10分)如图1,△ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN.(1)求证:△PMN是等腰三角形;(2)将△ADE绕点A逆时针旋转,①如图2,当点D、E分别在边AC两侧时,求证:△PMN是等腰三角形;②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长.25.(10分)先化简22442x xx x-+-÷(x-4x),然后从55x的值代入求值.26.(12分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:商品名称甲乙进价(元/件) 40 90售价(元/件) 60 120设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.写出y关于x的函数关系式;该商场计划最多投入8000元用于购买这两种商品,①至少要购进多少件甲商品?②若销售完这些商品,则商场可获得的最大利润是多少元?27.(12分)某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.【详解】a <3,解:∵22∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范围是6<a<1.观察选项,只有选项C符合题意.故选C.【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.2.B【解析】【分析】设男生为x人,则女生有65%x人,根据今年共毕业生297人列方程求解即可.【详解】设男生为x人,则女生有65%x人,由题意得,x+65%x=297,解之得x=180,297-180=117人.故选B.【点睛】本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键. 3.D【解析】因为213-=53,所以213-的倒数是35.故选D.4.D【解析】【详解】解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A选项正确;∵AD=DE,∴»»AD DE=,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B选项正确;∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C选项正确;∵CD•AB=AC•BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是对应夹角,故D选项错误,故选:D.考点:1.圆周角定理2.相似三角形的判定5.A【解析】【分析】根据倒数的定义进行解答即可.【详解】∵a的倒数是3,∴3a=1,解得:a=13.故选A.【点睛】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.6.D【解析】【分析】根据实数a在数轴上的位置,判断a,﹣a,a2在数轴上的相对位置,根据数轴上右边的数大于左边的数进行判断.【详解】由数轴上的位置可得,a<0,-a>0, 0<a2<a,所以,a<a2<﹣a.故选D【点睛】本题考核知识点:考查了有理数的大小比较,解答本题的关键是根据数轴判断出a,﹣a,a2的位置. 7.B【解析】【分析】提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可.【详解】第一次降价后的价格为a×(1-10%)=0.9a元,第二次降价后的价格为0.9a×(1-10%)=0.81a元,∴提价20%的价格为0.81a×(1+20%)=0.972a元,故选B .【点睛】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.8.D【解析】【分析】依据AB//CD ,即可得到1CEF 30∠∠==o ,再根据2CEF 180∠∠+=o ,即可得到218030150∠=-=o o o .【详解】解:如图,AB//CD Q ,1CEF 30∠∠∴==o ,又2CEF 180∠∠+=o Q ,218030150∠∴=-=o o o ,故选:D .【点睛】本题主要考查了平行线的性质,两直线平行,同位角相等.9.A【解析】 试题分析:观察图形可知,该几何体的主视图是.故选A .考点:简单组合体的三视图.10.C【解析】【分析】直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案.【详解】A 选项:x 2+2x 2=3x 2,故此选项错误;B 选项:(﹣2x 2)3=﹣8x 6,故此选项错误;C 选项:x 2•(﹣x 3)=﹣x 5,故此选项正确;D 选项:2x 2÷x 2=2,故此选项错误.故选C .【点睛】考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运算法则是解题关键.11.D【解析】【分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP 的长,求出答案.【详解】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B 处与灯塔P 之间的距离为:22303AB AP -=故选:D .【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.12.C【解析】【分析】先利用切线长定理得到PA PB =,再利用60APB ∠=o 可判断APB V 为等边三角形,然后根据等边三角形的性质求解.【详解】解:PA Q ,PB 为O e 的切线, PA PB ∴=,60APB ∠=o Q ,APB ∴V 为等边三角形,8AB PA ∴==.故选C .【点睛】本题考查切线长定理,掌握切线长定理是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【详解】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有x 个红球,列出方程30x =20%, 求得x=1. 故答案为1.点睛:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.14.④【解析】【分析】根据题意[x)表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】①[0)=1,故本项错误;②[x)−x>0,但是取不到0,故本项错误;③[x)−x ⩽1,即最大值为1,故本项错误;④存在实数x ,使[x)−x=0.5成立,例如x=0.5时,故本项正确.故答案是:④.【点睛】此题考查运算的定义,解题关键在于理解题意的运算法则.15.1.【解析】【分析】把无理方程转化为整式方程即可解决问题.【详解】两边平方得到:2x ﹣1=1,解得:x=1,经检验:x=1是原方程的解.故答案为:1.【点睛】本题考查了无理方程,解题的关键是学会用转化的思想思考问题,注意必须检验.16.1【解析】【分析】根据反比例函数图象上点的坐标特征设E 点坐标为(t ,6t ),则利用AE :EB=1:3,B 点坐标可表示为(4t,6t),然后根据矩形面积公式计算.【详解】设E点坐标为(t,6t ),∵AE:EB=1:3,∴B点坐标为(4t,6t ),∴矩形OABC的面积=4t•6t=1.故答案是:1.【点睛】考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.17.60°或120°【解析】【分析】首先根据题意画出图形,过点O作OD⊥AB于点D, 通过垂径定理, 即可推出∠AOD的度数, 求得∠AOB 的度数, 然后根据圆周角定理,即可推出∠AMB和∠ANB的度数.【详解】解:如图:连接OA,过点O作OD⊥AB 于点D,Q OA=2,AB=323∴3:2,∴∠AOD=60o,∠∴AOB=120o,∴∠AMB=60o,∴∠ANB=120o.故答案为: 60o或120o.【点睛】本题主要考查垂径定理与圆周角定理,注意弦所对的圆周角有两个,他们互为补角.18.【分析】当AB=AC,∠AEF=∠B时,∠AEF=∠ACB,当EF⊥AC时,∠ACB+∠CEF=90°=∠AEF+∠CEF,即可得到AE⊥BC,依据Rt△CFG≌Rt△CFH,可得CH=CG=255,再根据勾股定理即可得到EF的长.【详解】解:如图,当AB=AC,∠AEF=∠B时,∠AEF=∠ACB,当EF⊥AC时,∠ACB+∠CEF=90°=∠AEF+∠CEF,∴AE⊥BC,∴CE=12BC=2,又∵5∴AE=1,EG=AE CEAC⨯=455∴22CE EG-255,作FH⊥CD于H,∵CF平分∠ACD,∴FG=FH,而CF=CF,∴Rt△CFG≌Rt△CFH,∴255,设EF=x,则45 5∵Rt△EFH中,EH2+FH2=EF2,∴(255)2+(455)2=x2,解得5故答案为5【点睛】角形的顶角平分线、底边上的中线、底边上的高相互重合.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.证明见解析【解析】试题分析:先根据垂直的定义得出∠EDB =90°,故可得出∠EDB =∠C .再由∠B =∠B ,根据有两个角相等的两三角形相似即可得出结论.试题解析:解:∵ED ⊥AB ,∴∠EDB =90°.∵∠C =90°,∴∠EDB =∠C .∵∠B =∠B ,∴ABC V ∽EBD V .点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键. 20.(1)m=2;y=12x+52;(2)P 点坐标是(﹣52,54). 【解析】【分析】(1)利用待定系数法求一次函数和反比例函数的解析式;(2)设点P 的坐标为15,22P x x ⎛⎫+ ⎪⎝⎭,根据面积公式和已知条件列式可求得x 的值,并根据条件取舍,得出点P 的坐标.【详解】解:(1)∵反比例函数n y x =的图象过点14,,2⎛⎫- ⎪⎝⎭ ∴1422n =-⨯=-, ∵点B (﹣1,m )也在该反比例函数的图象上,∴﹣1•m=﹣2,∴m=2;设一次函数的解析式为y=kx+b ,由y=kx+b 的图象过点A 14,,2⎛⎫- ⎪⎝⎭,B (﹣1,2),则1422,k b k b ⎧-+=⎪⎨⎪-+=⎩解得:125,2k b ⎧=⎪⎪⎨⎪=⎪⎩∴一次函数的解析式为1522y x =+; (2)连接PC 、PD ,如图,设15,22P x x ⎛⎫+ ⎪⎝⎭, ∵△PCA 和△PDB 面积相等,∴()1111541222222x x ⎛⎫⨯⨯+=⨯-⨯-- ⎪⎝⎭, 解得: 5155,,2224x y x =-=+= ∴P 点坐标是55,.24⎛⎫- ⎪⎝⎭【点睛】本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.21.(1);y 2=2250x ;(2)甲、乙两个商场的收费相同时,所买商品为6件;(3)所买商品为5件时,应选择乙商场更优惠.【解析】试题分析:(1)由两家商场的优惠方案分别列式整理即可;(2)由收费相同,列出方程求解即可;(3)由函数解析式分别求出x=5时的函数值,即可得解试题解析:(1)当x=1时,y 1=3000;当x >1时,y 1=3000+3000(x ﹣1)×(1﹣30%)=2100x+1.∴;y 2=3000x (1﹣25%)=2250x ,∴y 2=2250x ;(2)当甲、乙两个商场的收费相同时,2100x+1=2250x ,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y 1=2100x+1=2100×5+1=11400, y 2=2250x=2250×5=11250,∵11400>11250,∴所买商品为5件时,应选择乙商场更优惠.考点:一次函数的应用22.(1)见解析;(2)AF ∥CE ,见解析.【解析】【分析】(1)直接利用全等三角三角形判定与性质进而得出△FOC ≌△EOA (ASA ),进而得出答案; (2)利用平行四边形的判定与性质进而得出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,点O 是对角线AC 、BD 的交点,∴AO=CO ,DC ∥AB ,DC=AB ,∴∠FCA=∠CAB ,在△FOC 和△EOA 中FCO EAO CO AOCOF AOE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FOC ≌△EOA (ASA ),∴FC=AE ,∴DC-FC=AB-AE ,即DF=EB ;理由:∵FC=AE,FC∥AE,∴四边形AECF是平行四边形,∴AF∥CE.【点睛】此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质,正确得出△FOC≌△EOA (ASA)是解题关键.23.(1)x≤1;(1)x≥﹣1;(3)见解析;(4)﹣1≤x≤1.【解析】【分析】先求出不等式的解集,再求出不等式组的解集即可.【详解】解:(1)解不等式①,得x≤1,(1)解不等式②,得x≥﹣1,(3)把不等式①和②的解集在数轴上表示出来:;(4)原不等式组的解集为﹣1≤x≤1,故答案为x≤1,x≥﹣1,﹣1≤x≤1.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.24.(1)见解析;(2)①见解析;②.【解析】【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;(2)①先证明△ABD≌△ACE,得BD=CE,同理根据三角形中位线定理可得结论;②如图4,连接AM,计算AN和DE、EM的长,如图3,证明△ABD≌△CAE,得BD=CE,根据勾股定理计算CM的长,可得结论【详解】(1)如图1,∵点N,P是BC,CD的中点,∴PN∥BD,PN=BD,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∴△PMN是等腰三角形;(2)①如图2,∵∠DAE=∠BAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∵点M、N、P分别是线段DE、BC、CD的中点,∴PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形;②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△CAE,∴BD=CE,如图4,连接AM,∵M是DE的中点,N是BC的中点,AB=AC,∴A、M、N共线,且AN⊥BC,由勾股定理得:AN==4,∵AD=AE=1,AB=AC=6,∴=,∠DAE=∠BAC,∴△ADE∽△AEC,∴,∴,∴AM=,DE=,∴EM=,如图3,Rt△ACM中,CM===,∴BD=CE=CM+EM=.【点睛】此题是三角形的综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)①的关键是判断出△ABD≌△ACE,解(2)②的关键是判断出△ADE∽△AEC25.当x=-1时,原式=1=11+2;当x=1时,原式=11=1+23【解析】【分析】先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法原式=22(2)4(2)x x x x x--÷- =()2(2)•(2)2(2)x x x x x x --+- =12x +∵x x 为整数,∴若使分式有意义,x 只能取-1和1当x=1时,原式=13.或:当x=-1时,原式=1 26. (Ⅰ)103000y x =-+;(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.【解析】【分析】(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x 的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.【详解】(Ⅰ)根据题意得:()()()604012090100103000y x x x =-+--=-+则y 与x 的函数关系式为103000y x =-+.(Ⅱ)()40901008000x x +-≤,解得20x ≥.∴至少要购进20件甲商品.103000y x =-+,∵100-<,∴y 随着x 的增大而减小∴当20x =时,y 有最大值,102030002800y =-⨯+=最大.∴若售完这些商品,则商场可获得的最大利润是2800元.【点睛】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键. 27.(1)25;28;(2)平均数:1.2;众数:3;中位数:1.(1)观察统计图可得,该商场服装部营业员人数为2+5+7+8+3=25人,m%=1-32%-12%-8%-20%=28%,即m=28;(2)计算出所有营业员的销售总额除以营业员的总人数即可的平均数;观察统计图,根据众数、中位数的定义即可得答案.【详解】解:(1)根据条形图2+5+7+8+3=25(人),m=100-20-32-12-8=28;故答案为:25;28;(2)观察条形统计图,∵12215518721824318.6.25x⨯+⨯+⨯+⨯+⨯==∴这组数据的平均数是1.2.∵在这组数据中,3 出现了8次,出现的次数最多,∴这组数据的众数是3.∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是1,∴这组数据的中位数是1.【点睛】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.。
辽宁省沈阳市2019年中考数学模拟试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,满分24分)1.(3分)(2019•沈阳模拟)计算3×(﹣2)的结果是()A.5B.﹣5 C.6D.﹣6考点:有理数的乘法.分析:根据有理数的乘法法则:两数相乘,同号得正,异号得负,再把绝对值相乘,即可得到结果.解答:解:3×(﹣2),=﹣(3×2),=﹣6.故选D.点评:此题主要考查了有理数的乘法,牢记法则即可.2.(3分)(2019•沈阳模拟)某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A.9.4×10﹣7m B.9.4×107m C.9.4×10﹣8m D.9.4×108m考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 94=9.4×10﹣7.故选A.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2019•沈阳模拟)下列电视台图标中,属于中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选D.点评:本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合是解题的关键.4.(3分)(2019•沈阳模拟)2019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31,则下列表述错误的是()A.众数是31 B.中位数是30 C.平均数是32 D.极差是5考点:极差;算术平均数;中位数;众数.分析:分别计算该组数据的众数、中位数、平均数及极差后即可作出正确的判断.解答:解:数据31出现了3次,最多,众数为31,故A不符合要求;按从小到大排序后为:30、31、31、31、33、33、35,位于中间位置的数是31,故B 符合要求;平均数为(30+31+31+31+33+33+35)÷7=32,故C不符合要求;极差为35﹣30=5,故D不符合要求.故选B.点评:本题属于基础题,考查了确定一组数据的中位数、众数、平均数及极差的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.5.(3分)(2019•沈阳模拟)如图所示的“h”型几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上向下看得到的视图进行分析解答即可.解答:解:从上面看可得到一个矩形,中间左边有一条实心线,右边有一条虚线.故选D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,注意看得见的线用实线表示,看不见的线用虚线表示.6.(3分)(2019•沈阳模拟)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%考点:一元一次不等式的应用.专题:压轴题.分析:缺少质量和进价,应设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,根据题意得:购进这批水果用去ay元,但在售出时,只剩下(1﹣10%)a千克,售货款为(1﹣10%)a×(1+x)y元,根据公式×100%=利润率可列出不等式,解不等式即可.解答:解:设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,由题意得:×100%≥20%,解得:x≥,经检验,x≥是原不等式的解∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%.故选:B.点评:此题主要考查了一元一次不等式的应用,关键是弄清题意,设出必要的未知数,表示出售价,售货款,进货款,利润.注意再解出结果后,要考虑实际问题,利用收尾法,不能用四舍五入.7.(3分)(2019•沈阳模拟)若A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数y=图象上的点,且x1<x2<0<x3,则y1、y2、y3的大小关系正确的是()A.y3>y1>y2B.y1>y2>y3C.y2>y1>y3D.y3>y2>y1考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象上点的特征,xy=3,所以得到x1•y1=3,x2•y2=3,x3•y3=3,再根据x1<x2<0<x3,即可判断y1、y2、y3的大小关系.解答:解:∵A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数y=图象上的点,∴x1•y1=3,x2•y2=3,x3•y3=3,∵x3>0,∴y3>0,∵x1<x2<0,∴0>y1>y2,∴y3>y1>y2.故选A.点评:此题主要考查了反比例函数图象上点的特征,凡是在反比例函数图象上的点,横纵坐标的乘积是一个定值=k.8.(3分)(2019•沈阳模拟)直角三角形纸片的两直角边AC与BC之比为3:4.(1)将△ABC如图1那样折叠,使点C落在AB上,折痕为BD;(2)将△ABD如图2那样折叠,使点B与点D重合,折痕为EF.则tan∠DEA的值为()A.B.C.D.考点:锐角三角函数的定义;翻折变换(折叠问题).专题:压轴题.分析:直角三角形纸片的两直角边AC与BC之比为3:4,就是已知tan∠ABC=,根据轴对称的性质,可得∠DEA=∠A,就可以求出tan∠DEA的值.解答:解:根据题意:直角三角形纸片的两直角边AC与BC之比为3:4,即tan∠ABC==;根据轴对称的性质,∠CBD=a,则由折叠可知∠CBD=∠EBD=∠EDB=a,∠ABC=2a,由外角定理可知∠AED=2a=∠ABC,∴tan∠DEA=tan∠ABC=.故选A.点评:已知折叠问题就是已知图形的全等,并且三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.二、填空题(每小题4分,满分32分)9.(4分)(2019•沈阳模拟)分解因式:4ax2﹣a=a(2x+1)(2x﹣1).考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解即可求得答案.解答:解:4ax2﹣a=a(4x2﹣1)=a(2x+1)(2x﹣1).故答案为:a(2x+1)(2x﹣1).点评:本题考查了用提公因式法和公式法进行因式分解的知识.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,注意因式分解要彻底.10.(4分)(2019•沈阳模拟)若分式的值为0,则x的值为2.考点:分式的值为零的条件.分析:根据分式值为零的条件可得x﹣2=0,x2+4≠0,解可得答案.解答:解:由题意得:x﹣2=0,x2+4≠0,解得:x=2,故答案为:2.点评:此题主要考查了分式值为零的条件:是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.11.(4分)(2019•青海)若点A(2,a)关于x轴的对称点是B(b,﹣3),则ab的值是6.考点:关于x轴、y轴对称的点的坐标.专题:应用题.分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得出a,b的值,从而得出ab.解答:解:∵点A(2,a)关于x轴的对称点是B(b,﹣3),∴a=3,b=2,∴ab=6.故答案为6.点评:本题主要考查了关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单.12.(4分)(2019•沈阳模拟)若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是a≥﹣1.考点:根的判别式;一元一次方程的定义;一元二次方程的定义.专题:压轴题.分析:当a=0时,方程是一元一次方程,方程的根可以求出,即可作出判断;当a≠0时,方程是一元二次方程,只要有实数根,则应满足:△≥0,建立关于a的不等式,求得a的取值范围即可.解答:解:当a=0时,方程是一元一次方程,有实数根,当a≠0时,方程是一元二次方程,若关于x的方程ax2+2(a+2)x+a=0有实数解,则△=[2(a+2)]2﹣4a•a≥0,解得:a≥﹣1.故答案为:a≥﹣1.点评:此题考查了根的判别式,注意本题分a=0与a≠0两种情况讨论是解决本题的关键.并且利用了一元二次方程若有实数根则应有△≥0.13.(4分)(2019•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.考点:角平分线的性质.分析:首先过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,由△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,易证得AE是∠CAH 的平分线,继而求得答案.解答:解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BAC=70°,∴∠CAH=110°,∴∠CAE=∠CAH=55°.故答案为:55°.点评:此题考查了角平分线的性质与判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.14.(4分)(2019•沈阳模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是60度.考点:全等三角形的判定与性质;等边三角形的性质.专题:几何图形问题.分析:根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.解答:解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故答案为60.点评:本题利用等边三角形的性质来为三角形全等的判定创造条件,是中考的热点.15.(4分)(2019•沈阳模拟)已知一圆锥的底面半径是1,母线长是4,则圆锥侧面展开图的面积是4π.考点:圆锥的计算.分析:首先求得底面周长,然后利用扇形的面积公式S=lr,即可求解.解答:解:圆锥的底面周长是:2π×1=2π,则圆锥侧面展开图的面积是:×2π×4=4π.故答案是:4π.点评:本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16.(4分)(2019•沈阳模拟)用长为4cm的n根火柴可以拼成如图1所示的x个边长都为4cm的平行四边形,还可以拼成如图2所示的2y个边长都为4cm的平行四边形,那么用含x的代数式表示y,得到.考点:规律型:图形的变化类.专题:压轴题.分析:图1中,一排有x个边长为4cm平行四边形,图2中,每一排有y个边长为4cm平行四边形,横排线段有三排,斜线段有(y+1)段,根据图1,图2火柴根数相等,列方程求解.解答:解:依题意,由图1可知:一个平行四边形有4条边,两个平行四边形有4+3条边,∴m=1+3x,由图2可知:一组图形有7条边,两组图形有7+5条边,∴m=2+5y,得1+3x=3y+2(y+1),整理,得y=x﹣,故答案为:y=x﹣.点评:本题是一道找规律的题目,这类题型在中考中经常出现.关键是根据图1,图2中,火柴根数相等列出方程.三、解答题(第17、18小题各8分,第19小题10分,共26分)17.(8分)(2019•沈阳模拟)先化简:,然后再取一个你喜爱的x的值代入求值.考点:分式的化简求值.分析:首先把每个分式的分子,分母分解因式,然后计算分式的乘法,最后进行减法运算即可化简,最后代入适当的x的值计算即可求解.解答:解:原式=•﹣=﹣=﹣,当x=1时,原式=﹣=2.点评:注意:取喜爱的数代入求值时,要特注意原式及化简过程中的每一步都有意义.如果取x=0,则原式没有意义,因此,尽管0是大家的所喜爱的数,但在本题中却是不允许的.18.(8分)(2019•沈阳模拟)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,△ABC与△DEF全等吗?证明你的结论.考点:全等三角形的判定.专题:探究型.分析:由平行的性质可证∠C=∠F,又已知AC=DF,BC=EF,满足SAS,即可证结论.解答:解:△ABC与△DEF全等.证明:∵AC∥DF,∴∠C=∠F.在△ABC与△DEF中,∴△ABC≌△DEF(SAS).点评:本题重点考查了三角形全等的判定定理,是一道较为简单的题目.19.(10分)(2019•沈阳模拟)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有50人,抽测成绩的众数是5次;(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?考点:条形统计图;用样本估计总体;扇形统计图;众数.专题:压轴题;图表型.分析:(1)用4次的人数除以所占百分比即可得到总人数,人数最多的次数即为该组数据的众数;(2)用总人数减去其他各组的人数即可得到成绩为5次的人数;(3)用总人数乘以达标率即可得到达标人数.解答:解:(1)从条形统计图和扇形统计图可知,达到4次的占总人数的20%,∴总人数为:10÷20%=50人,众数为5次;(2)如图.(3)∵被调查的50人中有36人达标,∴350名九年级男生中估计有350×=252人.点评:题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四、(每小题10分,共20分)20.(10分)(2019•沈阳模拟)如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成3等分,每份分别标有1,2,3这三个数字;转盘B被均匀地分成4等分,每份分别标有4,5,6,7这四个数字.有人为小明,小飞设计了一个游戏,其规则如下:①同时自由转动转盘A和B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.(1)请你用列表或树形图求出小明胜和小飞胜的概率;(2)游戏公平吗?若不公平,请你设计一个公平的规则.考点:游戏公平性.分析:游戏是否公平,关键要看游戏双方取胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.解答:解:(1)列表法:1 2 3AB4 1,4 2,4 3,45 1,5 2,5 3,56 1,6 2,6 3,67 1,7 2,7 3,7树形图法故小明胜的概率为,小飞胜的概率为.(2)∵,∴不公平,小明胜的机会大;规则如下:①同时自由转动转盘A和B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相加,如果和为偶数,小明胜,否则小飞胜.或规则如下:把图A中的数字2改为奇数(比如5)然后按题目中的规则进行比赛:①同时自由转动转盘A和B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.(方法不唯一,正确即可.)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)(2019•沈阳模拟)如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC 并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)考点:扇形面积的计算;勾股定理;圆周角定理.专题:几何综合题;压轴题.分析:(1)连接CB,AB,CE,由点C为劣弧AB上的中点,可得出CB=CA,再根据CD=CA,得△ABD为直角三角形,可得出∠ABE为直角,根据90度的圆周角所对的弦为直径,从而证出AE是⊙O的直径;(2)由(1)得△ACE为直角三角形,根据勾股定理得出CE的长,阴影部分的面积等于半圆面积减去三角形ACE的面积.解答:(1)证明:连接CB,AB,CE,∵点C为劣弧AB上的中点,∴CB=CA,又∵CD=CA,∴AC=CD=BC,∴∠ABC=∠BAC,∠DBC=∠D,∴∠ABD=90°,∴∠ABE=90°,即弧AE的度数是180°,∴AE是⊙O的直径;(2)解:∵AE是⊙O的直径,∴∠ACE=90°,∵AE=10,AC=4,∴根据勾股定理得:CE=2,∴S阴影=S半圆﹣S△ACE=12.5π﹣×4×2=12.5π﹣4.点评:本题考查了扇形面积的计算、勾股定理以及圆周角定理,是基础知识要熟练掌握.五、(本题10分)22.(10分)(2019•沈阳模拟)小明在数学课中学习了《解直角三角形》的内容后,双休日组织教学兴趣小组的小伙伴进行实地测量.如图,他们在坡度是i=1:2.5的斜坡DE的D 处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根据所学知识很快计算出了铁塔高AM.亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程.(数据≈1.41,≈1.73供选用,结果保留整数)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:压轴题.分析:先根据斜坡的坡度是i=1:2.5,EF=2,求出FD的长,再根据CE=13,CE=GF,求出GD的长,在Rt△DBG和Rt△DAN中,根据∠GDB=45°和∠NAD=60°,分别求出BG=GD和ND的长,从而得出AN=ND•tan60°,最后再根据AM=AN﹣MN=AN﹣BG,即可得出答案.解答:解:∵斜坡的坡度是i==,EF=2,∴FD=2.5EF=2.5×2=5,∵CE=13,CE=GF,∴GD=GF+FD=CE+FD=13+5=18,在Rt△DBG中,∠GDB=45°,∴BG=GD=18,在Rt△DAN中,∠NAD=60°,∴ND=NG+GD=CH+GD=2+18=20,AN=ND•tan60°=20×=20,∴AM=AN﹣MN=AN﹣BG=20﹣18≈17(米).答:铁塔高AC约17米.点评:此题考查了解直角三角形的应用,要掌握坡度、仰角、俯角的定义,关键是能借助仰角和俯角构造直角三角形,并解直角三角形.六、(本题12分)23.(12分)(2019•沈阳模拟)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x 之间的函数关系式.根据题中所给信息解答以下问题:(1)甲、乙两地之间的距离为960km;图中点C的实际意义为:当慢车行驶6h时,快车到达乙地;慢车的速度为80km/h,快车的速度为160km/h;(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围;(3)若在第一列快车与慢车相遇时,第二列车从乙地出发驶往甲地,速度与第一列快车相同,请直接写出第二列快车出发多长时间,与慢车相距200km.考点:一次函数的应用.分析:(1)x=0时两车之间的距离即为两地间的距离,根据横坐标和两车之间的距离增加变慢解答,分别利用速度=路程÷时间列式计算即可得解;(2)求出相遇的时间得到点B的坐标,再求出两车间的距离,得到点C的坐标,然后设线段BC的解析式为y=kx+b,利用待定系数法求一次函数解析式解答;(3)设第二列快车出发a小时两车相距200km,然后分相遇前与相遇后相距200km 两种情况列出方程求解即可.解答:解:(1)由图象可知,甲、乙两地间的距离是960km;图中点C的实际意义是:当慢车行驶6h时,快车到达乙地;慢车速度是:960÷12=80km/h,快车速度是:960÷6=160km/h;故答案为:960;当慢车行驶6h时,快车到达乙地;80km/h;160km/h;(2)根据题意,两车行驶960km相遇,所用时间=4h,所以,B点的坐标为(4,0),2小时两车相距2×(160+80)=480km,所以,点C的坐标为(6,480),设线段BC的解析式为y=kx+b,则,解得,所以,线段BC所表示的y与x之间的函数关系式为y=240x﹣960,自变量x的取值范围是4≤x≤6;(3)设第二列快车出发a小时两车相距200km,分两种情况,①若是第二列快车还没追上慢车,相遇前,则4×80+80a﹣160a=200,解得a=1.5,②若是第二列快车追上慢车以后再超过慢车,则160a﹣(4×80+80a)=200,解得a=6.5,∵快车到达甲地仅需要6小时,∴a=6.5不符合题意,舍去,综上所述,第二列快车出发1.5h,与慢车相距200km.点评:本题考查了一次函数的应用,待定系数法求一次函数解析式,相遇问题,追击问题,综合性较强,(3)要注意分情况讨论并考虑快车到达甲地的时间是6h ,这也是本题容易出错的地方.七、(本题12分) 24.(12分)(2019•沈阳模拟)在▱ABCD 中,∠ADC 的平分线交直线BC 于点E 、交AB 的延长线于点F ,连接AC .(1)如图1,若∠ADC=90°,G 是EF 的中点,连接AG 、CG . ①求证:BE=BF .②请判断△AGC 的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB 绕点F 顺时针旋转60°至FG ,连接AG 、CG .那么△AGC 又是怎样的形状.(直接写出结论不必证明)考点:平行四边形的性质;全等三角形的判定与性质;等边三角形的判定;等腰直角三角形. 专题:压轴题. 分析: (1)①先判定四边形ABCD 是矩形,再根据矩形的性质可得∠ABC=90°,AB ∥DC ,AD ∥BC ,然后根据平行线的性质求出∠F=∠FDC ,∠BEF=∠ADF ,再根据DF 是∠ADC的平分线,利用角平分线的定义得到∠ADF=∠FDC ,从而得到∠F=∠BEF ,然后根据等角对等边的性质即可证明;②连接BG ,根据等腰直角三角形的性质可得∠F=∠BEF=45°,再根据等腰三角形三线合一的性质求出BG=FG ,∠F=∠CBG=45°,然后利用“边角边”证明△AFG 和△CBG 全等,根据全等三角形对应边相等可得AG=CG ,再求出∠GAC+∠ACG=90°,然后求出∠AGC=90°,然后根据等腰直角三角形的定义判断即可;(2)连接BG ,根据旋转的性质可得△BFG 是等边三角形,再根据角平分线的定义以及平行线的性质求出AF=AD ,平行四边形的对角相等求出∠ABC=∠ADC=60°,然后求出∠CBG=60°,从而得到∠AFG=∠CBG ,然后利用“边角边”证明△AFG 和△CBG 全等,根据全等三角形对应边相等可得AG=CG ,全等三角形对应角相等可得∠FAG=∠BCG ,然后求出∠GAC+∠ACG=120°,再求出∠AGC=60°,然后根据等边三角形的判定方法判定即可.解答: (1)证明:①∵四边形ABCD 是平行四边形,∠ABC=90°, ∴四边形ABCD 是矩形,∴∠ABC=90°,AB ∥DC ,AD ∥BC , ∴∠F=∠FDC ,∠BEF=∠ADF , ∵DF 是∠ADC 的平分线, ∴∠ADF=∠FDC , ∴∠F=∠BEF , ∴BF=BE ;②△AGC是等腰直角三角形.理由如下:连接BG,由①知,BF=BE,∠FBC=90°,∴∠F=∠BEF=45°,∵G是EF的中点,∴BG=FG,∠F=∠CBG=45°,∵∠FAD=90°,∴AF=AD,又∵AD=BC,∴AF=BC,在△AFG和△CBG中,,∴△AFG≌△CBG(SAS),∴AG=CG,∴∠FAG=∠BCG,又∵∠FAG+∠GAC+∠ACB=90°,∴∠BCG+∠GAC+∠ACB=90°,即∠GAC+∠ACG=90°,∴∠AGC=90°,∴△AGC是等腰直角三角形;(2)连接BG,∵FB绕点F顺时针旋转60°至FG,∴△BFG是等边三角形,∴FG=BG,∠FBG=60°,又∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=∠ADC=60°∴∠CBG=180°﹣∠FBG﹣∠ABC=180°﹣60°﹣60°=60°,∴∠AFG=∠CBG,∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∵AB∥DC,∴∠AFD=∠FDC,∴∠AFD=∠ADF,∴AF=AD,在△AFG和△CBG中,,∴△AFG≌△CBG(SAS),∴AG=CG,∠FAG=∠BCG,在△ABC中,∠GAC+∠ACG=∠ACB+∠BCG+∠GAC=∠ACB+∠BAG+∠GAC=∠ACB+∠BAC=18 0°﹣60°=120°,∴∠AGC=180°﹣(∠GAC+∠ACG)=180°﹣120°=60°,∴△AGC 是等边三角形.点评: 本题考查了平行四边形的性质,全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质,难度较大,作辅助线构造全等三角形是解题的关键. 八、(本题14分) 25.(14分)(2019•沈阳模拟)如图,抛物线y=﹣x 2﹣x+交x 轴于A 、B 两点,交y 轴于C 点,顶点为D . (1)求点A 、B 、C 的坐标;(2)把△ABC 绕AB 的中点M 旋转180°,得四边形AEBC ,求点E 的坐标,并判四边形AEBC 的形状,并说明理由;(3)在直线BC 上是否存在一点P ,使得△PAD 周长最小?若存在,请求出点P 的坐标;若不存在请说明理由.考点: 二次函数综合题. 专题: 压轴题. 分析:(1)分别令x=0以及y=0求出A 、B 、C 三点的坐标. (2)依题意得出BC ∥AE ,又已知A 、B 、C 的坐标易求出点E 的坐标,又因为四边形AEBC 是平行四边形且∠ACB=90°可得四边形AEBC 是矩形.(3)作点A 关于BC 的对称点A ′,连接A ′D 与直线BC 交于点P .则可得点P 是使△PAD 周长最小的点,然后求出直线A ′D ,直线BC 的函数解析式联立方程求出点P的坐标.解答:解:(1)y=﹣x2﹣x+,令x=0,得y=,令y=0,即﹣x2﹣x+=0,即x2+2x﹣3=0,∴x1=1,x2=﹣3∴A,B,C三点的坐标分别为A(﹣3,0),B(1,0),C(0,);(2)如图1,过点E作EF⊥AB于F,∵C(0,),∴EF=,∵B(1,0),∴AF=1,∴OF=OA﹣AF=3﹣1=2,∴E(﹣2,﹣),四边形AEBC是矩形.理由:四边形AEBC是平行四边形,且∠ACB=90°,(3)存在.D(﹣1,)如图2,作出点A关于BC的对称点A′,连接A′D与直线BC交于点P.则点P是使△PAD周长最小的点.∵AO=3,∴FO=3,CO=,∴A′F=2,∴求得A′(3,2)过A′、D的直线y=x+,过B、C的直线y=﹣x+,将两函数解析式联立得出:,解得:,故两直线的交点P(﹣,).点评:本题综合考查了二次函数的有关知识以及利用待定系数法求出函数解析式以及利用轴对称求线段最小值,利用轴对称得出P点位置是解题关键.。
一、选择题(每题5分,共50分)1. 下列数中,有理数是()A. √9B. √-9C. πD. 2.5答案:D2. 已知 a > b,那么下列不等式中错误的是()A. a + 3 > b + 3B. a - 2 < b - 2C. 2a > 2bD. a^2 > b^2答案:D3. 下列函数中,一次函数是()A. y = x^2 + 2x + 1B. y = 2x - 3C. y = 3x + 4 + √xD. y = 2x^3 - 5x^2 + 3答案:B4. 在直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)答案:A5. 若一个等腰三角形的底边长为8,腰长为10,则这个三角形的周长是()A. 18B. 24C. 26D. 28答案:C6. 在△ABC中,∠A=30°,∠B=45°,那么∠C的度数是()A. 75°B. 105°C. 120°D. 135°答案:C7. 若实数a、b满足a^2 + b^2 = 1,那么a + b的最大值是()A. √2B. 1C. 0D. -1答案:A8. 下列方程中,无解的是()A. 2x + 3 = 7B. 2x - 5 = -3C. 3x + 4 = 2x + 6D. 5x - 2 = 3x + 4答案:C9. 已知一元二次方程x^2 - 5x + 6 = 0,那么x的值是()A. 2B. 3C. 2或3D. 无法确定答案:C10. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = x^2 + 1答案:B二、填空题(每题5分,共50分)11. 3的平方根是_______,2的立方根是_______。
答案:±√3,∛212. 若|a| = 5,那么a的值是_______。
2019年辽宁省沈阳市沈河区中考数学二模试卷一、选择题1.(3分)﹣2的倒数是()A .2B .﹣2C .21D .﹣212.(3分)人体中红细胞的直径约为0.0000077米,将0.0000077用科学记数法表示为()A .7.7×10﹣6B .7.7×10﹣5C .0.77×10﹣6D .0.77×10﹣53.(3分)如图所示的几何体的左视图是()A .B .C .D .4.(3分)在反比例函数y =﹣x6图象上的点是()A .(﹣2,3)B .(4,﹣2)C .(6,1)D .(2,3)5.(3分)袁隆平院士是中国杂交水稻育种专家,中国研究与发展杂交水稻的开创者,被誉为“世界杂交水稻之父”,他研究的水稻,不仅高产,而且抗倒伏.某村引进了袁隆平的甲乙两种水稻良种,各选6块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为1100kg /亩,方差分别为S 甲2=141.7,S 乙2=433.3,则产量稳定,适合推广的品种为()A .甲、乙均可B .甲C .乙D .无法确定6.(3分)将点P (﹣3,4)先向右平移4个单位长度,再向下平移3个单位长度后的坐标是()A .(1,7)B .(﹣7,7)C .(1,1)D .(﹣7,1)7.(3分)把不等式组⎩⎨⎧>-≥-03042x x 的解集表示在数轴上,正确的是()A .B .C .D .8.(3分)在平面直角坐标系中,已知点E (﹣4,2),F (﹣2,﹣2),以原点O 为位似中心,相似比为2,把△EFO 放大,则点E 的对应点E ′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣2,1)或(2,﹣1)D.(﹣8,4)或(8,﹣4)9.(3分)已知一个正六边形的边心距为3,则它的外接圆的面积为()A.πB.3πC.4πD.12π10.(3分)二次函数y=ax2+bx+c的部分图象如图,则下列说法错误的是()A.对称轴是直线x=﹣1B.abc<0C.b2﹣4ac>0D.方程ax2+bx+c=0的根是x1=﹣3和x2=1二、堉空题11.(3分)分解因式:3a3b﹣3ab3=.12.(3分)在一个不透明的布袋中,共有30个小球,除颜色外其他完全相同,若每次将球搅匀后摸一个球记下颜色再放回布袋,通过大量重复摸球试验后发现,摸到红色球的频率稳定在0.2左右,则口袋中红色球的个数大约是个.13.(3分)已知直线m∥n,将一块直角三角板ABC(其中∠C=90°,∠BAC=30°)按如图所示方式放置,使A、B两点分别落在直线m、n上,若∠1=31°,则∠2的度数是.14.(3分)如图是一个地铁站入口双翼闸机的示意图,当它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=61cm,且与闸机侧立面夹角∠PCA =∠BDQ=30°,当双翼收起时,可以通过闸机的物体最大宽度为.15.(3分)甲、乙分别骑电瓶车、自行车从A 地出发,沿同一路线匀速前往B 地,设乙行驶的时间为x (h ),甲、乙两人距A 地的路程S 甲(km )、S 乙(km )关于x (h )的函数图象如图①所示,甲、乙两人之间的路程差y (km )关于x (h )的函数图象如图②所示,对比图①、图②可得a +b 的值为.16.(3分)如图,线段AB 绕着点A 逆时针方向旋转120°得到线段AC ,点B 对应点C ,在∠BAC 的内部有一点P ,PA =8,PB =4,PC =413,则线段AB 的长为.三、解答题17.计算:2﹣2×sin45°﹣(1﹣8)0+2﹣118.二孩政策出台后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同(1)甲家庭已有一个男孩,准备再生育一个孩子,则第二个孩子是女孩的概率是.(2)乙家庭没有孩子,准备生育两个孩子,请利用列表或画树状图求至少有一个男孩的概率.19.如图,点A 、B 、C 、D 依次在同一条直线上,点E 、F 分别在直线AD 的两侧,已知BE ∥CF ,∠A =∠D ,AE =DF .(1)求证:四边形BFCE是平行四边形;(2)填空:若AD=7,AB=2.5,∠EBD=60°,当四边形BFCE是菱形时,菱形BFCE 的面积是.20.“机动车行驶到斑马线要礼让行人等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解C.基本了解D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请结合图中所给信息解答下列问题:(1)填空:本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是°;(2)请直接补全条形统计图;(3)填空:扇形统计图中,m的值为;(4)该校共有500名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的约有多少名?21.从沈阳到大连的火车原来的平均速度是180千米/时,经过两次提速后平均速度为217.8干米/时,这两次提速的百分率相同.(1)求该火车每次提速的百分率;(2)填空:若沈阳到大连的铁路长396千米,则第一次提速后从沈阳到大连所用的时间比提速前少用了小时.22.如图,在△ABC中,AB=AC,以AC为直径做⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交CA的延长线于点F.(1)求证:FE⊥AB;(2)填空:当EF =4,53OF OA 时,则DE 的长为.23.如图,在平面直角坐标系中,反比例函数y =xk的图象经过正方形ABCD 的顶点A 和B ,点C 、D 的坐标分别是(0,﹣1)和(4,﹣3),边AD ,BC 分别交x 轴于点E 、F .(1)填空:正方形的边长为;(2)求反比例函数y =xk的解析式;(3)若点M 是直线BC 上一动点,作MN ∥x 轴,交反比例函数y =xk的图象于点N ,过点M ,N 分别向x 轴作垂线,垂足分别为P 、Q ,得到矩形MPQN ,设点M 的横坐标为a .①填空:点N 的坐标为;(用含a 的代数式表示)②填空:若矩形MPQN 的面积为6,则点M 的横坐标为.24.如图1,在矩形纸片ABCD 中,AB =23,AD =6,将纸片沿对角线AC 对折,点D 落在点P 处.(1)填空:∠BCA 的大小是;(2)如图2,将折叠后的纸片沿着AC 剪开,把△APC 绕点A 逆时针旋转α角(0°≤α≤90°),得到△AP′C′,点P,C分别对应点P′,C′,P′A交BC于点E,P′C′交CD于点F.①当α=15时,求证:AB=BE;②填空:当点P′落在边BC上时,连接AF,则tan∠DAF的值为;③填空:在②的条件下,将△AP′C′沿着AP′折叠至△AP′C″处,点C′对应点C″,AC″交BC于点G,则线段BG的长度为.25.如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0)和点C,与y轴交于点B.(1)求抛物线解析式和点B坐标;(2)在x轴上有一动点P(m,0)过点P作x轴的垂线交直线AB于点N,交抛物线与点M,当点M位于第一象限图象上,连接AM,BM,求△ABM面积的最大值及此时M 点的坐标;(3)如图2,点B关于x轴的对称点为D,连接AD,BC.①填空:点P是线段AC上一点(不与点A、C重合),点Q是线段AB上一点(不与点A、B重合),则两条线段之和PQ+BP的最小值为;②填空:将△ABC绕点A逆时针旋转a(0°<α<180°),当点C的对应点C′落在△ABD的边所在直线上时,则此时点B的对应点B′的坐标为.2019年辽宁省沈阳市沈河区中考数学二模试卷参考答案与试题解析一、选择题1.(3分)﹣2的倒数是()A .2B .﹣2C .21D .﹣21【解答】解:∵﹣2×(-21)=1,∴﹣2的倒数是﹣21.故选:D .2.(3分)人体中红细胞的直径约为0.0000077米,将0.0000077用科学记数法表示为()A .7.7×10﹣6B .7.7×10﹣5C .0.77×10﹣6D .0.77×10﹣5【解答】解:0.0000077=7.7×10﹣6.故选:A .3.(3分)如图所示的几何体的左视图是()A .B .C .D .【解答】解:从左往右看,易得一个长方形,正中有一条横向实线,故选:C .4.(3分)在反比例函数y =﹣x6图象上的点是()A .(﹣2,3)B .(4,﹣2)C .(6,1)D .(2,3)【解答】解:A .把x =﹣2代入y =﹣x 6得:y =﹣2-6=3,即A 项正确,B .把x =4代入y =﹣x 6得:y =﹣46=﹣23≠﹣2,即B 项错误,C .把x =6代入y =﹣x 6得:y =﹣66=﹣1≠1,即C 项错误,D .把x =2代入y =﹣x 6得:y =﹣26=﹣3≠3,即D 项错误,故选:A .5.(3分)袁隆平院士是中国杂交水稻育种专家,中国研究与发展杂交水稻的开创者,被誉为“世界杂交水稻之父”,他研究的水稻,不仅高产,而且抗倒伏.某村引进了袁隆平的甲乙两种水稻良种,各选6块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为1100kg /亩,方差分别为S 甲2=141.7,S 乙2=433.3,则产量稳定,适合推广的品种为()A .甲、乙均可B .甲C .乙D .无法确定【解答】解:∵S 甲2=141.7,S 乙2=433.3,∴S 甲2<S 乙2,∴产量稳定,适合推广的品种为甲;故选:B .6.(3分)将点P (﹣3,4)先向右平移4个单位长度,再向下平移3个单位长度后的坐标是()A .(1,7)B .(﹣7,7)C .(1,1)D .(﹣7,1)【解答】解:∵点P (﹣3,4)向右平移4个单位长度,再向下平移3个单位长度,∴﹣3+4=1,4﹣3=1,∴点P ′的坐标为(1,1).故选:C .7.(3分)把不等式组⎩⎨⎧>-≥-03042x x 的解集表示在数轴上,正确的是()A .B .C .D .【解答】解:⎩⎨⎧>-≥-03042x x 由①,得x ≥2,由②,得x <3,所以不等式组的解集是:2≤x <3.不等式组的解集在数轴上表示为:.故选:A .8.(3分)在平面直角坐标系中,已知点E (﹣4,2),F (﹣2,﹣2),以原点O 为位似中心,相似比为2,把△EFO 放大,则点E 的对应点E ′的坐标是()A .(﹣2,1)B .(﹣8,4)C .(﹣2,1)或(2,﹣1)D .(﹣8,4)或(8,﹣4)【解答】解:∵点E (﹣4,2),以原点O 为位似中心,相似比为2,把△EFO 放大,∴点E 的对应点E ′的坐标是:(﹣8,4)或(8,﹣4).故选:D .9.(3分)已知一个正六边形的边心距为3,则它的外接圆的面积为()A .πB .3πC .4πD .12π【解答】解:如图,六边形ABCDEF 为正六边形,作OH ⊥AB 于H ,连接OA ,则OA 为正六边形ABCDEF 的外接圆的半径,OH 为正六边形ABCDEF 的边心距,即OH =3,∵∠OAB =21×120°=60°,∴sin ∠OAH =OAOH,∴OA =60sin 3=2,∴它的外接圆的面积=π•22=4π.故选:C .10.(3分)二次函数y =ax 2+bx +c 的部分图象如图,则下列说法错误的是()A .对称轴是直线x =﹣1B .abc <0C .b 2﹣4ac >0D .方程ax 2+bx +c =0的根是x 1=﹣3和x 2=1【解答】解:A 、由抛物线图象得对称轴是直线x =﹣1,选项A 错误;B 、由抛物线图象得:开口向下,即a <0;对称轴﹣ab2<0,则b <0,抛物线与y 轴交于正半轴,可得c >0,abc >0,选项B 正确;C 、由抛物线与x 轴有两个交点,则b 2﹣4ac >0,选项C 错误;D 、由图象得抛物线与x 轴交点的横坐标为1,﹣3,则方程ax 2+bx +c =0的根是x 1=﹣3和x 2=1,选项D 错误.故选:B .二、堉空题11.(3分)分解因式:3a 3b ﹣3ab 3=3ab (a +b )(a ﹣b ).【解答】解:3a 3b ﹣3ab 3=3ab (a 2﹣b 2)=3ab (a +b )(a ﹣b ),故答案为:3ab (a +b )(a ﹣b ).12.(3分)在一个不透明的布袋中,共有30个小球,除颜色外其他完全相同,若每次将球搅匀后摸一个球记下颜色再放回布袋,通过大量重复摸球试验后发现,摸到红色球的频率稳定在0.2左右,则口袋中红色球的个数大约是6个.【解答】解:设袋中红色球有x 个,根据题意,得:30x=0.2,解得x =6,即口袋中红色球的个数应该是6个,故答案为:6.13.(3分)已知直线m ∥n ,将一块直角三角板ABC (其中∠C =90°,∠BAC =30°)按如图所示方式放置,使A 、B 两点分别落在直线m 、n 上,若∠1=31°,则∠2的度数是29°.【解答】解:∵直线m ∥n ,∴∠3=∠1=31°,又∵三角板中,∠ABC =60°,∴∠2=60°﹣31°=29°,故答案为:29°.14.(3分)如图是一个地铁站入口双翼闸机的示意图,当它的双翼展开时,双翼边缘的端点A 与B 之间的距离为10cm ,双翼的边缘AC =BD =61cm ,且与闸机侧立面夹角∠PCA =∠BDQ =30°,当双翼收起时,可以通过闸机的物体最大宽度为71cm .【解答】解:过点A 作AE ⊥PC 于点E ,过点B 作BF ⊥QD 于点F ,∵AC =61,∠PCA =30°,∴AE =21AC =261,由对称性可知:BF =AE ,∴通过闸机的物体最大宽度为2AE +AB =61+10=71,故答案为:71cm .15.(3分)甲、乙分别骑电瓶车、自行车从A 地出发,沿同一路线匀速前往B 地,设乙行驶的时间为x (h ),甲、乙两人距A 地的路程S 甲(km )、S 乙(km )关于x (h )的函数图象如图①所示,甲、乙两人之间的路程差y (km )关于x (h )的函数图象如图②所示,对比图①、图②可得a +b 的值为11.5.【解答】解:由图可得,甲的速度为25÷(1.5﹣0.5)=25km /h ,乙的速度为:25÷2.5=10km /h ,b =1.5,a =25﹣10×1.5=10,∴a +b =1.5+10=11.5,故答案为:11.516.(3分)如图,线段AB 绕着点A 逆时针方向旋转120°得到线段AC ,点B 对应点C ,在∠BAC 的内部有一点P ,PA =8,PB =4,PC =413,则线段AB 的长为.【解答】解:如图,将△ABP 绕点A 逆时针旋转120°,得到△ACD ,连接PD ,过点A 作AH ⊥PD 于H ,则△ABP ≌△ACD ,∠PAD =120°,∴PA =DA =8,PB =DC =4,∠APH =∠ADH =30°,∴AH =21AP =4,∴PH =DH =3422=-AH AP ,∴PD =2PH =83,在△PDC 中,PD 2+CD 2=(83)2+42=208,PC 2=(413)2=208,∴PD 2+CD 2=PC 2,∴△PDC 为直角三角形,且∠PDC =90°,∴∠AHD =∠PDC ,∴AH ∥DC ,∴△DMC ∽△HMA ,∵DC =AH =4,∴AM =CM =21AC ,HM =DM =21HD =23,∴在Rt △DMC 中,CM =7222=+DC DM ,∴AB =AC =2CM =47,三、解答题17.计算:2﹣2×sin45°﹣(1﹣8)0+2﹣1【解答】解:原式=2﹣2×22﹣1+21=2﹣2﹣1+21=﹣21.18.二孩政策出台后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同(1)甲家庭已有一个男孩,准备再生育一个孩子,则第二个孩子是女孩的概率是.(2)乙家庭没有孩子,准备生育两个孩子,请利用列表或画树状图求至少有一个男孩的概率.【解答】解:(1)第二个孩子是女孩的概率=21;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是男孩的结果数为3,所以至少有一个孩子是男孩的概率=43.19.如图,点A 、B 、C 、D 依次在同一条直线上,点E 、F 分别在直线AD 的两侧,已知BE ∥CF ,∠A =∠D ,AE =DF .(1)求证:四边形BFCE 是平行四边形;(2)填空:若AD =7,AB =2.5,∠EBD =60°,当四边形BFCE 是菱形时,菱形BFCE 的面积是.【解答】(1)证明:∵BE ∥CF ,∴∠EBC =∠FCB ,∴∠EBA =∠FCD ,在△ABE 和△DCF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠DF AE FCD EBA D A ,∴△ABE ≌△DCF (AAS ),∴BE =CF ,AB =CD ,∴四边形BFCE 是平行四边形.(2)解:连接EF 交BC 于O ,如图所示:∵AD =7,AB =DC =2.5,∴BC =AD ﹣AB ﹣DC =2,∵四边形BFCE 是菱形,∠EBD =60°,EF ⊥BC ,OB =21BC =1,OE =OF ,∴△CBE 是等边三角形,∠BEO =30°,∴BC =EC =2,∴OE =3OB =3,∴EF =23,∴菱形BFCE 的面积=21BC ×EF =21×2×23=23;20.“机动车行驶到斑马线要礼让行人等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A .非常了解,B .比较了解C .基本了解D .不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请结合图中所给信息解答下列问题:(1)填空:本次共调查名学生;扇形统计图中C 所对应扇形的圆心角度数是90°;(2)请直接补全条形统计图;(3)填空:扇形统计图中,m 的值为30;(4)该校共有500名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的约有多少名?【解答】解:(1)本次共调查学生:24÷40%=60(名),扇形统计图中C 所对应扇形的圆心角度数:360°×6015×100%=90°,故答案为90;(2)扇形统计图中D 所对应的学生数:60×5%=3(名)扇形统计图中B 所对应的学生数:60﹣24﹣15﹣3=18(名),补全条形统计图如下:(3)6018×100%=30%,扇形统计图中,m 的值为30,故答案为30;(4)500×40%=200(名)答:全校学生中对这些交通法规“非常了解”的约有200名.21.从沈阳到大连的火车原来的平均速度是180千米/时,经过两次提速后平均速度为217.8干米/时,这两次提速的百分率相同.(1)求该火车每次提速的百分率;(2)填空:若沈阳到大连的铁路长396千米,则第一次提速后从沈阳到大连所用的时间比提速前少用了0.2小时.【解答】解:(1)设该火车每次提速的百分率为x ,依题意,得:180(1+x )2=217.8,解得:x 1=0.1=10%,x 2=﹣2.1(舍去).答:该火车每次提速的百分率为10%.(2)第一次提速后的速度为180×(1+10%)=198(千米/时),第一次提速后从沈阳到大连所用的时间比提速前少用的时间为198396-180396=0.2(小时).22.如图,在△ABC 中,AB =AC ,以AC 为直径做⊙O 交BC 于点D ,过点D 作⊙O 的切线,交AB 于点E ,交CA 的延长线于点F .(1)求证:FE ⊥AB ;(2)填空:当EF =4,53=OF OA 时,则DE 的长为6.【解答】(1)证明:连接OD ,如图,∵DF 为⊙O 的切线,∴OD ⊥DF ,∵OC =OD ,∴∠C =∠ODC ,∵AB =AC ,∴∠B =∠C ,∴∠B =∠ODC ,∴OD ∥AB ,∴EF ⊥AB ;(2)解:∵AE ∥OD ,∴53==OF OA DF DE ,即534=+DE DE ,解得DE =6.23.如图,在平面直角坐标系中,反比例函数y =xk 的图象经过正方形ABCD 的顶点A 和B ,点C 、D 的坐标分别是(0,﹣1)和(4,﹣3),边AD ,BC 分别交x 轴于点E 、F .(1)填空:正方形的边长为;(2)求反比例函数y =xk 的解析式;(3)若点M 是直线BC 上一动点,作MN ∥x 轴,交反比例函数y =xk 的图象于点N ,过点M ,N 分别向x 轴作垂线,垂足分别为P 、Q ,得到矩形MPQN ,设点M 的横坐标为a .①填空:点N 的坐标为;(用含a 的代数式表示)②填空:若矩形MPQN 的面积为6,则点M 的横坐标为.【解答】解:(1)∵点C 的坐标为(0,﹣1),点D 的坐标为(4,﹣3),∴CD ==25.(2)过点B 作BB ′⊥y 轴于点B ′,过点D 作DD ′⊥y 轴于点D ′,如图1所示.∵四边形ABCD 为正方形,∴∠BCD =90°,BC =CD .∵∠B ′BC +∠B ′CB =90°,∠B ′CB +∠D ′CD =90°,∴∠B ′BC =∠D ′CD .在△B ′BC 和△D ′CD 中,⎪⎩⎪⎨⎧=∠=∠∠=∠CD BC CD D BC B D CD c BB '''',∴△B ′BC ≌△D ′CD (AAS ),∴BB ′=CD ′=2,CB ′=DD ′=4,∴OB ′=CB ′﹣OC =3,∴点B 的坐标为(2,3).将B (2,3)代入y =x k ,得:3=2k ,∴k =6,∴反比例函数的解析式为y =x6.(3)①设直线BC 的解析式为y =mx +n (m ≠0),将B (2,3),C (0,﹣1)代入y =mx +n ,得:⎩⎨⎧-==+132n n m ,解得:⎩⎨⎧-==12n m ,∴直线BC 的解析式为y =2x ﹣1.∵点M 的横坐标为a ,∴点M 的坐标为(a ,2a ﹣1).∵MN ∥x 轴,且点N 反比例函数y =x 6的图象上,∴点N 的坐标为(126-a ,2a ﹣1).②∵点M 的坐标为(a ,2a ﹣1),点N 的坐标为(126-a ,2a ﹣1),∴MN =|a ﹣126-a |,MP =|2a ﹣1|.∵矩形MPQN 的面积为6,∴|a ﹣126-a |•|2a ﹣1|=6,即2a 2﹣a =0或2a 2﹣a ﹣12=0,解得:a 1=0,a 2=21,a 3=497-1,a 4=4971+,经检验,a 1=0,a 3=497-1,a 4=4971+是原方程的解,且符合题意,a 2=21是增根,舍去.故答案为:0,497-1或4971+.24.如图1,在矩形纸片ABCD 中,AB =23,AD =6,将纸片沿对角线AC 对折,点D 落在点P 处.(1)填空:∠BCA 的大小是30°;(2)如图2,将折叠后的纸片沿着AC 剪开,把△APC 绕点A 逆时针旋转α角(0°≤α≤90°),得到△AP ′C ′,点P ,C 分别对应点P ′,C ′,P ′A 交BC 于点E ,P ′C ′交CD 于点F .①当α=15时,求证:AB =BE ;②填空:当点P ′落在边BC 上时,连接AF ,则tan ∠DAF 的值为;③填空:在②的条件下,将△AP ′C ′沿着AP ′折叠至△AP ′C ″处,点C ′对应点C ″,AC ″交BC 于点G ,则线段BG 的长度为.【解答】(1)解:∵四边形ABCD 是矩形,∴∠B =90°,AD =BC =6,AB =CD =23,∴tan ∠ACB =33632==BC AB ∴∠ACB =30°,故答案为30°.(2)①证明:如图2﹣1中,∵在Rt △ABC 中,∠ACB =30°,∠B =90°,∴∠CAB =60°,∵α=15°,∴∠CAE =15°,∴∠BAE =45°,∴∠AEB =∠EAB =45°,∴BA =BE .②解:如图2﹣2中,在Rt △ABP ′中,BP ′=62'22=-AB AP ,∴CP ′=6﹣26,∵∠CFP ′+∠FP ′C =90°,∠FP ′C +∠AP ′B =90°,∴∠AP ′B =∠CFP ′,∵∠FCP ′=∠B =90°,∴△FCP ′∽△P ′BA ,∴BACP BP CF ''=,∴3262662-=CF ,∴CF =62﹣43,∴DF =23﹣(62﹣43)=63﹣62,∴tan ∠DAF =ADDF =3﹣2.③如图3﹣2中,作GH ⊥AP ′于H ,设GH =x .由△P ′HG ∽△P ′BA ,可得P ′H =2x ,∵∠GAH =30°,∠GHA =90°,∴AH =3x ,∵AP ′=6,∴2x +3x =6,∴x =6(3﹣2),∴AG =2GH =12(3﹣2),在Rt △ABG 中,BG =186822-=-AB AG 25.如图1,抛物线y =ax 2+(a +2)x +2(a ≠0)与x 轴交于点A (4,0)和点C ,与y 轴交于点B .(1)求抛物线解析式和点B 坐标;(2)在x 轴上有一动点P (m ,0)过点P 作x 轴的垂线交直线AB 于点N ,交抛物线与点M ,当点M 位于第一象限图象上,连接AM ,BM ,求△ABM 面积的最大值及此时M 点的坐标;(3)如图2,点B 关于x 轴的对称点为D ,连接AD ,BC .①填空:点P 是线段AC 上一点(不与点A 、C 重合),点Q 是线段AB 上一点(不与点A 、B 重合),则两条线段之和PQ +BP 的最小值为;②填空:将△ABC 绕点A 逆时针旋转a (0°<α<180°),当点C 的对应点C ′落在△ABD 的边所在直线上时,则此时点B 的对应点B ′的坐标为.【解答】解:(1)将A (4,0)代入y =ax 2+(a +2)x +2,得16a +4(a +2)+2=0,解得a =-21,∴抛物线解析式为y =-21x 2+23x +2;令x =0,得y =2,∴B (0,2).(2)如图1,过点M 作ME ⊥AB 于E ,设P (m ,0),M (m ,22321-2++m m ),设直线AB 的解析式为y =kx +b ,将A (4,0),B (0,2)分别代入得⎩⎨⎧==+204b b k ,解得⎪⎩⎪⎨⎧=-=221b k ,∴直线AB 的解析式为221+-=x y ,∴N (m ,221-+m ),∴MN=22321-2++m m -(221-+m )=m m 221-2+∵MN ⊥x 轴,∴MN ∥y 轴,∴∠MNE =∠ABO ,又∵∠MEN =∠AOB =90°,∴△MEN ∽△AOB ∴ABAO MN ME =,∴ME ×AB =AO ×MN ∴)221(42121212m m MN AO AB ME S ABM +-⨯⨯=⨯⨯=⨯⨯=△=﹣(m ﹣2)2+4∵﹣1<0,0<m <4∴当m =2时,S △ABM 的最大值=4,此时,点M 的坐标为(2,3).(3)①如图2,连接BP 、DP 、PQ ,则PQ +BP =PQ +DP ,只有当D 、P 、Q 三点在同一直线上,且DP ⊥AB 时,PQ +BP 的值最小.过点D 作DQ ⊥AB 于Q ,交x 轴于P ,OA =4,OB =2,AB =5222=+OB OA ,∵B 、D 关于x 轴对称∴D (0,﹣2),BD =4,∵BD ×AO =DQ ×AB∴DQ =5585244=⨯=⨯AB AO BD ,即PQ +BP 的最小值=558,②如图3,点C ′落在直线BD 上,在抛物线解析式y =21-x 2+23x +2中,令y =0,解得x 1=4,x 2=﹣1,∴C (﹣1,0),AC =5,BC =5,∵22BC AB +=AC 2,∴∠ABC =90°由旋转性质得,AC ′=AC =5,B ′C ′=BC =5,AB ′=AB =25,∠AB ′C ′=∠ABC =90°,3''22=-=OA AC OC ,∴C ′(0,﹣3).设AB ′交y 轴于F ,过B ′作B ′G ⊥y 轴于G ,∵∠AOF =∠C ′B ′F =90°,∠AFO =∠C ′FB ′∴△AFO ∽△C ′FB ′,∴∠FAO =∠FC ′B ′,45'''==AO C B OF F B ,即OF F B 45'=,∴OF F B AB AF 4552''-=-=∵AO 2+OF 2=AF 2∴222)4552(4OF OF -=+,解得118=OF ∴115201184552=⨯-=AF ∵∠C ′GB ′=∠AOF =90°∴△C ′GB ′∽△AOF ∴AF OF C B G B =''',即B ′G ×AF =OF ×B ′C ′,∴115811520'=⨯G B ,∴52'=G B ,∴AF OA C B G C =''',即C ′G ×AF =OA ×B ′C ′,∴5411520'=⨯G C ,∴511'=G C ∴)54-52(',-B 如图4,点C ′落在直线AD 上,∵∠BAC =∠OAD ,∴点B 的对应点B ′落在x 轴上,由旋转知:△AB ′C ′≌△ABC ,∴AB ′=AB =25,OB ′=25-4∴)0524(',-B .如图5,点C ′落在直线AB 上,过C ′作C ′B ″⊥x 轴于B ″,作B ′M ⊥x 轴于M ,作DQ ⊥AB 于Q ,∵∠B ″AC ′=∠BAC =∠B ′AC ′,∠AB ″C ′=∠AB ′C ′=∠ABC =∠AQD =∠AM ′=90°,AC ′=AC =5,∴∠BAD =∠B ′AB ″,AB =AD =AB ′=AB ″,∴△ADQ ≌△AB ′M ,∴B ′M =DQ =558.∴556''22=-=M B AB AM 4564+=+=AM OA OM ∴)558,55620('-+B 故答案为:)54,52(--或(4-25,0)或)558,55620(-+.。
2019年辽宁省普通高中学业水平考试沈阳市模拟试卷数学(二)详解1.D012129{}{}M N ,=,,=,,,{0129}MN ∴=,,,,D 故选2.A圆O 的面积为π,正方形ABCD 面积为4,所以点P 恰好落在圆内的概率为4π,故选A 3.B()f x 是(0,)+∞增函数,且(1)10,(2)ln 20f f =-<=>,∴()f x 零点所在的区间为(1,2),故选B 4.B0x >,3f x x ()=,∴(1)1f =,()f x 是定义在R 上的奇函数, -1=-1=-1f f ∴()().故选B 5.B22()23=1+2f x x x x =-+-()对称轴为1x =,()f x 在[0,1]递减,在[1,3]递增,()f x ∴在[0,3]最小值为(1)2f =,故选B6.B 法1:,,a b c 成等差数列,2b a c ∴=+,53a c =,∴可设3,4,5a b c ===,∴ABC ∆为直角三角形,3cos 5B =,故选B 法2:34,55a c b c ==,2223cos 25a cb B ac +-==,故选B7.Cf x ()=3,02,0x x x x >≤log ,311)log 133(()f ∴==-,111))(1)23(2(f f f -=-==,故选C8.Dsin 2sin(2())84y x x ππ=--=(),∴只要将sin 2y x =的图像向右平移8π个单位,故选D 9. Az x y =+表示斜率为-1的一组平行线,如图所示,当直线过点.(2,0)A 时,min 202z =+=,故选A10.Ax y >,且()x f x e =为R 上增函数,∴x y e e >,若0x <或0y <,则B 无意义, B 错,若,x y 同号,则11x y<, C 错; 令3,4x y ==-则22x y < ,D 错;故选A. 11.C由框图可得21227S =++=.故选C 12.CCB AB AC a b =-=-,14BM BC =,333444CB a CM b ∴==- 12CN CA =,12CN b -∴=,1344C MN CN b M a =-=-∴,故选C二.填空题(每题3分,共12分) 13.-3.,3220,3a b t t ⊥∴⋅+⋅==-14.4由三视图可得原几何体为正四棱锥,体积为212343V =⋅⋅=. 15.15由分层抽样可得,应抽取有预习习惯的学生成绩份数为1505015500⋅=份. 16. 已知,a b R +∈且22a b +=,则ab 的最大值为________ 16.120,0a b >>, 2a b +≥22a b +=,12ab ∴≤,当且仅当11,2a b ==时“=”成立; 三.解答题(本大题共5小题,共52分) 17. (本小题满分10分)(1) 222sin cos cos sin f x x x x x +()=﹣ =sin 2cos 2x x +)4x π+,(3分)∴()f x 的周期为22T ππ==.(5分) (2) 02x π≤≤,∴52[,]444x πππ+∈,当2[,]442x πππ+∈,即[0,]8x π∈,()f x 递增;当52[,]424x πππ+∈,即[,]82x ππ∈,()f x 递减;(7分)当8x π=时,()f x 取得最大值为()8f π=当2x π=时,()f x 取得最小值为()12f π=-.(10分)18. (本小题满分10分)(1)甲运动员得分更稳定 (5分)(2)设从乙运动员的得分数据中,随机抽取两个不低于30分的数据为事件N ,N 包括的情形为(31,37),(31,42),(31,51),(37,42),(37,51),(42,51),共6种结果;(8分)这两个数据都位于(30,40)之间为事件M ,M 包括情形为(31,37),1种结果,所以P (M )=16(10分)19.(本小题满分10分)(1) 如图所示,底面ABCD 是菱形,且AC BD O =,∴ O 为AC 中点,M 为DC 中点,∴OM 为CDA ∆的中位线,//OM DA ∴,(2分)DA ABD OM ABD ⊂⊄面,面,//OM ABD ∴面 (5分)(2)底面ABCD 是菱形,,且ACBD O =BD AC ∴⊥, (7分)AC OB AC OD ∴⊥⊥,,OB OD O OB BOD OD BOD =⊂⊂,面,面∴AC ⊥面BOD (10分)20. (本小题满分10分) (1)数列{}n a 是等差数列13a =,412a =,∴公差41-34-1a a d ==,1-13n a a n d n ∴=+⋅=() (2分) 数列{}n b 是等比数列,252,16b b ==,∴公比35216822b q q b ====,,-2-122n n n b b q =⋅= (5分) (2)11-312-121-2nn n n a a n b b q n n S q ++=+=+()() (10分)21.(本小题满分12分) (1)圆C 经过点(1,2),(2,1)A B∴圆心C 在AB 的垂直平分线上,设AB 的垂直平分线为l ,AB 中点为33(,)22M ,直线AB 的斜率为-1,∴l :3322y x -=-即:l y x =,又圆心C 在直线1l :230x y +-=上,∴联立可得圆心坐标(1,1)C ,1r ==, (3分) ∴圆C 的方程为:22(1)(1)1x y -+-= (5分)(2)1l :230x y +-=,且12l l ⊥,所以可设2:20l x y P -+=,设圆心C 到2l 的距离为d ==,||MN ==1||2S MN d =⋅⋅=|1|P +< (8分)设2|1|,5P t S +==12≤当且仅当12t =,即1P =-时,max 12S =(12分)。
2019年辽宁省沈阳市沈北新区中考数学二模试卷
一、选择题(每题2分,共20分)
1.(2分)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()
A.B.
C.D.
2.(2分)下列四个数:﹣3,﹣,﹣π,﹣1,其中最小的数是()A.﹣πB.﹣3C.﹣1D.﹣
3.(2分)一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5B.6.5×10﹣6C.6.5×10﹣7D.65×10﹣6
4.(2分)下列运算正确的是()
A.a2•a3=a6B.(ab)2=a2b2C.(a2)3=a5D.a2+a2=a4
5.(2分)反比例函数y=﹣的图象在()
A.第一、三象限B.第二、四象限
C.第一、二象限D.第三、四象限
6.(2分)打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()
A.B.
C.D.
7.(2分)如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于()
A.30°B.45°C.55°D.60°
8.(2分)据调查,2013年5月济南市的房价均价为7600元/m2,2015年同期达到8200元/m2,假设这两年济南市房价的平均增长率为x,根据题意,所列方程为()
A.7600(1+x%)2=8200B.7600(1﹣x%)2=8200
C.7600(1+x)2=8200D.7600(1﹣x)2=8200
9.(2分)如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是()
A.2cm<OA<5cm B.2cm<OA<8cm C.1cm<OA<4cm D.3cm<OA<8cm 10.(2分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()
A.函数有最小值
B.对称轴是直线x=。