高中数学 2.6函数模型及其应用课件 苏教版必修1
- 格式:ppt
- 大小:673.00 KB
- 文档页数:16
完整版高中数学必修一全册课件目录•高中数学必修一概述•集合与函数概念•基本初等函数(Ⅰ)•函数的应用•空间几何体•点、直线、平面之间的位置关系01高中数学必修一概述包括集合的基本概念、集合间的关系与运算、函数的概念与性质等。
集合与函数概念包括指数函数、对数函数、幂函数等基本初等函数的图像与性质。
基本初等函数包括函数与方程、函数模型及其应用等,通过实例探究函数的性质与应用。
函数的应用教材内容与结构过程与方法通过观察、思考、探究、归纳等活动,培养学生的数学思维能力、创新能力和解决问题的能力。
知识与技能掌握集合与函数的基本概念,理解基本初等函数的图像与性质,能够运用函数知识解决一些实际问题。
情感态度与价值观激发学生学习数学的兴趣和热情,培养学生的数学素养和审美情趣。
教学目标与要求总结归纳定期对所学知识进行总结归纳,形成知识网络,便于记忆和提取。
通过大量的练习,熟练掌握解题方法和技巧,提高解题速度和准确性。
课后复习及时复习巩固所学知识,独立完成作业和练习题,加深对知识点的理解和记忆。
课前预习提前阅读教材,了解本节课的知识点和重点难点,为听课做好准备。
课中听讲认真听讲,积极思考,及时记录重要知识点和解题方法。
学习方法与建议02集合与函数概念03元素与集合的关系属于、不属于。
01集合的概念集合是由一个或多个确定的元素所构成的整体。
02集合的表示方法列举法、描述法、图像法。
集合及其表示方法集合之间的关系与运算集合之间的关系子集、真子集、相等。
集合的运算并集、交集、补集。
集合运算的性质交换律、结合律、分配律等。
函数是一种特殊的对应关系,它使得每个自变量对应唯一的因变量。
函数的概念函数的表示方法函数的三要素解析法、列表法、图像法。
定义域、值域、对应法则。
030201函数及其表示方法1 2 3单调性、奇偶性、周期性等。
函数的性质解决实际问题,如最优化问题、数学建模等。
函数的应用通过函数可以研究方程和不等式的解的性质和范围。
第三十三课时函数模型及其应用(1)【学习导航】知识网络学习要求1.了解解实际应用题的一般步骤;2.初步学会根据已知条件建立函数关系式的方法;3.渗透建模思想,初步具有建模的能力.自学评价1.数学模型就是把用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题,得出关于实际问题的数学描述.2. 数学建模就是把实际问题加以建立相应的的过程,是数学地解决问题的关键.3. 实际应用问题建立函数关系式后一般都要考察.【精典范例】例1.写出等腰三角形顶角y(单位:度)与底角x的函数关系.点评:函数的定义域是函数关系的重要组成部分.实际问题中的函数的定义域,不仅要使函数表达式有意义,而且要使实际问题有意义.例2.某计算机集团公司生产某种型号计算机的固定成本为200万元,生产每台计算机的可变成本为3000元,每台计算机的售价为5000元.分别写出总成本C(万元)、单位成本P(万元)、销售收入R(万元)以及利润L(万元)关于总产量x(台)的函数关系式. 分析:销售利润()L x=销售收入()R x-成本()C x,其中成本()C x=(固定成本+可变成本).例3.大气温度()y C o随着离开地面的高度()x km增大而降低,到上空11km为止,大约每上升1km,气温降低6C o,而在更高的上空气温却几乎没变(设地面温度为22C o).求:(1)y与x的函数关系式;(2) 3.5x km=以及12x km=处的气温.点评:由于自变量在不同的范围中函数的表达式不同,因此本例第1小题得到的是关于自变量的分段函数;第2小题是已知自变量的值,求函数值的问题.听课随笔追踪训练一1.生产一定数量的商品时的全部支出称为生产成本,可表示为商品数量的函数,现知道一企业生产某种产品的数量为x 件时的成本函数是()21200102C x x x =++(元),若每售出一件这种商品的收入是200元,那么生产并销售这种商品的数量是200件时,该企业所得的利润可达到多少?2.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(OA 为线段,AB 为某二次函数图象的一部分,O 为原点).(1)写出服药后y 与t 之间的函数关系式()y f x =;(2)据进一步测定:每毫升血液中含药量不少于49微克时,对治疗有效,求服药一次治疗疾病有效的时间.【选修延伸】一、函数与图象高考热点1: (2002年高考上海文,理16)一般地,家庭用电量(千瓦时)与气温(℃)有一定的关系,如图所示,图(1)表示某年12个月中每月的平均气温.图(2)表示某家庭在这年12个月中每个月的用电量.根据这些信息,以下关于该家庭用电量与其气温间关系的叙述中,正确的是( )A.气温最高时,用电量最多B.气温最低时,用电量最少C.当气温大于某一值时,用电量随气温增高而增加D.当气温小于某一值时,用电量随气温渐低而增加听课随笔答案:C分析:该题考查对图表的识别和理解能力.【解】经比较可发现,2月份用电量最多,而2月份气温明显不是最高.因此A 项错误.同理可判断出B 项错误.由5、6、7三个月的气温和用电量可得出C项正确.思维点拔:数学应用题的一般求解程序(1)审题:弄清题目意,分清条件和结论,理顺数量关系;(2)建模:将题目条件的文字语言转化成数学语言,用数学知识建立相应的数学模型;(3)解模:求解数学模型,得到数学结论; (4)结论:将用数学方法得到的结论还原为实际问题的意义,并根据题意下结论.追踪训练二1. 有一块半径为R 的半圆形钢板,计划剪裁成等腰梯形ABCD 的形状,它的下底AB 是⊙O 的直径,上底CD 的端点在圆周上,写出这个梯形周长y 和腰长x 间的函数关系式,并求出它的定义域.分析:关键是用半径R 与腰长x 表示上底,由对称性:2CD AB AE =-,故只要求出AE .本节学习疑点:如何根据题意建立恰当的函数模型来解决实际问题.【师生互动】学生质疑教师释疑。