人教版九年级数学下《第27章相似》专项训练(2)含答案
- 格式:doc
- 大小:303.50 KB
- 文档页数:20
人教版数学九年级下册第二十七章相似习题练习(附答案)一、选择题1.如果一个直角三角形的两条边分别是6和8,另一个与它相似的直角三角形边长分别是3,4及x,那么x的值()A.只有一个B.可以有2个C.可以有3个D.无数个2.如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA·OC=OB·OD;③OC·G=OD·F1;④F=F1.其中正确的说法有()A. 1个B. 2个C. 3个D. 4个3.如图,AD是直角三角形ABC斜边上的中线,AE⊥AD交CB延长线于E,则图中一定相似的三角形是()A.△AED与△ACBB.△AEB与△ACDC.△BAE与△ACED.△AEC与△DAC4.如图是小莹设计用手电来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A 出发经平面镜反射后,刚好射到古城墙CD的顶端C处.已知AB⊥BD,CD⊥BD.且测得AB=1.4米,BP=2.1米,PD=12米.那么该古城墙CD的高度是()A . 6米B . 8米C . 10米D . 12米5.如图所示格点图中,每个小正方形的边长均为1,△ABC 的三个顶点均在格点上,以原点O 为位似中心,相似比为12,把△ABC 缩小,则点C 的对应点C ′的坐标为( )A . (1,32)B . (2,6)C . (2,6)或(-2,-6)D . (1,32)或(-1,−32)6.如图,AD ∥BC ,∠D =90°,AD =2,BC =5,DC =8.若在边DC 上有点P ,使△PAD 与△PBC 相似,则这样的点P 有( )A . 1个B . 2个C . 3个D . 4个7.志远要在报纸上刊登广告,一块10 cm×5 cm 的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( )A . 540元B . 1 080元C . 1 620元D . 1 800元8.△ABC 的三边之比为3∶4∶5,与其相似的△DEF 的最短边是9 cm ,则其最长边的长是( ) A . 5 cm B . 10 cm C . 15 cm D . 30 cm9.如图,已知AB ∥CD ∥EF ,那么下列结论中正确的是( )A .CD EF =AD AFB .AB CD =BC ECC.ADBC =AFBED.CEBE =AFAD10.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA∶OA′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为()A. 4∶9B. 2∶5C. 2∶3D.√2∶√311.若a5=b7=c8,且3a-2b+c=3,则2a+4b-3c的值是()A. 14 B. 42 C. 7 D.14312.一个数与3、4、6能组成比例,这个数是()A. 2或8B. 8 或4.5C. 4.5 或2D. 2,8或4.513.两个相似三角形的面积比为1∶4,那么它们的周长比为()A. 1∶√2B. 2∶1 C. 1∶4 D. 1∶2二、填空题14.如图,已知△ABC中,D为BC中点,E,F为AB边三等分点,AD分别交CE,CF于点M,N,则AM∶MN∶ND等于____________.15.如图所示,已知∠DAB=∠CAE,再添加一个条件就能使△ADE∽△ABC,则这个条件可能是________________.(写出一个即可)16.如图,AD =DF =FB ,DE ∥FG ∥BC ,则S Ⅰ∶S Ⅱ∶S Ⅲ=__________.17.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为______________.18.某同学用一等边三角形木板制作一些相似的直角三角形.如图,其方法是:过C 点作CD 1⊥AB 于D 1,再过D 1作D 1D 2⊥CA 于D 2,再过D 2作D 2D 3⊥AB 于D 3,…,若△ABC 的边长为a ,则CD 1=√32a ,D 1D 2=√34a ,D 2D 3=√38a ,依此规律,则D 5D 6的长为________.19.如图是测量玻璃管内径的示意图,点D 正对“10 mm”刻度线,点A 正对“30 mm”刻度线,DE ∥AB .若量得AB 的长为6 mm ,则内径DE 的长为____________ mm.三、解答题20.如图,△ABC 在方格纸中.(1)请建立平面直角坐标系.使A 、C 两点的坐标分别为(2,3)、C (5,2),求点B 的坐标.(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A ′B ′C ′.(3)计算△A ′B ′C ′的面积S .21.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.22.如图,△ABC与△A1B1C1是位似图形.(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B 的坐标为____________;(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP 的周长为____________.23.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC 的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC 的长.图①图②答案解析1.【答案】B【解析】∵一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形的边长分别是3和4及x,∴x可能是斜边或4是斜边,∴x=5或√7.∴x的值可以有2个.故选B.2.【答案】D【解析】∵B1C⊥OA,A1D⊥OA,∴B1C∥A1D,∴△OB1C∽△OA1D,故①正确;∴OCOD =OBOA1,由旋转的性质,得OB=OB1,OA=OA1,∴OA·OC=OB·OD,故②正确;由杠杆平衡原理,OC·G=OD·F1,故③正确;∴F1G =OCOD=OB1OA1=OBOA是定值,∴F1的大小不变,∴F=F1,故④正确.综上所述,说法正确的是①②③④.故选D.3.【答案】C【解析】∵斜边中线长为斜边的一半,∴AD=BD=CD,∴∠C=∠DAC,∵∠BAE+∠BAD=90°,∠DAC+∠BAD=90°,∴∠BAE=∠DAC,∴∠C=∠BAE,∵∠E=∠E,∴△BAE∽△ACE.故选C.4.【答案】B【解析】∵∠APB =∠CPD ,∠ABP =∠CDP ,∴△ABP ∽△CDP ,∴AB CD =BP PD, 即1.4CD =2.112,解得CD =8米.故选B.5.【答案】D【解析】∵以原点O 为位似中心,相似比为12,把△ABC 缩小,∴点C 的对应点C ′的坐标(1,32)或(-1,−32).故选D.6.【答案】C【解析】∵AD ∥BC ,∠D =90°,∴∠C =∠D =90°,∵DC =8,AD =2,BC =5,设PD =x ,则PC =8-x .①若PD ∶PC =AD ∶BC ,则△PAD ∽△PBC ,则x 8−x =25,解得x =167;②若PD ∶BC =AD ∶PC ,则△PAD ∽△BPC ,则x 5=28−x ,解得PD =4±√6,所以这样的点P 存在的个数有3个.故选C.7.【答案】C【解析】∵一块10 cm×5 cm 的长方形版面要付广告费180元, ∴每平方厘米的广告费为180÷50=185元, ∴把该版面的边长都扩大为原来的3倍后的广告费为30×15×185=1 620元故选C.8.【答案】C【解析】∵△ABC 和△DEF 相似,∴△DEF 的三边之比为3∶4∶5,∴△DEF 的最短边和最长边的比为3∶5,设最长边为x ,则3∶5=9∶x ,解得x =15,∴△DEF 的最长边为15 cm ,故选C.9.【答案】C【解析】∵AB ∥CD ∥EF ,∴AD AF =BC BE ,A 错误;AD DF =BC EC ,B 错误;AD AF =BC BE ,∴AD BC =AF BE ,C 正确;CE BE =DF AF ,D 错误,故选C.10.【答案】A【解析】∵四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,OA ∶OA ′=2∶3, ∴DA ∶D ′A ′=OA ∶OA ′=2∶3,∴四边形ABCD 与四边形A ′B ′C ′D ′的面积比为(23)2=49, 故选A.11.【答案】D【解析】设a =5k ,则b =7k ,c =8k ,又3a -2b +c =3,则15k -14k +8k =3,得k =13,即a =53,b =73,c =83,所以2a +4b -3c =143.故选D.12.【答案】D【解析】设这个数是x ,则3x =4×6或4x =3×6或6x =3×4, 解得x =8或x =4.5或x =2,所以,这个数是2,8或4.5.故选D.13.【答案】D【解析】∵两个相似三角形的面积比为1∶4,∴它们的相似比为1∶2,∴它们的周长比为1∶2.故选D.14.【答案】5∶3∶2【解析】如图,作PD ∥BF ,QE ∥BC ,∵D 为BC 的中点,∴PD ∶BF =1∶2,∵E ,F 为AB 边三等分点,∴PD ∶AF =1∶4,∴DN ∶NA =PD ∶AF =1∶4,∴ND =15AD ,AQ ∶AD =QE ∶BD =AE ∶AB =1∶3, ∴AQ =13AD ,QM =14QD =14×23AD =16AD , ∴AM =AQ +QM =12AD ,MN =AD -AM -ND =310AD ,∴AM ∶MN ∶ND =5∶3∶2.15.【答案】∠D =∠B【解析】这个条件可能是∠D =∠B ;理由如下: ∵∠DAB =∠CAE ,∴∠DAB +∠BAE =∠CAE +∠BAE ,即∠DAE =∠BAC ,又∵∠D =∠B ,∴△ADE ∽△ABC .16.【答案】1∶3∶5【解析】∵DE ∥FG ∥BC ,∴△ADE ∽△AFG ∽△ABC ,∵AD =DF =FB ,∴AD ∶AF ∶AB =1∶2∶3,∴S △ADE ∶S △AFG ∶S △ABC =1∶4∶9,∴S Ⅰ∶S Ⅱ∶S Ⅲ=1∶3∶5.17.【答案】113°或92°【解析】∵△BCD ∽△BAC ,∴∠BCD =∠A =46°,∵△ACD 是等腰三角形,∠ADC >∠BCD ,∴∠ADC >∠A ,即AC ≠CD ,①当AC =AD 时,∠ACD =∠ADC =12(180°-46°)=67°,∴∠ACB =67°+46°=113°,②当DA =DC 时,∠ACD =∠A =46°,∴∠ACB =46°+46°=92°. 18.【答案】√364a 【解析】CD 1=√32a =√321a , D 1D 2=√34a =√322a , D 2D 3=√38a =√323a , 则D 5D 6的长为√326a =√364a , 19.【答案】2【解析】由题意可得DE ∥AB ,∴△CDE ∽△CAB ,∴DE AD =DC AC , 即DE 6=1030,解得DE =2,20.【答案】解 (1)如图画出原点O ,x 轴、y 轴,建立直角坐标系,可知B 的坐标为(2,1);(2)如(1)中图,画出图形△A ′B ′C ′,即为所求;(3)S △A ′B ′C ′=12×4×6=12.【解析】(1)根据A ,C 点坐标进而得出原点位置,进而得出B 点坐标;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用三角形面积求法得出答案.21.【答案】解在△ABC与△AMN中,ACAB =3054=59,AMAN=1?0001?800=59,∴ACAB=AMAN,又∵∠A=∠A,∴△ABC∽△AMN,∴BCMN =ACAM,即45MN=301?000,解得MN=1 500米,答:M、N两点之间的直线距离是1 500米;【解析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可.22.【答案】解(1)如图所示:点B的坐标为(-2,-5);故答案为(-2,-5);(2)如图所示:△AB2C2,即为所求;(3)如图所示:P点即为所求,P点坐标为(-2,1),四边形ABCP的周长为√42+42+√22+42+√22+22+√22+42=4√2+2√5+2√2+2√5=6√2+4√5.故答案为6√2+4√5.【解析】(1)直接利用已知点位置得出B点坐标即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.23.【答案】(1)证明∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵{BE=CE,∠B=∠C,BP=CQ,∴△BPE≌△CQE(SAS);(2)解连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴BPCE =BECQ,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3√2,∴BC=6√2【解析】。
成功是一段路程,而非终点,所以只要在迈向成功的过程中一切顺利,便是成功。
九年级数学下册第二十七章相似[27.1 第1课时 相似图形]一、选择题1.观察图K -6-1中各组图形,其中相似的图形有()图K -6-1A .3组B .4组C .5组D .6组2.在图K -6-2(b)中,由图K -6-2(a)放大或缩小而得到的图形有()图K -6-2A .0个B .1个C .2个D .3个3.图K -6-4中与图K -6-3相似的图形是链接听课例题归纳总结()图K -6-3成功是一段路程,而非终点,所以只要在迈向成功的过程中一切顺利,便是成功。
图K -6-44.下列关于相似图形的说法错误的是( )A .相似图形的形状一定相同,大小不一定相同B .全等图形是一种特殊的相似图形C .同一个人在平面镜和在哈哈镜中的形象是相似图形D .若甲与乙是相似图形,乙与丙是相似图形,则甲与丙是相似图形二、填空题5.图K -6-5②~⑥中,与图①相似的图形有________(填图形的序号).链接听课例题归纳总结图K -6-56.放大镜下的图形和原来的图形________相似图形;哈哈镜中的图形和原来的图形________相似图形.(填“是”或“不是”)三、解答题7.如图K -6-6是用相似图形设计的图案.成功是一段路程,而非终点,所以只要在迈向成功的过程中一切顺利,便是成功。
图K -6-6(1)想一想:各个图案的基本图形是什么?(2)做一做:自己设计几个漂亮有趣的图案(至少两个).如何将图K -6-7中的图形ABCDE放大,使新图形的各个顶点仍在格点上?图K -6-7详解详析[课堂达标]1.[解析] B 由观察知(a)(b)(c)(e)中的图形是相似图形.故选B.2.[解析] B 由观察知图(b)中的第3个图形与图(a)相似.应选B.[点评] 注意相似的要求是形状相同,这是判断两个图形是不是相似图形的根本标准.3.D 4.C5.③⑤⑥6.[答案] 是不是[解析] 放大镜下的图形与原来的图形形状相同,大小不相等,所以是相似图形;哈哈镜中的图形与原来的图形形状不同,大小也不相等,所以不是相似图形.7.解:(1)各个图案的基本图形分别是直角三角形、正方形、正五边形.(2)答案不唯一,只要是用相似图形做的,都符合要求.如图:[素养提升][解析] 相似图形只要求形状相同,而与位置无关,这样同学们可以有不同的画法,下图中的图形A′B′C′D′E′只是其中的一种.解:答案不唯一,如图所示.[点评]先确定各个顶点在方格图中的位置,然后再依次连接构成新图形.成功是一段路程,而非终点,所以只要在迈向成功的过程中一切顺利,便是成功。
人教版数学九年级下册第二十七章相似期中专项复习一、单选题1.如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )A .a =bB .a =2bC .a =2bD .a =4b2.将矩形按照如图所示的方式向外扩张得到新矩形,每条对角线向其延长线两个方向各延伸(0)a a > ,若所得新矩形与原矩形相似,则a 的值的个数可以是( )A .1B .2C .3D .无数个3.如图,在平面直角坐标系中,矩形 OABC 的顶点 O 在坐标原点,边 OA 在 x 轴上, OC 在y 轴上, 如果矩形 OA B C ''' 与矩形 OABC 关于点 O 位似,且矩形 OA B C ''' 的面积等于矩形 OABC 面积的14,那么点 B 的坐标是( )A .3,12⎛⎫ ⎪⎝⎭B .3,12⎛⎫ ⎪⎝⎭ 或 3,12⎛⎫-- ⎪⎝⎭C .3,12⎛⎫-- ⎪⎝⎭D .(3,2)或(-3,-2)4.如图,要判定ABC 与AED 相似,欲添加一个条件,下列可行的条件有( 1 )::AE BE AD DC =;(2)::AE AD AC AB =;(3)::AD AC DE BC =;(4)180BED C ︒∠+∠=;(5)BED C ∠=∠.A .1个B .2个C .3个D .4个5.如图,在Rt ABC 纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD的长为( )A .259B .258C .157D .2076.如图,等边三角形ABC 中,AB=3,点D 在边AB 上,且AD=1,点E 是边B 上的一动点,作射线ED .射线ED 绕点E 顺时针旋转60°得到射线EF ,交AC 于点F ,则点E 从B→C 的运动过程中,CF 的最大值是( )A B .1C .98D 7.如图,已知点M 是△ABC 的重心,AB =18,MN ∥AB ,则MN 的值是( )A.9B.94C.92D.68.如图,在△ABC与△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,连接BD、CE,若AC︰BC=3︰4,则BD︰CE为( )A.5︰3B.4︰3C︰2D.2︰9.如图,已知△ABC与△DEF位似,位似中心为点O,且AB:DE=3:2,则△ABC的面积与△DEF面积之比为( )A.3:2B.3:5C.9:4D.9:510.如图,正方形ABCD和正方形CGFE的顶点C、D、E在同一直线上,顶点B、C、G在同一条直线上.O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH,以下四个结论:①GH⊥BE;②△EHM∽△FHG;③BCCG=-1;④2HOMHOGSS=正确的结论有( )A .1个B .2个C .3个D .4个二、填空题11.在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从点A 出发向B 以2cm 秒的速度移动;点Q 沿DA 边从点D 开始向A 以1cm/秒的速度移动.如果P 、Q 同时出发,用t 秒表示移动的时间(0<x<6)那么,当t 为何值时,以点Q 、A 、P 为顶点的三角形与ABC 相似? .12.在ABC 中,14AB BC sin ABC ==∠=,,点P 在直线AC 上,点P 到直线AB 的CP 的长为 .13.已知:3(0)2x y y =≠,则x x y=+ .14.我们知道:四个角对应相等,四条边对应成比例的两个四边形是相似四边形.如图,已知梯形ABCD 中,AD BC ,AD =1,BC =2,E 、F 分别是边AB 、CD 上的点,且EF BC ,如果四边AEFD 与四边形EBCF 相似,那么AEEB的值是 .15.在平面直角坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中心,相似比为2,把△EFO 放大,则点E 的对应点E′的坐标是 .16.如图,在ABC 中,90C ∠=︒,2BC =,AB =D 在边AC 上, :1:3CD AD =,联结BD ,点E 在线段BD 上,如果BCE A ∠=∠,那么CE = .17.如图,在 ABCD 中,E 是 AB 的中点,F 在 AD 上,且 13AF AD =:: , EF 交AC 于G.若 40AC = ,则 AG = .18.将边长分别为2、3、5的三个正方形按图所示的方式排列,则图中阴影部分的面积为 .三、解答题19.如图,a ∥b ∥c ,直线m ,n 交于点O ,且分别与直线a ,b ,c 交于点A 、B 、C 和点D 、E 、F ,已知OA =1,OB =2,BC =4,EF =5,求DE 的长度是?20.已知91114x y z== ,且x+y+z =68.求x ,y ,z 的值. 21.已知:如图,在△ABC 中,D 为AB 中点,E 为AC 上一点,延长DE 、BC 交于点F .求证:BF·EC=CF·AE .22.如图,点 E 是平行四边形 ABCD 的边 AB 的中点,连接 DE 交对角线 AC 于点F ,若 AEF ∆ 的面积为1,求平行四边形 ABCD 的面积.23.如图,已知点 D 为 ABC 的边 AB 上一点,过点 B 作 BE //AC , BE 交 CD 的延长线于点 E ,且 ACD ABC ∠=∠ , ABC BED S :S 4:9= , AC 10= ,求 AD 的长.24.已知:如图,在 ABC 中, 6AB = , 8AC = , D 、 E 分别在 AB 、 AC 上,2BD = , 5CE = .求证: AED ABC ∽ .25.请阅读下列材料,并完成相应的任务.正方形网格是认识数和形的绝好途径.在网格中构造几何图形具有直观性和可操作性,网格中的数学问题具有显著的数形结合和转化的特征.下面网格图中每个小正方形的边长都为1.如图1,点A 、B 、C 、D 都是格点,连接AC ,BD 交于点O ,则AC ,BD 互相平分.如图2,点A 、B 、C 、D 都是格点,连接AC ,BD 交于点M ,则点M 是线段AC 的四等分点.任务一:请你观察图1,连接AD 、DC 、CB 、AB ,则AC ,BD 互相平分,其理由是 ▲ .任务二:请你观察图2,说明点M 是AC 的四等分点的理由.任务三:在下面网格图中按要求作图.要求:①仅用无刻度直尺;②保留必要的思考痕迹.在图3中的线段BC 上做两点M 、N ,使得△ABM 与△ABN 都为等腰三角形.答案解析部分1.【答案】B2.【答案】D3.【答案】B4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】A9.【答案】C10.【答案】C11.【答案】1.2s或3s12.13.【答案】3 514.15.【答案】(-8,4)或(8,-4)16.17.【答案】818.【答案】15 419.【答案】解:∵OA=1,OB=2,∴AB=3,∵a∥b∥c,∴AB DE BC EF=,即345DE =,∴154 DE=;∴DE 的长度是154.20.【答案】解:设 91114k y zk === , 则x =9k ,y =11k ,z =14k ,∴9k+11k+14k =68,解得:k =2,∴x =18,y =22,z =28.答:x ,y ,z 的值分别为18,22,28.21.【答案】证明:作DG ∥BC ,DH ∥AC ,则△ADG ∽△ABC ,∵D 是AB 中点,∴G 是AC 中点,H 是BC 中点,BC=2DG ,AC=2AG ,∵△DGE ∽△FCE ,∴DG EGCF CE = ,∴22DG EG CF CE = ,即 2BC EGCF EC = ,∴211BC EGCF EC+=+ ,即BC CF EG EG ECCF EC+++= ,∵EG+EC=GC=AG ,∴EG+EG+EC=EG+AG=AE ,∴BC CF AE CF EC += ,即 BF AECF EC= ,∴BF·EC=CF·AE .22.【答案】解:∵四边形 ABCD 为平行四边形,∴,//AB CD AB CD = ,∴AEF CDF ∆~∆ ,∵点 E 是 AB 的中点,∴12AF AE AE FC CD AB === ,∴21124AEF CDF S S ∆∆⎛⎫== ⎪⎝⎭ ,∵AEF ∆ 的面积为1,∴14422CDF AEF ADF CDF S S S S ∆∆∆∆====, ,∴6ACD ADF CDF S S S ∆∆∆=+= ,∴平行四边形 ABCD 的面积= 212ACD S ∆= .23.【答案】解:∵BE ∥AC ,∴∠EBD=∠A ,∠E=∠ACD ,∵∠ACD=∠ABC ,∴∠E=∠ABC ,∴△BED ∽△ABC.∵ABC BED S :S 4:9= ,∴24()9AC BD = ,∴23AC BD = .∴1023BD = ,解得BD=15.∵∠ACD=∠ABC ,∠A=∠A ,∴△ACD ∽△ABC ,∴AC ADAB AC= ,即 2AC AD AB =⋅ ,设AD=x ,则 210(15)x x =+ ,解这个方程,得 15x = , 220x =- (不合题意,舍去),∴AD=5.24.【答案】证明:∵6AB = , 2BD = ,∴4AD = ,∵8AC = , 5CE = ,∴3AE = ,∴3162AE AB == , 4182AD AC == .∴AE ADAB AC= ,∵EAD BAC ∠=∠∴AED ABC ∽ .25.【答案】解:任务一:矩形的对角线互相平分;任务二:如图,连接AD ,BC∵//AD BC∴,DAM BCM DMA BMC ∠=∠∠=∠∴ADM CBM ∆~∆∴13AD AM CB CM ==∴M 是AC 的四等分点;任务三:如图,取点D ,E ,连接DE ,交BC 于点M ,连接MA ,则△MBA 是等腰三角形,如图:理由是:∵,DE AB BE AE ⊥=即DE 是AB 的垂直平分线,∴MA=MB∴△MBA 是等腰三角形;取点F ,连接AF ,AF 与BC 交于点N ,△ABN 是等腰三角形,如图:理由是:AB=4,AC=3,由勾股定理得,BC= 5=又CF=1,CF//AB∴1=4CN CFNB AB=,即445BN BC==∴AB=NB=4∴△ABN是等腰三角形.。
相似三角形的判定一、基础题目1.如图,△ADE ∽△ACB ,∠AED =∠B ,那么下列比例式成立的是( ) A.AD AC =AE AB =DE BC B.AD AB =AE AC C.AD AE =AC AB =DE BC D.AE EC =DE BC2.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,若BD =2AD ,则( ) A.AD AB =12 B.AE EC =12 C.AD EC =12 D.DE BC =123.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若AB BC =12,则DEEF=( ) A.13 B.12 C.23D .1第1题图 第2题图 第3题图4. 如果△ABC ∽△A′B′C′,△ABC 与△A′B′C′的相似比为2,那么△A′B′C′与△ABC 的相似比为 .5.如图,AB ∥CD ∥EF ,AF 与BE 相交于点G ,且AG =2,GD =1,DF =5,那么BCCE 的值等于 .6.如图,AB 、CD 相交于点O ,OC =2,OD =3,AC ∥BD.EF 是△ODB 的中位线,且EF =2,则AC 的长为 . 7.如图,在△ABC 中,DE ∥BC ,且AD =2,DB =3,则DEBC= .第5题图 第6题图 第7题图 8.如图,EG ∥BC ,GF ∥CD ,AE =3,EB =2,AF =6,求AD 的值.二、训练题目9.如图,△ABC 中,DE ∥BC ,EF ∥AB ,则图中相似三角形的对数是( ) A .1对 B .2对 C .3对 D .4对10.如图,在▱ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF ∶FC 等于( ) A .3∶2 B .3∶1 C .1∶1 D .1∶211.如图,在ABC ∆中,DE ∥BC ,3,2AD BD ==,则ADE ∆和ABC ∆的相似比是 ;若6DE =,则BC =第9题图 第10题图 第11题图12.一个三角形的三边长分别为8 cm,6 cm,12 cm,另一个与它相似的三角形的最短边为3 cm ,则其余两边长为______________.13.如图,在ABC ∆中,DE ∥BC ,DE 分别与,AB AC 相交于D E 、,若4AD =,2DB =,求:DE BC 的值。
人教版九年级数学下册第二十七章-相似专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在▱ABCD中,对角线AC,BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F,若AB=4,BC=6,CE=1,则CF的长为()A B.1.5 C D.12、如图,已知矩形ABCD中,AB=3,BE=2,EF⊥B C.若四边形EFDC与四边形BEFA相似而不全等,则CE的值为()A.92B.6 C.152D.93、在ABC中,D,E分别是边AB,AC上的两个点,并且DE∥BC,AD:BD=3:2,则ADE与四边形BCED的面积之比为()A .3:5B .4:25C .9:16D .9:254、如图,点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB ,1S 表示AE 为边长的正方形面积,2S 表示以BC 为长,BE 为宽的矩形面积,3S 表示正方形ABCD 除去1S 和2S 剩余的面积,3S :2S 的值为( )A .12 B .23C D 3525、若578a b ck ===且323a b c -+=,则243a b c +-的值是( ) A .14 B .42 C .7 D .1436、下列图形中,不是位似图形的是( )A .B .C .D .7、已知32a b =,那么下列等式中正确的是( )A .53a b b += B .13a b b -= C .23a b = D .23ab =8、如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:25,则BEEC的值为( )A .13B .14C .15D .1259、如果两个相似多边形的周长比是2:3,那么它们的面积比为( )A .2:3B .4:9C D .16:8110、如图,DE ∥BC ,则下列式子正确的是( )A .=AB BDEC AEB .AD DEAB BC= C .=AE ABEC ADD .AD DEAB BC=第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,AB=6,BC275=,点N在边AD上,ND=2,点M在边BC上,BM=1,点E在DC的延长线上,连接AE,过点E作EF⊥AE交直线MN于点F,当AE=EF时,DE的长为 _____.2、如果5a=4b,那么ba=____.3、如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且54OEEA=,则FGBC=________.4、如图,在矩形ABCD中,AB=30,BC=40,对角线AC与BD相交于点O,点P为边AD上一动点,连接OP,将△OPA沿OP折叠,点A的对应点为点E,线段PE交线段OD于点F.若△PDF为直角三角形,则PD的长为______.5、如图,在ABCD □中,E 为CD 上一点,连结BE 并延长交AD 延长线于点F .如果:2:3DE EC =,那么:DEF ABF S S =△△____________.三、解答题(5小题,每小题10分,共计50分)1、如图,O 为坐标原点,B ,C 两点坐标分别为()3,1-,()2,1.(1)以O 为位似中心在y 轴左侧将OBC 放大两倍,并画出图形; (2)分别写出B ,C 两点的对应点B ',C '的坐标;(3)已知(),M x y 为OBC 内部一点,写出M 的对应点M '的坐标. 2、如图,在平面直角坐标系中,点A 、点B 的坐标分别为()1,3,()3,2.(1)画出OAB绕点B顺时针旋转90︒后的O A B''△;'''';(2)以点B为位似中心,相似比为2:1,在x轴的上方画出O A B''△放大后的O A B3、在等边三角形ABC中,点D是边AB的中点,过点D作DE∥BC交AC于点E,点F在BC边上,连接DF,EF.(1)如图1,当DF是∠BDE的平分线时,若AE=2,求EF的长;(2)如图2,当DF⊥DE时,设AE=a,则EF的长为(用含a的式子表示).4、如图,在Rt△ABC中,∠C=90°,BC=A=60°,四边形DEFG是△ABC的内接矩形,顶点D、G分别在边AC、BC上,点E、F在边AB上,设AE=x,DG=y.(1)求y与x之间的函数关系式;(2)当矩形DEFG 的面积S 取得最大值时,求△CDG 与△BFG 的相似比.5、如图,在带有网格的平面直角坐标系中,网格边长为一个单位长度,给出了三角形ABC . (1)作出ABC 关于x 轴对称的A B C ''';(2)以坐标原点为位似中心在图中的网格中作出A B C '''的位似图形A B C ''''''△,使A B C '''与A B C ''''''△的位似比为1:2;(3)若ABC 的面积为3.5平方单位,求出A B C ''''''△的面积.---------参考答案----------- 一、单选题 1、D 【解析】 【分析】过O 作OM ∥BC 交CD 于M ,根据平行四边形的性质得到BO =DO ,CD =AB =4,AD =BC =6,根据三角形的中位线的性质得到CM =12CD =2,OM =12BC =3,通过△CFE ∽△MOE ,根据相似三角形的性质得到CF CEOM EM=,代入数据即可得到结论.【详解】解:过O作OM∥BC交CD于M,在▱ABCD中,BO=DO,CD=AB=4,AD=BC=6,∴CM=12CD=2,OM=12BC=3,∵OM∥CF,∴△CFE∽△MOE,∴CFOM=CEEM,即1 33 CF,∴CF=1.故选:D.【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.2、A【解析】【分析】设CE=x,由四边形EFDC与四边形BEFA相似,根据相似多边形对应边的比相等列出比例式,求解即可.【详解】解:设CE =x ,∵四边形EFDC 与四边形BEFA 相似, ∴AB CEBE EF=, ∵AB =3,BE =2,EF =AB , ∴323x =, 解得:x =4.5, 故选:A . 【点睛】本题考查了相似多边形的性质,本题的关键是根据四边形EFDC 与四边形BEFA 相似得到比例式. 3、C 【解析】 【分析】根据题意先判断△ADE ∽△ABC ,再根据相似三角形的面积之比等于相似比的平方进行分析计算即可得到结论. 【详解】 解:∵DE ∥BC , ∴△ADE ∽△ABC , ∵AD :BD =3:2, ∴:3:5AD AB =, ∴22:3:59:25ADE ABCSS==,∴ADE 与四边形BCED 的面积之比为9:16.故选:C. 【点睛】本题考查相似三角形的判定和性质,注意掌握相似三角形的面积之比等于相似比的平方. 4、C 【解析】 【分析】设正方形ABCD 的边长为a ,关键黄金分割点的性质得到512AEAB 和BE AE =,用a 表示出1S 、2S 和3S 的面积,再求比例. 【详解】解:设正方形ABCD 的边长为a , ∵点E 是AB 上的黄金分割点,∴512AE AB,BE AE =∴AE AB ==,∴2BE a ==⎝⎭,∵2221S AE ⎫===⎪⎪⎝⎭,22S BE BC =⋅=,∴)222232S a a ==,∴)2232:2S S a ==. 故选C .【点睛】本题考查黄金分割点,解题的关键是掌握黄金分割点的性质.5、D【解析】【分析】将,,a b c 用k 表示出来,得到5,7,8a k b k c k ===,再将求出,,a b c 的结果与323a b c -+=联立求出,,a b c 的值 ,最后把所求的,,a b c 代入所求的代数式即可求解.【详解】 解:578a b c k ===, 5,7,8a k b k c k ∴===,323a b c -+=,352783k k k ∴⨯-⨯+=, 解,得13k =,578,333a b c ∴==,= 578142432433333a b c ∴+-=⨯+⨯-⨯=, 故选:D .【点睛】本题考查了比例的性质,解一元一次方程,求代数式的值,由比例系数表示,,a b c 是解题的关键.6、D【解析】【分析】对应顶点的连线相交于一点的两个相似多边形叫位似图形.【详解】解:根据位似图形的概念,A 、B 、C 三个图形中的两个图形都是位似图形;D 中的两个图形不符合位似图形的概念,两个三角形不相似,故不是位似图形.故选D .【点睛】此题主要考查了位似图形,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.7、C【解析】【分析】由题意设()30,a k k =≠ 则2,b k = 再逐一代入各选项进行计算与检验即可得到答案.【详解】 解: 32a b =, 设()30,a k k =≠ 则2,b k =∴55,22a b k b k +==故A 不符合题意; 321,22a b k k b k --==故B 不符合题意; 263,a k b ==故C 符合题意;32,,2233a k b k ==则,23a b ≠故D 不符合题意; 故选C【点睛】本题考查的是比例的基本性质,掌握“设参数的方法解决比例问题”是解本题的关键.8、B【解析】【分析】根据∥DE AC 可得BED BCA ∽△△,DOE COA ∽,再根据相似三角形的性质可得BE DE BC AC=和DOE △与COA 的相似比为1:5,进而可得15BE BC =,最后用BC 表示EC 即可求出BE EC . 【详解】解:∵∥DE AC ,∴BED BCA ∠=∠,ODE OCA ∠=∠.∵DBE ABC ∠=∠,DOE COA ∠=∠,∴BED BCA ∽△△,DOE COA ∽. ∴BE DE BC AC=. ∵:1:25DOE COA S S =△△,∴DOE △与COA 的相似比为1:5. ∴15DE CA =. ∴15BE BC =. ∴15BE BC =. ∴45EC BC BE BC =-=. ∴14BE EC =.故选:B .【点睛】本题考查相似三角形的判定定理和性质,综合应用这些知识点是解题关键.9、B【解析】【分析】根据相似多边形的周长比求出相似比,再根据相似多边形的面积比等于相似比的平方计算,得到答案.【详解】解:∵两个相似多边形的周长比是2:3,∴这两个相似多边形的相似比是2:3,∴它们的面积比是4:9,故选B .【点睛】本题考查相似多边形的性质,掌握相似多边形的周长比等于相似比,面积比等于相似比的平方是解题的关键.10、B【解析】【分析】由题意直接根据平行线所截线段成比例进行分析判断即可.【详解】解:∵DE ∥BC ,∴,ADE ABC AED ACB ==∠∠∠∠,∴ADE ABC , ∴AD DE AE AB BC AC==. 故选:B.【点睛】本题考查平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.二、填空题1、10415【解析】【分析】过点F 作FG ⊥DG 交DC 延长线于G ,过点N 作NL ⊥FG 交BC 于H ,交FG 于L ,先证明四边形NLGD 是矩形,得到LG =ND =2,∠DNL =90°,NL =DG ,再证明四边形NHCD 是矩形,得到HH =CD =6,CH =ND =2,则125MH BC BM CH =--=;然后证明△EFG ≌△AEF 得到FG =DE ,275GE AD BC ===,则275NL DG DE EG DE ==+=+,设=DE FG x =,则2FL FG LG x =-=-,275NL x =+,证明△NMH ∽△NFL ,的MH NH FL NL=,即12652725x x =-+,由此求解即可. 【详解】解:如图所示,过点F 作FG ⊥DG 交DC 延长线于G ,过点N 作NL ⊥FG 交BC 于H ,交FG 于L , ∴∠NLG =∠G =90°,∵四边形ABCD 是矩形,∴CD =AB =6,∠D =∠BCD =90°,AD BC =,∴四边形NLGD 是矩形,∴LG =ND =2,∠DNL =90°,NL =DG ,∴四边形NHCD是矩形,∴HH=CD=6,CH=ND=2,∴125 MH BC BM CH=--=;∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEG=90°,又∵∠FEG+∠EFG=90°,∴∠EFG=∠AED,又∵AE=EF,∠D=∠G=90°,∴△EFG≌△AEF(AAS),∴FG=DE,275 GE AD BC===,∴275 NL DG DE EG DE==+=+,设=DE FG x=,则2FL FG LG x=-=-,275 NL x=+,∵∠NHM=∠NLF=90°,∠MNH=∠FNL,∴△NMH∽△NFL,∴MH NHFL NL=,即12652725x x=-+,解得10415x=,∴10415 DE=,故答案为:104 15.【点睛】本题主要考查了矩形的性质与判定,全等三角形的性质与判定,相似三角形的性质与判定,解题的关键在于能够正确作出辅助线求解.2、5 4【解析】【分析】由5a=4b,结合比例的基本性质即可求出ba的值.【详解】解:∵5a=4b,∴54ba.故答案为:54.【点睛】本题考查的是比例的基本性质,掌握比例的基本性质是解题的关键.3、59【解析】【分析】 利用位似的性质得到FG OF OE BC OB OA ==,然后根据比例的性质求解. 【详解】解:∵四边形ABCD 与四边形EFGH 位似,其位似中心为点O , ∴FG OF OE BC OB OA ==, ∵54OE EA =, ∴55549FG BC ==+, 故答案为:59.【点睛】本题考查了位似变换:位似的两个图形必须是相似形,对应点的连线都经过同一点;对应边平行或共线.4、5或252 【解析】【分析】分情况进行讨论,当∠DPF =90°时,过点O 作OH ⊥AD 于H ,先证△DHO ∽△DAB ,得到1=2OH HD OD AB AD BD ==,求出1152OH AB ==,1202HD AD ==,证明∠HOP =∠HPO =45°,得到OH =PH =15,则PD =HD -PH =5;当∠PFD =90°时,先求出50BD =,得到11=2522OA OB OC OD AC BD =====,从而得到∠DAO =∠ODA ;证明△OFE ∽△BAD ,推出1152OF AB ==,则10DF OD OF =-=,最后证明△PDF ∽△BDA ,则12542PD BD ==. 【详解】解:如图1所示,当∠DPF =90°时,过点O 作OH ⊥AD 于H ,∴∠HPF =90°,∵四边形ABCD 是矩形,∴BD =2OD ,∠BAD =∠OHD =90°,AD =BC =40,∴OH ∥AB ,∴△DHO ∽△DAB , ∴1=2OH HD OD AB AD BD ==, ∴1152OH AB ==,1202HD AD ==, 由折叠的性质可得:1==452HPO FPO HPF ∠=∠︒∠,∴∠HOP =45°,∴∠HOP =∠HPO =45°,∴OH =PH =15,∴PD =HD -PH =5;如图2所示,当∠PFD =90°时,∴∠OFE=90°,∵四边形ABCD是矩形,∴∠BCD=90°,CD=AB=30,∴50BD=,∴11=2522OA OB OC OD AC BD=====,∴∠DAO=∠ODA,由折叠的性质可知:AO=EO=25,∠PEO=∠DAO=∠ODA,又∵∠OFE=∠BAD=90°,∴△OFE∽△BAD,∴12 OF OEAB BD==,∴1152OF AB==,∴10DF OD OF=-=,∵∠PFD=∠BAD,∠PDF=∠BDA,∴△PDF∽△BDA,∴14 PD DFBD DA==,∴12542 PD BD==,∴综上所述,当△PDF为直角三角形,则PD的长为5或252,故答案为:5或252.【点睛】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件.5、4:25##425 【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案.【详解】解:如图,∵四边形ABCD 是平行四边形,∴DC ∥AB ,CD =AB .∴△DFE ∽△AFB , ∴2()DEF ABF S DE S AB=. ∵DE :EC =2:3,∴DE :DC =DE :AB =2:5,∴:425DEF ABF S S =:△△ 故答案为:4:25或425 . 【点睛】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.三、解答题1、(1)画图见解析;(2)点B'的坐标为(-6,2),点C'的坐标为(-4,-2);(3)点M'的坐标为(-2x,-2y)【解析】【分析】(1)利用位似变换的性质分别作出B、C的对应点B',C',然后顺次连接O,B',C'即可;(2)根据(1)中所作图形即可得到B',C'两点的坐标;(3)根据位似图形上对应点的坐标的横纵坐标对应比相同进行求解即可.【详解】解:(1)如图所示,△OO′O′即为所求;(2)如图所示,点B'的坐标为(-6,2),点C'的坐标为(-4,-2);(3)∵△OO′O′是△OBC以O为位似中心,位似比为2的对应图形,点M(x,y)为△OBC内部一点,∴点M的对应点M'的坐标为(-2x,-2y).【点睛】本题主要考查了画位似图形和求位似图形上的对应点的坐标,解题的关键在于能够熟练掌握位似图形的相关知识.2、(1)见解析;(2)见解析【解析】【分析】(1)找到O,O绕点B顺时针旋转90︒后的对应点O′,O′,顺次连接O′,O′,O,则O A B''△即为所求;(2)延长OO′至O″,OO′至O″,使得OO″=2OO′,OO″=2OO′,连接O″O″,则''''即为所求O A B【详解】(1)如图,找到O,O绕点B顺时针旋转90︒后的对应点O′,O′,顺次连接O′,O′,O,则O A B''△即为所求;(2)如图,延长OO ′至O ″,OO ′至O ″,使得OO ″=2OO ′,OO ″=2OO ′,连接O ″O ″,则O A B ''''【点睛】本题考查了画旋转图形,在平面直角坐标系中画位似图形,掌握旋转的性质和位似图形的性质是解题的关键.3、(1)EF =2(2)72【解析】【分析】(1)根据DE ∥BC 证明ADE 是等边三角形,再根据D 是AB 中点,可证明BFD 是等边三角形,在证明DEF 是等边三角形,从而求得EF =2,(2)过点A 作AM 垂直BC 于点M ,可证DBF ∽ABM ,由相似可求出DF ,在利用勾股定理即可求出EF .【详解】解:(1)∵ABC 是等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠ABC=60°,∴∠A=∠ADE=60°,∴ADE是等边三角形,∴AD=DE=2,∵D是AB中点,∴BD=AD=2,∵DF平分∠BDE,∴∠BDF=∠EDF=12∠BDE=12(180°-60°)=60°,又∵∠B=60°,∴BFD是等边三角形,∴DF=BD=2,∵DF=DE=2,∠EDF=60°,∴DEF是等边三角形,∴EF=DE=DF=2;(2)过点A作AM垂直BC于点M,∵DE∥BC,DF⊥DE,∴∠BFD=∠FDE=90°,∵∠DFB=∠AMB=90°,又∵∠B=∠B,∴DBF∽ABM,∵D为AB中点,∴1=2 DB DFAB AM,∴DF=12AM,∵AM是等边三角形BC边上的高,∴M是BC的中点,∴BM=12BC=a,∴AM,∴DF=12AM,∴在Rt DEF △中,EF 32a a (). 【点睛】本题主要考查等边三角形的性质和判定,三角形的相似和勾股定理,熟练掌握三角形的相似是解决本题的关键.4、(1)y =8﹣4x ;(2)2√33 【解析】【分析】(1)依据Rt △ABC 中,∠O =90°,OO =4√3,∠O =60°,即可得到AC =4,AD =2AE =2x ,OO =12OO =12O ,再根据CD =AC -AD ,可得12O =4−2O ,进而得出y 与x 之间的函数关系式; (2)依据S =DE ×DG =√3O ×(8−4O )=−4√3(O −1)2+4√3,可得当x =1时,S 最大=4√3,再根据△DCG ∽△GFB ,即可得到OO OO =2√3=2√33,进而得出△CDG 与△BFG 的相似比. 【详解】解:(1)∵Rt △ABC 中,∠C =90°,BC =A =60°,∴AC =4,AD =2AE =2x ,OO =12OO =12O ,∵CD =AC ﹣AD ,∴12O =4−2O ,即y 与x 之间的函数关系式为y =8﹣4x ;(2)∵DE ,∴S =DE ×DG ×(8﹣4x )=﹣x ﹣1)2∴当x =1时,S 最大=此时,GF =DE∴BG =2GF =DG =8﹣4=4,∵∠C =∠BFG =90°,∠DGC =∠B ,∴△DCG ∽△GFB ,∴OO OO =2√3=2√33, ∴△CDG 与△BFG 的相似比为2√33. 【点睛】 本题考查的是相似三角形的判定与性质以及矩形的性质,熟知相似三角形的对应边成比例是解答此题的关键.5、(1)见解析;(2)见解析;(3)14平方单位.【解析】【分析】(1)根据轴对称性质即可画出△ABC 关于x 轴对称的A B C '''; (2)根据位似图形的性质即可画出A B C '''以点O 为位似中心的位似图形A B C ''''''△,A B C '''与A B C ''''''△的位似比为1:2;(3)利用相似三角形的性质计算即可.【详解】解:(1)如图,A B C ''',即为所求作; (2)如图,A B C ''''''△,即为所求作;(3)∵A B C '''与A B C ''''''△的位似比为1:2, ∴A B C '''∽A B C ''''''△,O ′O ′O ″O ″=12, ∴O △O ′O ′O ′O △O ″O ″O ″=(O ′O ′O ″O ″)2=14,∵ABC 的面积为3.5平方单位,即A B C '''的面积为3.5平方单位,∴A B C ''''''△的面积为:2O △O ′O ′O ′=4×3.5=14平方单位.【点睛】本题考查了作图-轴对称变换,位似变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
九年级数学下册《第二十七章 成比例线段与相似多边形》练习题附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.如果:12:8a b =,且b 是a ,c 的比例中项,那么:b c 等于( )A .4:3B .3:2C .2:3D .3:42.4和9的比例中项是( )A .6B .6±C .169D .8143.下列各组图形中,一定是相似形的是( )A .两个腰长相等的等腰梯形B .两个半径不等的半圆C .两个周长相等的三角形D .两个面积相等的矩形4.用一个2倍放大镜照一个ABC ,下面说法中错误的是( )A .ABC 放大后,A ∠是原来的2倍B .ABC 放大后,各边长是原来的2倍C .ABC 放大后,周长是原来的2倍D .ABC 放大后,面积是原来的4倍5.下列结论中,错误的有:( )①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A .1个B .2个C .3个D .4个6.已知,如图两个四边形相似,则∠α的度数是( )A .87°B .60°C .75°D .120°7.对于题目:“在长为6,宽为2的矩形内,分别剪下两个小矩形,使得剪下的两个矩形均与原矩形相似,请设计剪下的两个矩形周长和为最大值时的方案,并求出这个最大值.”甲、乙两个同学设计了自认为满足条件的方案,并求出了周长和的最大值.甲方案:如图1所示,最大值为16;乙方案:如图2所示,最大值为16.下列选项中说法正确的是( )A .甲方案正确,周长和的最大值错误B .乙方案错误,周长和的最大值正确C .甲、乙方案均正确,周长和的最大值正确D .甲、乙方案均错误,周长和的最大值错误8.如图,以点O 为位似中心,把ABC 的各边放大为原来的2倍得到A B C ''',下列说法错误的是( )A .AB //A B ''B .:1:2AO AA '=C .ABC A B C '''∽△△D .:1:4ABC A B C S S '''=9.已知四边形ABCD ∽四边形EFGH ,且AB =3,EF =4,FG =5.则四边形EFGH 与四边形ABCD 的相似比为( )A .3:4B .3:5C .4:3D .5:3二、解答题10.如图,所示的两个矩形是否相似?并简单说明理由.11.在一张复印出来的纸上,一个三角形的一条边由原图中的2cm 变成了6cm ,放缩比例是多少?这个三角形的面积发生了怎样的变化?''''.12.如图,四边形ABCD∽四边形A B C D(1)α=________,它们的相似比是________;(2)求边x的长度.13.一个矩形的长是宽的2倍,写出这个矩形的面积关于宽的函数解析式.14.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DE∥AC交直线AB于点E,DF∥AB交直线AC于点F.(1)当点D在边BC上时,如图①,求证:DE+DF=AC;(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE、DF、AC之间的等量关系式(不需要证明);(3)若AC=10,DE=7,问:DF的长为多少?三、填空题15.四边形ABCD和四边形A′B′C′D′,O为位似中心,若OA:OA′=1:4,那么S四边形ABCD:S四边形A′B′C′D′=______.16.相似图形:①定义:形状相同的图形叫做______.②性质:两个图形相似是指它们的形状相同,与他们的______无关.全等图形与相似图形的联系与区别:全等图形是一种特殊的相似图形,不仅形状相同,大小也相同.17.两地的实际距离是1200千米,在地图上量得这两地的距离为2厘米,则这幅地图的比例尺是1∶___.参考答案与解析1.B【分析】由b 是a 、c 的比例中项,根据比例中项的定义,即可求得=b a c b,又由a :b =12:8,即可求得答案.【详解】解:∵b 是a 、c 的比例中项∴b 2=acb ac b∴= ∵a :b =12:8 ∴12382a b == :3:2b c ∴=故选:B .【点睛】此题主要考查了比例线段,正确把握比例中项的定义是解题关键.2.B【分析】根据比例中项的定义:如果存在a 、b 、c 三个数,满足::a b b c =,那么b 就交租ac 的比例中项,进行求解即可.【详解】解:设4和9的比例中项为x∴4::9x x =∴6x =±故选B .【点睛】本题主要考查了求比例中项,熟知比例中项的定义是解题的关键.3.B【分析】根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,依据定义即可解决.【详解】解:两个腰长相等的等腰梯形、两个周长相等的三角形、两个面积相等的矩形都属于形状不唯一确定的图形.故A 、C 、D 错误;而圆的形状唯一确定,两个半径不等的半圆相似,故B 正确.故选B .【点睛】本题考查相似形的识别,解题关键要联系实际,根据相似图形的定义得出.4.A【分析】用2倍的放大镜放大一个△ABC,得到一个与原三角形相似的三角形;根据相似三角形的性质:相似三角形的面积比等于相似比的平方,周长比等于相似比.可知:放大后三角形的面积是原来的4倍,边长和周长是原来的2倍,而内角的度数不会改变.【详解】解:因为放大前后的三角形相似放大后三角形的内角度数不变面积为原来的4倍,周长和边长均为原来的2倍故选A.【点睛】本题考查对相似三角形性质的理解:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.5.B【分析】根据相似多边形的定义判断①⑤,根据相似图形的定义判断②,根据相似三角形的判定判断③④. 【详解】相似多边形对应边成比例,对应角相等,菱形之间的对应角不一定相等,故①错误;放大镜下的图形只是大小发生了变化,形状不变,所以一定相似,②错误;等边三角形的角都是60°,一定相似,③正确;钝角只能是等腰三角形的顶角,则底角只能是35°,所以两个等腰三角形相似,④正确;矩形之间的对应角相等,但是对应边不一定成比例,故⑤正确.有2个错误,故选B.【点睛】本题考查相似图形的判定,注意相似三角形与相似多边形判定的区别.6.A【解析】略7.D【分析】根据相似多边形对应边的比相等的性质分别求出两个小矩形纸片的长与宽,进而求解即可.【详解】解:∵6:2=3:1∴三个矩形的长宽比为3:1甲方案:如图1所示3a+3b=6∴a+b=2周长和为2(3b+b)+2(3a+a)=8(a+b)=16;乙方案:如图2所示a+b=2周长和为2(3b+b)+2(3a+a)=8(a+b)=16;如图3所示矩形①的长为2,则宽为2÷3=23;则矩形②的长为6-23=163,宽为163÷3=169;∴矩形①和矩形②的周长和为2(2+23)+2(163+169)=1769;∵176916∴周长和的最大值为1769;故选:D.【点睛】本题考查了相似多边形的性质,分别求出所剪得的两个小矩形纸片的长与宽是解题的关键.8.B【分析】根据位似的性质对各选项进行判断,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心,位似的两个图形必须是相似形,对应点的连线都经过同一点;对应边平行或共线.【详解】以点O 为位似中心,把ABC 的各边放大为原来的2倍得到A B C '''∴ABC ∆和A B C '''∆是位似图形∴ABC ∆~A B C '''∆,故C 正确;∴:1:2AO OA '=,:1:2OB OB =' 又AOB A OB ''∠=∠ABO ∆~ΔA B O ''∴ABO A B O ∠=∠''∴AB //A B ''故A 正确;∵把ABC 的各边放大为原来的2倍得到A B C '''∴:1:2AO OA '=∴:1:3AO AA '=,故B 选线说法错误; ∵2:()1:4ABC A B C OA S S OA ''''==,故D 正确; ∴说法错误的是:B 选项;故选:B .【点睛】本题考查了位似图形变换,正确掌握位似的性质是解题的关键.9.C【解析】略10.相似,见解析【分析】要说明两个矩形是否相似,只要说明对应角是否相等,对应边的比是否相等.【详解】解:相似.理由:这两个的角是直角,因而对应角相等一定是正确的小矩形的长是20-5-5=10,宽是12-3-3=6 因为1062012=,即两个矩形的对应边的比相等 因而这两个矩形相似.【点睛】此类题目主要考查相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.11.放缩比例是3:1,面积扩大为原来的9倍【分析】根据放缩比例等于对应边的比解答;根据相似多边形面积的比等于相似比的平方解答.【详解】解:∵多边形的一条边由原图中的2cm变成了6cm∴这次复印的放缩比例是6:2=3:1∴这个多边形的面积变为原来的9倍.【点睛】本题考查了相似多边形的性质,主要利用了相似比的求解以及相似多边形面积的比等于相似比的平方.12.(1)81︒ 3∶2;(2)332 x=【分析】(1)根据相似多边形的性质求出∠A′、∠B′,以及相似比,根据四边形的内角和定理求出∠C′;(2)根据相似多边形的性质列出比例式,计算即可.(1)解:∵四边形ABCD∽四边形A B C D''''∴∠A′=∠A=64°,∠B′=∠B=75°∴∠C′=360°−64°−75°−140°=81°它们的相似比为:93 62 =故答案为:81°3 2(2)解:∵四边形ABCD∽四边形A′B′C′D′∴9 116 x=解得x=332.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应角相等、对应边成比例是解题的关键.13.S=2x 2【分析】用x表示矩形的宽,则矩形的长为2x,然后利用矩形的面积公式即可得到解析式.【详解】解:∵矩形的长是宽的2倍,宽为x∴矩形的长是2x∵矩形的面积=长×宽∴S=x•2x=2x2故答案为:S=2x2.【点睛】此题考查了列函数关系式,解题关键是:熟记矩形的面积公式.14.(1)见解析;(2)图②中,DE﹣DF=AC;图③中,DF﹣DE=AC;(3)17或3【分析】(1)证明四边形AEDF是平行四边形,且△BED和△DFC是等腰三角形即可证得;(2)与(1)的证明方法相同;(3)根据(1)(2)中的结论直接求解.【详解】解:(1)∵DE∥AC,DF∥AB∴四边形AEDF是平行四边形∴DE=AF,∠FDC=∠B又∵AB=AC∴∠B=∠C∴∠FDC=∠C∴DF=FC∴DE+DF=AF+FC=AC;(2)如图②,当点D在边BC的延长线上时∵DE∥AC,DF∥AB∴四边形AEDF是平行四边形∴DE=AF,∠FDC=∠B又∵ZAB=AC∴∠B=∠ACB=∠DCF∴∠FDC=∠DCF∴DF=FC∴DE=AF=AC+CF=AC+DF;即DE﹣DF=AC;当点D在边BC的反向延长线上时,在图③∵DE∥AC,DF∥AB∴四边形AEDF是平行四边形∴DE=AF,∠FDC=∠ABC又∵AB=AC∴∠ABC=∠C∴∠FDC=∠C∴DF=FC∴DF=FC=FA+AC=DE+AC;∴DF﹣DE=AC.(3)当点D在边BC上时如图①所示DE+DF=AC∴DF=AC﹣DE=10﹣7=3;当点D在边BC的反向延长线上时,如图③所示,DF﹣DE=AC.∴DF=AC+DE=10+7=17.∴DF的长为17或3【点睛】本题考查平行四边形的判定与性质以及等腰三角形的判定,是一个基础题,解决本题的关键是进行分类讨论.15.1:16【解析】略16.相似图形位置【解析】略17.60000000【分析】根据比例尺=图上距离:实际距离列式计算即可.【详解】解:1200千米=120000000厘米2:120000000=1:60000000.故答案为:60000000.【点睛】本题考查了比例线段,掌握比例尺的定义是解题的关键,注意单位的换算问题.第11 页共11 页。
人教版数学九年级下学期第27章《相似》测试题(测试时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如果23a b =,则a bb +=( ) A .13 B .12 C .53 D . 352.如图△ABC 中,点D 、E 分别在边AB 、AC 上,31==ACAD ABAE ,则BCED ADE S S 四边形△:的值为( )A 、3:1B 、1:3C 、1:8D 、1:93.如图,Rt △ABC 和Rt △DCA 中,∠B=∠ACD=90°,AD ∥BC ,AB=2,DC=3,则△ABC 与△DCA 的面积比为( )A .2:3B .2:5C .4:9D .2:34.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DEEF的值为( ).A .12 B .2 C .25 D .355.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3 米,则地面上阴影部分的面积为( )A .0..36π米2B . 0.81π米2C .2π米2D .3. 24π米26.如图,在平面直角坐标系中,以原点为位似中心,将线段CD 放大得到线段AB ,若点B 、C 、D 的坐标分别为B (5,0)、C (1,2)、D (2,0),则点A 的坐标是( )A .(2.5,5)B .(2.5,3)C .(3,5)D .(2.5,4)7.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA , OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:68.如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,若EF :AF=2:5,则DEFEFBCSS 四边形:为( )A .2:5B .4:25C .4:31D .4:359.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A .0.5mB .0.55mC .0.6mD .2.2m10.如图,在△ABC 中,AD 和BE 是高,∠ABE=45°,点F 是AB 的中点,AD 与FE 、BE 分别交于点G 、H ,∠CBE=∠BAD .有下列结论:①FD=F E ;②AH=2CD ;③BC •AD=AE 2;④S △ABC =4S △ADF .其中正确的有( )A.1个 B.2 个 C.3 个 D.4个二、填空题(每小题3分,共30分)11.已知两个相似三角形的周长比是,它们的面积比是________.12.勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉,生活中到处可见黄金分割的美.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割,已知AB=10 cm,AC>BC,那么AC的长约为____________cm(结果精确到0.1 cm).13.李明同学利用影长测学校旗杆的高度,某一时刻身高1.8米的李明的影长为1米,同时测得旗杆的影长为7米,则学校的旗杆的高为________米.14.在中,,是的中点,过点作直线,使截得的三角形与原三角形相似,这样的直线有________条.15.如图,在□ABCD中,F是AD延长线上一点,连接BF交DC于点E,在不添加辅助线的情况下,请写出图中一对相似三角形:__________________.16.如图,数学趣闻:上世纪九十年代,国外有人传说:“从月亮上看地球,长城是肉眼唯一看得见的建筑物.”设长城的厚度为,人的正常视力能看清的最小物体所形成的视角为,且已知月、地两球之间的距离为,根据学过的数学知识,你认为这个传说________.(请填“可能”或“不可能”,参考数据:)17.△ABC的三边长分别为,,2,△A1B1C1的两边长为1,,要使△ABC∽△A1B1C1,那么△A1B1C1的第三边长为_______.18.如图,等边△ ABC 的边长为30,点M 是边AB 上一动点,将等边△ ABC 沿过点M 的直线折叠,该直线与直线AC 交于点N,使点A 落在直线BC 上的点D 处,且BD:DC=1 :4,折痕为MN,则AN 的长为_____.19.如图:已知在中,是斜边上的高.在这个图形中,与相似的三角形是________(只写一个即可).20.如图,在梯形中,,点、、、是两腰上的点,,,且四边形的面积为,则梯形的面积为________.三、解答题(共60分)21.(本题7分)如图,D是△ABC外一点,E是BC边上一点,∠1=∠2,∠3=∠4.(1)写出图中两对相似三角形(不得添加字母和线);(2)请分别说明两对三角形相似的理由.22.(本题7分)如图,每个小方格都是边长为1个单位的小正方形,A、B、C三点都是格点(每个小方格的顶点叫格点),其中A(1,8),B(3,8),C(4,7).(1)、若D(2,3),请在网格图中画一个格点△DEF,使△DEF ∽△ABC,且相似比为2∶1;(2)、求△ABC中AC边上的高;(3)、若△ABC外接圆的圆心为P,则点P的坐标为23.(本题7分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.24.(本题6分)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F 点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.25.(本题8分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.26.(本题8分)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC 的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB= .(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.27.(本题8分)如图1,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的一动点(不与端点A、D重合),连结PC,过点P作P E⊥PC交AB于点E,在P点运动过程中,图中各角和线段之间是否存在的某种关系和规律?特例求解当E为AB的中点,且AP>AE时,求证:PE=PC.深入探究当点P在AD上运动时,对应的点E也随之在AB上运动,求整个运动过程中B E的取值范围.28.(本题9分)如图,AB是⊙O的直径,直线l与⊙O相切于点C,AE⊥l交直线l于点E、交⊙O于点F,BD⊥l交直线l于点D.(1)求证:△AEC∽△CDB;(2)求证:AE+EF=AB;cm s的速度运动,点Q从点B出发沿(3)若AC=8cm,BC=6cm,点P从点A出发沿线段AB向点B以2/cm s的速度运动,两点同时出发,当点P运动到点B时,两点都停止运动.设运动时线段BC向点C以1/间为t秒,求当t为何值时,△BPQ为等腰三角形?答案(测试时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如果23a b =,则a bb +=( ) A .13 B .12 C .53 D . 35【答案】C 【解析】先根据比例的性质可得a b +1=23+1,进而可得53a b b +=. 故选C .2.如图△ABC 中,点D 、E 分别在边AB 、AC 上,31==ACAD ABAE ,则BCED ADE S S 四边形△:的值为( )A 、3:1B 、1:3C 、1:8D 、1:9【答案】C 【解析】根据题意可得:△ADE ∽△ACB ,则ADE ACB S S △△:=1:9,则BCED ADE S S 四边形△:=1:8.故选C3.如图,Rt △ABC 和Rt △DCA 中,∠B=∠ACD=90°,AD ∥BC ,AB=2,DC=3,则△ABC 与△DCA 的面积比为( )A .2:3B .2:5C .4:9D .2:3 【答案】C 【解析】由AD ∥BC ,得出∠ACB=∠DAC ,证得△A BC ∽△DCA ,可得AB BC ACDC AC AD==,再由面积的比等于相似比的平方,即可得到24()9ABC DCAS AB SDC ==, 故选C .4.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DEEF的值为( ).A .12 B .2 C .25 D .35【答案】D .5.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3 米,则地面上阴影部分的面积为( )A .0..36π米2B . 0.81π米2C .2π米2D .3. 24π米2【答案】B 【解析】如图设C ,D 分别是桌面和其地面影子的圆心,依题意可以得到△OBC ∽△OAD ,然后由它们的对应边成比例可以得CB OC AD OD =,再把OD=3,CD=1代入可求出OC= OD-CD=3-1=2,BC=12×1.2=0.6,然后求出地面影子的半径AD=0.9,这样可以求出阴影部分的面积S ⊙D =π×0.92=0.81πm 2,这样地面上阴影部分的面积为0.81πm 2. 故选B6.如图,在平面直角坐标系中,以原点为位似中心,将线段CD 放大得到线段AB ,若点B 、C 、D 的坐标分别为B (5,0)、C (1,2)、D (2,0),则点A 的坐标是( )A .(2.5,5)B .(2.5,3)C .(3,5)D .(2.5,4) 【答案】A7.如图,△D EF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA , OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:6【答案】B 【解析】由D ,F 分别是OA ,OC 的中点,根据三角形的中位线的性质得DF=12AC ,根据三角形相似的性质可知△DEF 与△ABC 的相似比是1:2,因此△DEF 与△ABC 的面积比是1:4. 故选B .8.如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,若EF :AF=2:5,则DEFEFBCSS 四边形:为( )A .2:5B .4:25C .4:31D .4:35 【答案】C9.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A .0.5mB .0.55mC .0.6mD .2.2m 【答案】A【解析】 根据题意可得:1.185.07.1x,解得:x=2.2,则2.2-1.7=0.5m ,即小刚举起的手臂超出头顶0.5m. 10.如图,在△ABC 中,AD 和BE 是高,∠ABE=45°,点F 是AB 的中点,AD 与FE 、BE 分别交于点G 、H ,∠CBE=∠BAD .有下列结论:①FD=FE ;②AH=2CD ;③BC •AD=AE 2;④S △ABC =4S △ADF .其中正确的有( )A.1个 B.2 个 C.3 个 D.4个【答案】D二、填空题(每小题3分,共30分)11.已知两个相似三角形的周长比是,它们的面积比是________.【答案】【解析】∵两个相似三角形的周长比是1:3,∴它们的面积比是,即1:9.故答案为:1:9.12.勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉,生活中到处可见黄金分割的美.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割,已知AB=10 cm,AC>BC,那么AC的长约为____________cm(结果精确到0.1 cm).【答案】6.2【解析】由题意知AC:AB=BC:AC,∴AC:AB≈0.618,∴AC=0.618×10cm≈6.2(结果精确到0.1cm)故答案为:6.2.13.李明同学利用影长测学校旗杆的高度,某一时刻身高1.8米的李明的影长为1米,同时测得旗杆的影长为7米,则学校的旗杆的高为________米.【答案】12.614.在中,,是的中点,过点作直线,使截得的三角形与原三角形相似,这样的直线有________条.【答案】【解析】作DE∥AB,DF∥BC,可得相似,作∠CDG=∠B,∠ADH=∠C,也可得相似三角形.所以可作4条.故答案为:4.15.如图,在□ABCD中,F是AD延长线上一点,连接BF交DC于点E,在不添加辅助线的情况下,请写出图中一对相似三角形:__________________.【答案】答案不唯一,如△DFE∽△CBE【解析】∵四边形ABCD是平行四边形,∴BC//AD,即BC//DF,∴△DEF∽△CEB,故答案为:△DEF∽△CEB(答案不唯一).16.如图,数学趣闻:上世纪九十年代,国外有人传说:“从月亮上看地球,长城是肉眼唯一看得见的建筑物.”设长城的厚度为,人的正常视力能看清的最小物体所形成的视角为,且已知月、地两球之间的距离为,根据学过的数学知识,你认为这个传说________.(请填“可能”或“不可能”,参考数据:)【答案】不可能这就是说,按照人的最小视角1′观察地球上长城的厚度,最远的距离只能是34.4km,而月球与地球之间的距离为380000km,这个数字很大,它相当于34.4km的11046倍,从这么远看长城,根本无法看见. 17.△ABC的三边长分别为,,2,△A1B1C1的两边长为1,,要使△ABC∽△A1B1C1,那么△A1B1C1的第三边长为_______.【答案】【解析】由三边对应成比例的两个三角形相似,易得相似比为:,故要使△ABC和△A1B1C1的三边成比例,则第三边长为2÷=,故答案为:.18.如图,等边△ ABC 的边长为30,点M 是边AB 上一动点,将等边△ ABC 沿过点M 的直线折叠,该直线与直线AC 交于点N,使点A 落在直线BC 上的点D 处,且BD:DC=1 :4,折痕为MN,则AN 的长为_____.【答案】21或65【解析】①当点A落在如图1所示的位置时,∵BD:DC=1:4,BC=30,∴DB=6,CD=24,设AN=x,则CN=30-x,∴=,∴DM=,BM=,∵BM+DM=30,∴+=30,解得x=21,∴AN=21;②当A在CB的延长线上时,如图2,与①同理可得△BMD∽△CDN,∴得,∵BD:DC=1:4,BC=10,∴DB=10,CD=40,设AN=x,则CN=x-10,∴=,∴DM=,BM=,∵BM+DM=30,∴+=10,解得:x=65,∴AN=65.故答案为:21或65.19.如图:已知在中,是斜边上的高.在这个图形中,与相似的三角形是________(只写一个即可).【答案】20.如图,在梯形中,,点、、、是两腰上的点,,,且四边形的面积为,则梯形的面积为________.【答案】18【解析】∵在梯形ABCD中,AD∥BC,点E、F、G、H是两腰上的点,AE=EF=FB,CG=GH=HD,∴2EH=AD+FG,2FG=EH+BC,∴EH=,FG=,∵四边形EFGH的面积为6cm2,∴(EH+FG)h=6,∴四边形ADEH的面积和四边形FBCG的面积和为:(EH+AD)h+(BC+FG)h=12,则梯形ABCD的面积为:18.故答案为:18.三、解答题(共60分)21.(本题7分)如图,D是△AB C外一点,E是BC边上一点,∠1=∠2,∠3=∠4.(1)写出图中两对相似三角形(不得添加字母和线);(2)请分别说明两对三角形相似的理由.【答案】(1)、△ABD∽△AEC;△ABE∽△ADC;(2)、证明见解析22.(本题7分)如图,每个小方格都是边长为1个单位的小正方形,A、B、C三点都是格点(每个小方格的顶点叫格点),其中A(1,8),B(3,8),C(4,7).(1)、若D(2,3),请在网格图中画一个格点△DEF,使△DEF ∽△ABC,且相似比为2∶1;(2)、求△ABC中AC边上的高;(3)、若△ABC外接圆的圆心为P,则点P的坐标为【答案】(1)图形见解析;(2)、105;(3)、(2,6).【解析】(1)、如图所示;(2)、高105(3)、(2,6);23.(本题7分) 如图,梯形ABCD 中,AB//CD ,且AB=2CD ,E ,F 分别是AB ,BC 的中点.EF 与BD 相交于点M .(1)求证:△EDM ∽△FBM ; (2)若DB=9,求BM .【答案】(1)、证明见解析;(2)、BM=3.24.(本题6分)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM 上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM 上的对应位置为点C ,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D 时,看到“望月阁”顶端点A 在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方O yxAB CDEF法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F 点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【答案】99m25.(本题8分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.【答案】(1)、证明见解析;(2)、12 7【解析】(1)∵AD平分∠BAC,∴∠BAD=∠DA,∵∠EAD=∠ADE,∴∠BAD=∠ADE,∴AB∥DE,∴△DCE∽△BCA;(2)、∵∠EAD=∠ADE,∴AE=DE,设DE=x,∴CE=AC﹣AE=AC﹣DE=4﹣x,∵△DCE∽△BCA,∴DE:AB=CE:AC,即x:3=(4﹣x):4,解得:x=127,∴DE的长是127.26.(本题8分)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC 的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB= .(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.【答案】(1)证明见解析(2)证明见解析在△ACE和△ABD中,AC ADEAC BADEA AB=⎧⎪∠=∠⎨⎪=⎩,∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②∵△ADF∽△CFP,∴AF•PF=DF•CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P点为△ABC的费马点.27.(本题8分)如图1,已知在矩形ABCD 中,AB=2,BC=3,P 是线段AD 边上的一动点(不与端点A 、D 重合),连结PC ,过点P 作PE ⊥PC 交AB 于点E ,在P 点运动过程中,图中各角和线段之间是否存在的某种关系和规律? 特例求解当E 为AB 的中点,且AP >AE 时,求证:PE=PC . 深入探究当点P 在AD 上运动时,对应的点E 也随之在AB 上运动,求整个运动过程中BE 的取值范围.【答案】(1)证明见解析;(2)87≤BE <2. (2)深入探究,设AP=x ,AE=y ,∵△AP E ∽△DCP ,∴AP AE DC DP ,即x (3﹣x )=2y ,∴y=12x 3﹣x )=﹣12x +32x=﹣12(x ﹣32)2+98,∴当x=32时,y 的最大值为98,∵AE=y 取最大值时,BE 取最小值为2﹣98=78BE的取值范围为78≤BE <2.28.(本题9分)如图,AB 是⊙O 的直径,直线l 与⊙O 相切于点C ,AE ⊥l 交直线l 于点E 、交⊙O 于点F ,BD ⊥l 交直线l 于点D .(1)求证:△AEC∽△CDB;(2)求证:AE+EF=AB;(3)若AC=8cm,BC=6cm,点P从点A出发沿线段AB向点B以2/cm s的速度运动,点Q从点B出发沿线段BC向点C以1/cm s的速度运动,两点同时出发,当点P运动到点B时,两点都停止运动.设运动时间为t秒,求当t为何值时,△BPQ为等腰三角形?【答案】(1)证明见解析;(2)证明见解析;(3)t=103或t=6017或t=258时又∵AE⊥DE,BD⊥DE,∴OC∥BD∥AE,又∵O是AB的中点,∴OC//AE//BD∴OC=1()2BD AE+,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BFE=90°,又∵∠AED=∠BDE=90°,∴四边形BDEF是矩形,∴BD=FE ,∴AE+EF=AE+BD,∴1(AE)2EF+。
人教版数学九年级下学期第27章《相似》测试卷(测试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知:线段a、b,且,则下列说法错误的是( )A.a=2cm,b=3cm B.a=2k,b=3k(k≠0)C.3a=2b D.2.下列命题正确的是()A.有一个角对应相等的平行四边形都相似B.对应边成比例的两个平行四边形相似C.有一个角对应相等的两个等腰梯形相似D.有一个角对应相等的菱形是相似多边形3.如果(其中顶点、、依次与顶点、、对应),那么下列等式中不一定成立的是()A.B.∠B=∠E C.D.4.在比例尺为1∶8 000的某学校地图上,矩形运动场的图上尺寸是1 cm×2 cm,那么矩形运动场的实际尺寸应为( )A.80 m×160 m B.8 m×16 m C.800 m×160 m D.80 m×800 m5.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.(-1, 2)B.(-9, 18)C.(-9, 18)或(9, -18) D.(-1, 2)或(1, -2)6.如图,点O是△ABC内任一点,点D,E,F分别为OA,OB,OC的中点,则图中相似三角形有( ) A.1对B.2对C.3对D.4对7.已知:如图,在中,,则下列等式成立的是( )A .B .C .D .8.如图,在平行四边形中,是上的一点,直线与的延长线交于点,并与交于点,下列式子中错误的是( )A .B .C .D .9.如图,在中,是边上一点,连接,给出下列条件:①;②;③;④.其中单独能够判定的个数是( )A . 1个B . 2个C . 3个D . 4个 10.点是线段的黄金分割点,且,下列命题:,中正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题(每小题3分,共30分) 11.如图,在△ABC 中,DE ∥BC ,23AD DB =,则DEBC = .12. 如图,直角三角形ABC 中,︒=∠90ACB ,10=AB , 6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点 记为H ;AD 的中点E 的对应点记为G. 若GFH ∆∽GBF ∆,则AD =______ ____.13.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则CD 的长为 .14.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O , 若S △DOE :S △COA =1:25,则S △BDE 与S △CDE 的比=___________.15.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA=10cm ,OA′=20cm,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比值是 .16.把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为 17.如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则AM1+AN1= .18.如图,在菱形ABCD 中,E 是BC 边上的点,AE 交BD 于点F ,若EC=2BE ,则BFFD的值是 .19.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是米.2.244 1.520.如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC 边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF ;⑤△AEB是正三角形.其中正确结论的序号是.三、解答题(共60分)21.(本题6分)如图,在△ABC中,D是AB上一点,且∠ACD=∠B,已知AD=8cm,BD=4cm,求AC的长.22.(本题6分)如图,在边长为1 的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点O,按要求画出格点△A1B1C1和格点△A2B2C2.(1)将△ABC绕O点顺时针旋转90°,得到△A1B1C1;(2)以A1为一个顶点,在网格内画格点△A1B2C2,使得△A1B1C1∽△A1B2C2,且相似比为1:2.23.(本题6分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.24.(本题8分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.25.(本题7分)为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆高为3.2米,且BC=2米,CD=6米,求树ED的高.26.(本题8分)如图,正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,如图位置依次摆放,已知点C1,C2,C3…,C n在直线y=x上,点A1的坐标为(1,0).(1)写出正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,的位似中心坐标;(2)正方形A4A3B4C4四个顶点的坐标.27.(本题8分)如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE•BC=BD•A C;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.28.(本题11分) (1)、问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)、探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)、应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.答案(测试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知:线段a、b,且,则下列说法错误的是( )A.a=2cm,b=3cm B.a=2k,b=3k(k≠0)C.3a=2b D.【答案】A【解析】选项A,两条线段的比,没有长度单位,它与所采用的长度单位无关,选项A错误;选项B,,根据等比性质,a=2k,b=3k(k≠0),选项B正确;选项C,,根据比例的基本性质可得3a=2b,选项C正确;选项D,,根据比例的基本性质可得a=b,选项D正确.故选A.2.下列命题正确的是()A.有一个角对应相等的平行四边形都相似B.对应边成比例的两个平行四边形相似C.有一个角对应相等的两个等腰梯形相似D.有一个角对应相等的菱形是相似多边形【答案】D3.如果(其中顶点、、依次与顶点、、对应),那么下列等式中不一定成立的是()A.B.∠B=∠E C.D.【答案】C【解析】△ABC∽△DEF,故:A.∠A=∠D正确,故本选项错误;B.∠B=∠E正确,故本选项错误;C.AB=DE不一定成立,故本选项正确;D.正确,故本选项错误.故选C.4.在比例尺为1∶8 000的某学校地图上,矩形运动场的图上尺寸是1 cm×2 cm,那么矩形运动场的实际尺寸应为( )A.80 m×160 m B.8 m×16 m C.800 m×160 m D.80 m×800 m【答案】A解得y=16000(cm)=160(m)∴矩形运动场的实际尺寸是80m×160m.故选A.5.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.(-1, 2)B.(-9, 18)C.(-9, 18)或(9, -18) D.(-1, 2)或(1, -2)【答案】D6.如图,点O是△ABC内任一点,点D,E,F分别为OA,OB,OC的中点,则图中相似三角形有( )A.1对B.2对C.3对D.4对【答案】D【解析】因为点D,E,F分别为OA,OB,OC的中点,所以DE是△AOB的中位线,DF是△AOC的中位线,EF是△BOC的中位线,所以DE//AB,DF//AC,EF//BC,所以△DOE∽△AOD,△DOF∽△AOC,△EOF∽△BOC,因为DE是△AOB的中位线,DF是△AOC的中位线,EF是△BOC的中位线,所以,,所以,所以△DEF∽△ABC,因此有四对相似三角形,故选D.7.已知:如图,在中,,则下列等式成立的是()A.B.C.D.【答案】C8.如图,在平行四边形中,是上的一点,直线与的延长线交于点,并与交于点,下列式子中错误的是()A.B.C.D.【答案】D【解析】∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BE,∵CG∥AE,∴四边形AGCF是平行四边形,△BCG∽△BEA,△CEF∽△BEA,∴,,CF=AG,∴DF=BG,,∴选项A、B正确;∵AD∥BE,∴,∴,∴选项C正确,D不正确;故选D.9.如图,在中,是边上一点,连接,给出下列条件:①;②;③;④.其中单独能够判定的个数是()A.1个B.2个C.3个D.4个【答案】B10.点是线段的黄金分割点,且,下列命题:,中正确的有()A.1个B.2个C.3个D.4个【答案】B二、填空题(每小题3分,共30分) 11.如图,在△ABC 中,DE ∥BC ,23AD DB =,则DEBC = .【答案】25【解析】根据AD:DB=2:3可得:AD:AB=2:5,∵DE ∥BC ,∴△ADE ∽△ABC ,∴25DE AD BC AB . 12. 如图,直角三角形ABC 中,︒=∠90ACB ,10=AB , 6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点 记为H ;AD 的中点E 的对应点记为G. 若GFH ∆∽GBF ∆,则AD =______ ____.【答案】3.2 【解析】利用勾股定理列式求出AC=8,设AD=2x ,得到AE=DE=DE 1=A 1E 1=x ,然后求出BE 1=10-3x ,再利用相似三角形对应边成比例列式求出DF=32x ,然后利用勾股定理列式求出E 1F=132x ,然后根据相似三角形对应边成比例列式求解得到x=85,从而可得AD 的长为2×85=165=3.2. 13.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则CD的长为 .【答案】23.14.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥A C,AE、CD相交于点O,若S△DO E:S△COA=1:25,则S△BDE与S△CDE的比=___________.【答案】1:4【解析】根据S△DOE:S△COA=1:25可得:DE:AC=1:5,则BE:BC=1:4,即BE:CE=1:4,△BDE和△CDE是登高三角形,则S△BDE:S△CDE=BE:EC=1:4.15.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比值是.【答案】1:2【解析】由五边形ABCDE与五边形A′B′C′D′E′位似,可得五边形ABCDE∽五边形A′B′C′D′E′,又由OA=10cm,OA′=20cm,即可求得其相似比为1:2,根据相似多边形的周长的比等于其相似比,即可求得答案为五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比为:OA :OA′=1:2.16.把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为 【答案】152【解析】设原矩形的长为x ,宽为y ,则剩下的矩形的长为y ,宽为(x -y),根据矩形相似可求出比值. 17.如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则AM1+AN1= .【答案】1.18.如图,在菱形ABCD 中,E 是BC 边上的点,AE 交BD 于点F ,若EC=2BE ,则BFFD的值是 .【答案】13【解析】根据菱形的性质得出AD=BC ,AD ∥BC ,求出AD=3BE ,根据相似三角形的判定得出△AFD ∽△EFB ,根据相似得出比例式BF BE DF AD =,代入求出即可求得结果为13. 19.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是 米.41.52.24【答案】3.08 【解析】根据三角形相似的性质可得:x24.25.144=+,则x=3.08 20.如图,在矩形ABCD 中,AB=2,AD=,在边CD 上有一点E ,使EB 平分∠AEC.若P 为BC 边上一点,且BP=2CP ,连接EP 并延长交AB 的延长线于F .给出以下五个结论: ①点B 平分线段AF ;②PF=DE ;③∠BEF=∠FEC;④S 矩形ABCD =4S △BPF ;⑤△AEB 是正三角形.其中正确结论的序号是.【答案】①②③⑤在Rt△BPF 中,BF=2,由勾股定理可求得PF=22BF BP +=22343⎛⎫+ ⎪ ⎪⎝⎭=433,∵DE=1,∴PF=433DE ,故②正确;在Rt△BCE 中,EC=1,BC=3,由勾股定理可求得BE=2,∴BE=BF,∴∠BEF=∠F,又∵AB∥CD,∴∠FEC=∠F,∴∠BEF=∠FEC, 故③正确;∵AB=2,AD=3,∴S 矩形ABCD =AB×AD=2×3=23,∵BF=2,BP=433,∴S △BPF =12BF×BP=12×2×433=433, ∴4S △BPF =1633,∴S 矩形ABCD =≠4S △BPF ,故④不正确; 由上可知AB=AE=BE=2,∴△AEB 为正三角形,故⑤正确; 综上可知正确的结论为:①②③⑤.故答案为:①②③⑤. 三、解答题(共60分)21.(本题6分)如图,在△ABC 中,D 是AB 上一点,且∠ACD=∠B,已知AD=8cm ,BD=4cm ,求AC 的长.【答案】4622.(本题6分)如图,在边长为1 的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)和格点O ,按要求画出格点△A 1B 1C 1和格点△A 2B 2C 2. (1)将△ABC 绕O 点顺时针旋转90°,得到△A 1B 1C 1;(2)以A 1为一个顶点,在网格内画格点△A 1B 2C 2,使得△A 1B 1C 1∽△A 1B 2C 2,且相似比为1:2.【答案】(1)图形见解析;(2)图形见解析.【解析】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A1B2C2,即为所求.23.(本题6分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.【答案】4.【解析】∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴BD DEAB AC,∴DE=BD ACAB⋅=8714⨯=4.24.(本题8分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【答案】(1)证明见解析;(2) AD=3525.(本题7分)为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆高为3.2米,且BC=2米,CD=6米,求树ED的高.【答案】8米【解析】如图,过A作AH垂直ED,垂足为H,交线段FC与G,由题知,FG//EH, △AFG∽△AEH,FG AG EH AH=又因为AG=BC=2,AH=BD=2+6=8,FG=FC-GC=3.2 -1.6=1.6,所以1.628EH=,EH=6.4,∴ED=EH+HD=6.4+1.6=8 树ED的高为8米26.(本题8分)如图,正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,如图位置依次摆放,已知点C1,C2,C3…,C n在直线y=x上,点A1的坐标为(1,0).(1)写出正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,的位似中心坐标;(2)正方形A4A3B4C4四个顶点的坐标.【答案】(1)(0,0);(2)A4(8,0),A5(16,0),B4(16,8),C4(8,8).27.(本题8分)如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE•BC=BD•AC;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.【答案】(1)证明见解析;(2) BC=10.28.(本题11分) (1)、问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)、探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)、应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.【答案】(1)证明见解析;(2)证明见解析;(3) t=1秒或5秒.【解析】(1)、如图1 ∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP =∠BPC ∴△ADP∽△BPC.∴ADBP=APBC.即AD·BC=AP·BP.(2)结论AD·BC=AP·BP 仍成立.理由:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠ADP,∴∠DPC+∠BPC =∠A+∠ADP,∵∠DPC =∠A=θ,∴∠BPC =∠ADP ,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴ADBP=APBC.,∴AD·BC=AP·BP.(3)如图3,过点D作DE⊥AB于点E,∵AD=BD=5,AB=6,∴AE=BE=3,由勾股定理得DE=4,∴DC=DE=4,∴BC=5-4=1,又∵AD=BD,∴∠A=∠B,由已知,∠DPC =∠A,∴∠DPC =∠A=∠B,由(1)、(2)可得:AD·BC=AP·BP,又AP=t,BP=6-t,∴t(6-t)=5×1,解得t1=1,t2=5,∴t的值为1秒或5秒.。
2022-2023学年人教版九年级数学下册《第27章相似》解答题专题提升训练(附答案)1.已知=,求的值.2.我们知道:若,且b+d≠0,那么.(1)若b+d=0,那么a、c满足什么关系?(2)若,求t2﹣t﹣2的值.3.已知点C是线段AB上的点,点D是AB延长线上的点,且AD:BD=AC:CB,已知AB=6cm,AC=3.6cm,求AD,BD的长.4.如图,G是正方形ABCD对角线AC上一点,作GE⊥AD,GF⊥AB,垂足分别为点E,F.求证:四边形AFGE与四边形ABCD相似.5.如图,现有一个边长是1的正方形ABCD,在它的左侧补一个矩形ABEF,使所得矩形CEFD∽矩形ABEF,求BE的长.6.如图,一个矩形广场的长为60m,宽为40m,广场内两条纵向小路的宽均为1.5m,如果设两条横向小路的宽都为xm,那么当x为多少时,小路内外边缘所围成的两个矩形相似?7.为了测量校园内水平地面上的一棵树的高度,小明在距树5米处立了一根高为3米的标杆,然后小明前后调整自己的位置,当小明与标杆相距1米时,小明眼睛A、标杆顶端F、树的顶端E在同一直线上,已知小明的眼睛距地面1.5米,求树的高度.8.一块三角形的余料,底边BC长1.8米,高AD=1米,如图.要利用它裁剪一个长宽比是3:2的长方形,使长方形的长在BC上,另两个顶点在AB、AC上,求长方形的长EH 和宽EF的长.9.图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点,△ABC的顶点均在格点上,点D为边AC的中点.分别在图①、图②中△ABC的边AB上确定点P,并作出直线DP,使△ADP与△ABC相似.要求:(1)图①、图②中的点P位置不同.(2)只用无刻度的直尺,保留适当的作图痕迹.10.一个钢筋三角架边长分别是20cm,50cm,60cm,现在要做一个与其相似的钢筋三角架,而只有长为30cm和50cm的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,问有几种不同的截法?11.小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4m,BC=10m,CD与地面成30°角,且在此时测得1m杆的影长为2m,求电线杆的高度.12..如图Rt△ABC与Rt△DEF中,∠A=∠D=90°,∠B=40°,∠E=20°,用一条过顶点的线段将Rt△ABC分割成两个三角形,再用另一条过顶点的线段将Rt△DEF也分割成两个三角形;所分割成的四个三角形恰好是两对相似三角形.(要求:1.用三种不同的方法;2.在图中标出相应的锐角度数.13.如图,△ABC中,AD、BE是高.(1)求证:;(2)连接DE,那么△CDE与△CAB是位似图形吗?14.如图,矩形ABCD中,AB=4,BC=m(m>1),点E是AD边上一定点,且AE=1.(1)当m=3时,AB上存在点F,使△AEF与△BCF相似,求AF的长度.(2)如图②,当m=3.5时.用直尺和圆规在AB上作出所有使△AEF与△BCF相似的点F.(不写作法,保留作图痕迹)(3)对于每一个确定的m的值,AB上存在几个点F,使得△AEF与△BCF相似?15.在平面直角坐标系中,抛物线L:y=﹣x2+x+2与y轴交于点C,与x轴交于A、B两点(点A在点B的左侧).(1)求A、B、C三点的坐标;(2)连接AC、BC,以点C为位似中心,将△ABC扩大到原来的2倍得到△A1B1C,其中点A1、B1分别是点A、B的对应点,如何平移抛物线L才能使其同时经过点A1、B1,求出所有的平移方式.16.分别在直角坐标系中描出点(1)(0,0),(5,4),(3,0),(5,1)(5,﹣1),(3,0),(4,﹣2),(0,0);按描点的顺序连线.(2)(0,0),(10,8),(6,0),(10,2),(10,﹣2),(6,0),(8,﹣4),(0,0)按描点的顺序连线.(3)你得到两个怎样的图形?答:.(4)两个图形有什么特点?(从形状和大小来回答)答:.17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1)、B(﹣3,2)、C(﹣1,4).(1)以原点O为位似中心,在第二象限内画出将△ABC放大为原来的2倍后的△A1B1C1.(2)画出△ABC绕O点顺时针旋转90°后得到的△A2B2C2.18.学完了《图形的相似》这一章后,某中学数学实践小组决定利用所学知识去测量一古建筑AB的高度(如图1).如图2,在地面BC上取E,G两点,分别竖立两根高为2m的标杆EF和GH,两标杆间隔EG为23m,并且古建筑AB,标杆EF和GH在同一竖直平面内,从标杆EF后退2m到D处,从D处观察A点,A,F,D三点成一线;从标杆GH 后退4m到C处,从C处观察A点,A,H,C三点也成一线.请根据以上测量数据,帮助实践小组求出该古建筑的高度.19.如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足是点H,过点C作直线分别与AB,AD的延长线交于点E,F,且∠ECD=2∠BAD.(1)求证:CF是⊙O的切线;(2)如果AB=10,CD=6,①求AE的长;②求△AEF的面积.20.如图,AB是⊙O的直径,AB=13,C,D在圆上,且AC=CD=12,过点C的切线和DB的延长线交于点E.(1)求证:OC∥DE;(2)求DE的长.21.在Rt△ABC中,∠ACB=90°,CB=CA,点E在边BC上(不与B、C点重合)CD⊥AE于点F,交AB于点G,BD∥AC,AC=k•CE.(1)如图1,求证:AG=k•BG.(2)如图2,若k=2,连接BF,求证:BF=FC.(3)如图3,在(2)的条件下,过点B作BH⊥BA,交CD的延长线于点H,将HB沿HG翻折并延长交AB于点I,若EF=,求HI的长.参考答案1.解:∵=,∴设a=5m,则b=3m,∴==﹣13.1.解:(1)∵,b+d=0,∴a+c=0;(2)①当a+b+c≠0时,==2,∴t2﹣t﹣2=22﹣2﹣2=0,②当a+b+c=0时,b+c=﹣a,a+c=﹣b,a+b=﹣c,∴=﹣1,∴t2﹣t﹣2=0.2.解:∵AB=6cm,AC=3.6cm,∴BC=AB﹣AC=6﹣3.6=2.4,∵AD:DB=AC:CB,∴AD:(AD﹣6)=3.6:2.4,解得:AD=18,∴BD=AD﹣AB=12.4.证明;∵∠GEA=∠EAF=∠GF A=90°,∴四边形EAFG为矩形.∵四边形ABCD为正方形,∴AC平分∠DAB.又∵GE⊥AD,GF⊥AB,∴GE=GF.∴四边形EAFG为正方形.∴四边形AFGE与四边形ABCD相似.5.解:∵矩形CEFD∽矩形ABEF,∴=,即=,整理得,BE2+BE﹣1=0,解得,BE1=,BE2=(舍去),则BE的长为.6.解:∵小路内外边缘所围成的两个矩形相似,∴=,解得,x=1m,答:当x为1m时,小路内外边缘所围成的两个矩形相似.7.解:如图,过A作AH垂直ED,垂足为H,交线段FC于点G,由题知,∵FG∥EH,∴△AFG∽△AEH,∴,又因为AG=BC=1,HG=CD=5,GD=HC=AB=1.5,所以,解得:HE=9,则ED=DH+HE=1.5+9=10.5(m).答:树ED的高为10.5米.8.解:∵长方形的长宽比是3:2,∴设EH、EF分别为3k、2k,∴EH∥BC,∴△AEH∽△ABC,∴=,即=,解得k=,∴EH=米,EF=米.9.解:如图①所示,点P即为所求,△ABC∽△APD;如图②所示,点P即为所求,△ABC∽△ADP.10.解:取30cm为一边,另两边设为xcm、ycm;(1)30cm与20cm对应,即==,解得:x=75,y=90;75+90>50,不可以.(2)30cm与50cm对应,即==,解得x=12,y=36;12+36=48<50,可以.(3)30cm与60cm对应,即==,解得:x=10,y=25;10+25<50,可以.当取50cm作为一边时,无法得到符合题意的三角形,综上所述:有两种不同的截法.11.解:如图,过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,∵CD=4米,CD与地面成30°角,∴DE=CD=×4=2米,根据勾股定理得,CE===2米,∵1米杆的影长为2米,∴=,∴EF=2DE=2×2=4米,∴BF=BC+CE+EF=10+2+4=(14+2)米,∵=,∴AB=(14+2)=(7+)米.答:电线杆的高度为(7+)m.12.解:方法一:方法二:方法三:方法四:方法五:13.解:(1)证明:∵AD、BE是高,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴△ADC∽△BEC,∴;(2)解:如图,△CDE与△CAB不是位似图形.因为DE、AB的交点不为点A.14.解:(1)当∠AEF=∠BFC时,要使△AEF∽△BFC,需=,即=,解得AF=1或3;当∠AEF=∠BCF时,要使△AEF∽△BCF,需=,即=,解得AF=1;综上所述AF=1或3.(2)延长DA,作点E关于AB的对称点E′,连接CE′,交AB于点F1;连接CE,以CE为直径作圆交AB于点F2、F3.(3)当1<m<4且m≠3时,有3个;当m=3时,有2个;当m=4时,有2个;当m>4时,有1个.15.解:(1)在y=﹣x2+x+2中,令y=0,即0=﹣x2+x+2,解得:x1=2,x2=﹣1,∴A(﹣1,0),B(2,0),令x=0,即y=2,∴C(0,2);(2)如图,当抛物线经过A1(2,6),B1(﹣4,6)时,设抛物线的解析式,y=﹣x2+bx+c,则有,解得,,∴抛物线的解析式为y=﹣x2﹣2x+14=﹣(x+1)2+15,当抛物线经过A2(﹣2,﹣2),B2(4,﹣2)时,同法可得抛物线的解析式为:y=﹣x2+2x+6=﹣(x﹣1)2+7.∵原来的抛物线的解析式为y=﹣(x﹣)2+,∴+1=,15﹣=,∴原来抛物线向左平移,再向上平移单位得到y=﹣x2﹣2x+14.1﹣=,7﹣=,原来抛物线向右平移单位,再向上平移单位得到y=﹣x2+2x+6.16.解:(1)如图所示:(2)如图所示:(3)如图所示:得到两个小鱼的图形;(4)两个图形是以原点为位似中心的位似图形.故答案为:以原点为位似中心的位似图形.17.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.18.解:设BE=ym,由题意可知,△ABD∽△FED,△ABC∽△HGC,∴=,=,∵EF=HG=2,∴=,∴=,解得:y=23(m),则=,即=,解得:AB=25(m),答:该古建筑的高度为25米.19.(1)证明:连接OC,如图,∵AB是⊙O的直径,AB⊥CD,∴,∴∠CAB=∠DAB.∵∠COB=2∠CAB,∴∠COB=2∠BAD.∵∠ECD=2∠BAD,∴∠ECD=∠COB.∵AB⊥CD,∴∠COB+∠OCH=90°,∴∠OCH+∠ECD=90°,∴∠OCE=90°.∴OC⊥CF.∵OC是⊙O的半径,∴CF是⊙O的切线;(2)解:①∵AB=10,∴OA=OB=OC=5,∵AB是⊙O的直径,AB⊥CD,∴CH=DH=CD=3.∴OH==4,∵OC⊥CF,CH⊥OE,∴△OCH∽△OEC,∴,∴,∴OE=.∴AE=OA+OE=5+=;②过点F作FG⊥AB,交AB的延长线于点G,如图,∵∠OCF=∠FGE=90°,∠CEO=∠GEF,∴△OCE∽△FGE.∴,设FG=4k,则FE=5k,∴EG==3k,∵DH⊥AB,FG⊥AB,∴DH∥FG.∴,解得:k=.∴FG=4k=5.∴△AEF的面积=×AE•FG=.20.(1)证明:∵∠EBC为圆内接四边形ACBD的外角,∴∠EBC=∠CAD.∵AC=DC,∴∠CAD=∠CDA.∵∠CDA=∠CBA,∴∠EBC=∠CBA,∵OC=OB,∴∠OCB=∠CBA,∴∠OCB=∠EBC,∴OC∥DE;(2)解:∵EC为⊙O的切线,∴∠ECO=90°.∵OC∥DE,∴∠ECO+∠E=180°,∴∠E=90°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠E=90°.∵∠EDC=∠CAB,∴△EDC∽△CAB,∴=,∵AB=13,AC=DC=12,∴DE=.21.(1)证明:如图1中,∵AE⊥CD,∴∠AFC=∠ACB=90°,∴∠ACF+∠CAF=90°,∠BCD+∠ACF=90°,∴∠CAE=∠BCD,∵BD∥AC,∴∠DBC+∠ACB=180°,∴∠CBD=∠ACE=90°,∵AC=CB,∴△ACE≌△CBD(ASA),∴EC=BD,∵DB∥AC,∴===k,∴AG=kBG.(2)证明:如图2中,连接DE交AB于O,连接OF,作BM⊥AE交AE的延长线于M.∵k=2,∴AC=2EC,∵AC=BC,∴BE=EC=BD,∴△BDE是等腰直角三角形,∵∠OBE=∠OBD=45°,∴OD=OE,∴OB=OD=OE=OF,∴B,D,F,E四点共圆,∴∠BFE=∠BDE=45°,∵BM⊥FM,∴∠M=90°,∴∠MBF=∠BFM=45°,∴BF=BM,∵∠CFE=∠M=90°,∠CEF=∠BEM,CE=BE,∴△CFE≌△BME(AAS),∴CF=BM,∴BF=CF.(3)解:如图3中,作GN⊥HI于N,作BM⊥AE交AE的延长线于M,连接DE交AB 于O.∵△CFE≌△BME,∴EF=EM=,∴FM=BM=CF=3,∴EC=BE=BD=,∴AC=BC=3,DE=BE=∵AB⊥BH,DE⊥AB,∴DE∥BH,∵BE=CE,∴DH=DC,∴BH=2DE=3,∵AB=AC=3,∴BG=AB=,∵∠GHN=∠GHB,HG=HG,∠HBG=∠HNG=90°,∴△HGB≌△HGN(AAS),∴HN=HB=3,GN=GB=,设IN=x,IG=y,则有,解得x=,∴HI=HN+NI=3+=.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第27章相似27.2.3相似三角形应用举例一、选择题1.如图,身高1.6米的小慧同学从一盏路灯下的B处向前走了8米到达点C处时,发现自己在地面上的影子CE的长是2米,则路灯AB的高为()A.5米B.6.4米C.8米D.10米2.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高为1.5m,测得AB=3m,BC=7m,则建筑物CD的高是()mA.3.5B.4C.4.5D.53.如图所示,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米4.如图1,某温室屋顶结构外框为△ABC,立柱AD垂直平分横梁BC,AD=2m,斜梁AC=4m.为增大向阳面的面积,将立柱增高并改变位置,使屋顶结构外框变为△EBC (点E 在BA 的延长线上),立柱EF ⊥BC ,如图2所示.若EF=3m ,则斜梁增加部分AE 的长为()A .0.5mB .1mC .1.5mD .2m5.如图所示,一张等腰三角形纸片,底边长18cm ,底边上的高为18cm ,现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A .第4张B .第5张C .第6张D .第7张6.一个矩形按如图1的方式分割成三个直角三角形,最小三角形的面积为1S ,把较大两个三角形纸片按图2方式放置,图2中的阴影部分面积为2S ,若212S S =,则矩形的长宽之比为()A .2BC .43D 7.《九章算术》是我国数学经典,上面记载:“今有邑方不知大小,各中开门.出北门三十步有木,出西门七百五十步见木.问邑方几何?”其意思是:如图,已知正方形小城ABCD ,点E ,G 分别为CD ,AD 的中点,EF ⊥CD ,GH ⊥AD ,点F ,D ,H 在一条直线上,EF =30步,GH =750步.正方形小城ABCD 的边长是()A .150步B .200步C .250步D .300步8.如图,花丛中有一路灯杆AB .在灯光下,小明在D 点处的影长DE =3米,沿BD 方向行走到达G 点,DG =5米,这时小明的影长GH =5米.如果小明的身高为1.7米,则路灯杆AB 的高度(精确到1米)为()A .5米B .6米C .7米D .8米9.如图,某数学活动小组为测量校园内移动信号转播塔AB 的高度,他们先在水平地面上一点E 放置了一个平面镜,镜子与铁塔底端B 的距离16m BE =,当镜子与与观测者小芳的距离2m ED =时,小芳刚好从镜子中看到铁塔顶端A ,已知小芳的眼睛距地面的高度 1.5m CD =,铁塔AB 的高度为()(根据光的反射原理,12Ð=Ð)A .9mB .12mC .15mD .18m10.一种雨伞的截面图(如图所示),伞骨AB AC =,支掌杆30OE OF cm ==,当点O 沿AD 滑动时,雨伞开闭.若3AB AE =,3AD AO =,此时B 、D 两点间的距离等于()A .60cmB .80cmC .90cmD .120cm 二、填空题11.如图,晚上小亮在路灯下散步,在由A 点处走到B 点处这一过程中,他在点A ,B ,C 三处对应的在地上的影子,其中影子最短的是在_____点处(填A ,B ,C ).12.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为12m .若小明的眼睛与地面的距离为1.5m ,则旗杆的高度为________.(单位:m )13.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高.下午课外活动时,她测得根长为1m 的竹杆的影长是0.8m .但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上.她先测得留在墙壁上的影高为1.2m ,又测得地面的影长为2.6m ,请你帮她算一下,树高是________m .14.如图,一张矩形纸片ABCD ,9AD =,12AB =,纸片折叠,使A 、C 两点重合,折线MN =________.15.学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7m的小明从路灯灯泡A 的正下方点B 处,沿着平直的道路走8m 到达点D 处,测得影子DE 长是2m ,则路灯灯泡A 离地面的高度AB 为_______________m .三、解答题16.如图,小丁家窗外有一堵围墙AB ,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C 射进房间地面的D 处,中午太阳光恰好能从窗户的最低点E 射进房间地面的F 处,AB ⊥BD 于点B ,CE ⊥BD 于点O ,小丁测得OE =1m ,CE =1.5m ,OF =1.2m ,OD =12m ,求围墙AB 的高为多少米.17.小军想用镜子测量一棵古松树的高度,但因树旁有一条小河,不能测量镜子与树之间的距离.于是他利用镜子进行两次测量.如图,第一次他把镜子放在点C 处,人在点F 处正好在镜中看到树尖A ;第二次他把镜子放在点'C 处,人在点F 处正好在镜中看到树尖A .已知小军的眼睛距地面1.7m ,量得'12CC =m , 1.8CF =m ,'' 3.84C F =m.求这棵古松树的高度18.如图,△ABC 是一块锐角三角形余料,边BC =120mm ,高AD =80mm ,要把它加工成矩形零件PQMN ,使一边在BC 上,其余两个顶点分别在边AB 、AC 上.若这个矩形的边PN ∶PQ=1∶2,则这个矩形的长、宽各是多少?19.如图所示,小杰家(点A处)和公路(l)之间竖立着一块30米长且平行于公路的巨型广告牌(BC),一辆小汽车在公路上以60千米/小时匀速行驶,小杰在家观察这辆汽车行驶时,有6秒钟被广告牌挡住.请在图中画出被广告牌挡住的那段公路DE,已知广告牌和公路的距离为35米,求小杰家到公路的距离.20.小明利用灯光下的影子来测量路灯高度,如图,当小明走到A点时,他直立时身高AM 与影子AE恰好相等;他沿着AC方向继续向前,走到B处时,他直立的身高BN的影子恰好是线段AB,此时测得AB=1.2m.已知小明的直立身高是1.6m,求路灯的高度CD.21.如图,数学兴趣小组利用硬纸板自制的Rt△ABC来测量操场旗杆MN的高度,他们通过调整测量位置,并使边AC与旗杆顶点M在同一直线上,已知AC=0.8米,BC=0.5米,目测点A到地面的距离AD=1.5米,到旗杆的水平距离AE=20米,求旗杆MN的高度.22.大雁塔是西安市的标志性建筑和著名古迹,是古城西安的象征.因此西安市徽中央所绘制的便是这座著名古塔.我校社会实践小组为了测量大雁塔的高度AB ,在地面上立两根高为2m 的标杆CD 和GH ,两杆之间的距离62CG =米,点G 、C 、B 成一线.从C 处退行4米到点E 处,人的眼睛贴着地面观察A 点,A 、D 、E 三点成一线;从G 处退行6米到点F 处,从F 观察A 点,A 、F 、H 也成一线.请你根据以上数据,计算大雁塔的高度AB .23.周末,小凯和同学带着皮尺去测量杨大爷家露台遮阳篷的宽度.如图,由于无法直接测量,小凯便在楼前地面上选择了一条直线EF ,通过在直线EF 上选点观测,发现当他位于N ¢点时,他的视线从M 点通过露台D 点正好落在遮阳篷A 点处;当他位于N 点时,视线从M ¢点通过D 点正好落在遮阳篷B 点处,这样观测到的两个点A 、B 间的距离即为遮阳篷的宽,已知AB CD EF ,点C 在AG 上,AG 、DE 、MN 、M N ¢¢均垂直于EF ,MN M N =¢¢,露台的宽CD GE =.测得5GE =米,12.3EN =米, 6.2NN ¢=米.请你根据以上信息,求出遮阳篷的宽AB 是多少米?(结果精确到0.1米)参考答案1.C2.D3.B4.D5.B6.A7.D8.B9.B10.C 11.C12.913.4.4514.45 415.8.516.3m17.这棵古松树的高度为10m18.矩形的长为4807mm,宽是2407mm.19.作图略,小杰家到公路的距离为50米.20.6.4m21.14米22.大雁塔的高度AB为64米23.2.5米。
第27章 相似 专项训练专训1 证明三角形相似的方法名师点金:要找三角形相似的条件,关键抓住以下几点:已知角相等时,找两对对应角相等,若只能找到一对对应角相等,判断夹(1)相等的角的两边是否对应成比例;无法找到角相等时,判断三边是否对应成比例;(2) ”.传递性...“考虑平行线截三角形相似定理及相似三角形的(3) 利用平行线判定两三角形相似的中DE 为R 都是平行四边形,点ACED 和四边形ABCD .如图,四边形1Q.,P 于点CD ,AC 分别交BR 点, ;)除外1相似比为(请写出图中各对相似三角形(1) QR.PQ BP 求2)((第1题)利用边或角的关系判定两直角三角形相似)(.下面关于直角三角形相似叙述错误的是2 .有一锐角对应相等的两个直角三角形相似A .两直角边对应成比例的两个直角三角形相似B .有一条直角边相等的两个直角三角形相似C .两个等腰直角三角形相似D ,3.1=CE ,9.3=BC ,1.6=CD ,6.4=AD ,C ,垂足为AD ⊥BC .如图,3DEC.∽△ABC △求证:(第3题)利用角判定两三角形相似连接上,AC 在D 是外角平分线,点CE 是等边三角形,ABC △.如图,4 E.交于点CE 并延长,与BD ;CED ∽△ABD △求证:(1)的长.BE ,求2CD =AD ,6=AB 若(2)(第4题)利用边角判定两三角形相似,BD3AC=.如图,53AEAB=,又A,E在同一条直线上.B,BDAC∥,点(第5题)ABD求证:△CAE.∽△利用三边判定两三角形相似△的高,EAD6.如图,,是ABC△DEFF的中点.求证:AC分别是AB,∽△ABC.(第6题)专训2巧作平行线构造相似三角形名师点金:解题时,往往会遇到要证的问题与相似三角形联系不上或者说图中根本不存在相似三角形的情况,添加辅助线构造相似三角形是这类几何证明题的一种重要有中点时,作中位线;(2)由比例式作平行线;(1)方法.常作的辅助线有以下几种:根据比例式,构造相似三角形.(3) 巧连线段的中点构造相似三角形的中点,AC 是D 上的两个三等分点,BC 是边F ,E 中,ABC △.如图,在1QD.PQ BP ,求Q ,P 于点AF ,AE 分别交BD(第1题)过顶点作平行线构造相似三角形,23=AF BF 上一点,AB 为底边F ,BC =AC 中,ABC △.如图,在2的值.BE EC ,求E 于点BC 并延长交AD ,连接D 的中点CF 取(第2题)分别交于点AD 及中线AB 任作一直线,与边C 的顶点ABC △.如图,过3 E.和点F FB.2AF =ED AE 求证:(第3题)过一边上的点作平行线构造相似三角形,E 上取一点AC ,在D 上取一点AB ,在边AC >AB 中,ABC △.如图,在4.BD EC =BP CP 求证:P.的延长线交于点BC 和DE ,直线AE =AD 使(第4题)构造相似三角形过一点作平行线 AE上一点,且AB 为E 边的中点,点AC 为M 中,点ABC △.如图,在52CD.=BC 求证:D.的延长线于点BC 并延长交EM ,连接AB 14= 作辅助线的方法一:(第5题①)作辅助线的方法二:(第5题②)作辅助线的方法三:(第5题③)作辅助线的方法四:(第5题④)专训3 用线段成比例法解四边形问题名师点金:边形问题.在中考中涉及相题,还能解四利用线段成比例不仅能解三角形问有填空题、选择题、解答题,是中考热门命题点似、线段成比例的四边形的题型之一.一、选择题=NF 若AB.⊥NF ,AD ⊥ME 上,AC 在N ,M 中,点ABCD .如图,菱形1)(=AN ,则3=ME ,2=NM(第1题)6.D 5 .C 4 .B 3 .A AD,将纸片折叠,使得6=AD ,8=AB ,D ABC .如图,有一块矩形纸片2的交点为BC 与AE 向右翻折,DE 沿AED △,再将AE 边上,折痕为AB 边落在)(的面积为CEF △,则F(第2题)4.D 2 .C 98.B 12.A BC 的平分线交BAD ∠,9=AD ,6=AB 中,CD AB 行四边形.如图,在平3)(的周长为EFC △,则24=BG ,G 于AE ⊥BG ,F 的延长线于DC ,交E 于 8.D 9 .C 10 .B 11 .A(第3题)(第4题) 二、填空题AB,若EF 重合,折痕为C 与点A 折叠,使点ABCD .如图,将矩形纸片4.________的长为EF ,那么线段2=BC ,4= 三、解答题另,使得BDEF 为一边构造一个矩形BD 中,以对角线ABCD .如图,矩形5 C.过原矩形的顶点EF 一边 ,3S 的面积为DCE △Rt ,2S 的面积为BFC △Rt ,1S 为的面积CBD △Rt 设(1);“<”)或”=““>”填(3S +2________S 1S 则 写出图中的三对相似三角形,并选择其中一对进行证明.(2)(第5题)重C ,A 对折,使MN ,沿直线8=BC ,6=AB 中,ABCD .如图,在矩形6O.于AC 交MN 合,直线 ;CBA ∽△COM △求证:(1) 的长度.OM 求线段(2)(第6题),DE ,连接E ,垂足为BC ⊥AE 作A 中,过点ABCD .如图,在平行四边形7 B.∠=AFE ∠上一点,且DE 为线段F ;DEC ∽△ADF △求证:(1) 的长.AE ,求34=AF ,36=AD ,8=AB 若(2)(第7题),以CF =DE 上的点,且CB ,DC 的边ABCD 分别是正方形F ,E .如图,8DF.,连接Q 交于点BC 与HE ,AEHG 为边作正方形AE DCF.≌△ADE △求证:(1) 的中点.CF 为Q 的中点,求证:CD 为E 若(2) 1S 的条件下,判断(2),在3S =EAQ △S ,2S =AED △S ,1S =CEQ △S ,设AQ 连接(3)是否成立?并说明理由.3S =2S +(第8题),AE ⊥BF ,作AE 上的一点,连接BC 是E 中,ABCD .如图,在正方形9求证:G.于BF ,交AE ∥CG ,作F 于CD ,交H 垂足为(第9题);BH =(1)CG ;BF·GF =2(2)FC .GF GB =FC2AB2(3)AB并延长交边DP 上的一点,连接AC 对角线ABCD 是菱形P .如图,点10G.的延长线于点CD ,交F 于点AD 并延长交边BP ,连接E 于点 ;APD ≌△APB △求证:(1) y.的长为PF ,线段x 的长为DP ,设线段21=FA DF 已知(2) 的函数关系式;x 与y 求①的长.FG 时,求线段6=x 当②(第10题)专训4 用线段成比例法解与圆有关问题名师点金:形、四边形中有着广泛的应用,是近段问题在三角线段成比例法求解有关线几年中考命题的必考内容;在中考中,它的另一重点是与圆的知识相结合进行考查;题型既有选择题、填空题,也有解答题,也常以压轴题的形式出现.一、选择题D,过点D 于点AC 为直径的圆交AB ,以BC =AB ,ABC △.如图,已知1)(的半径是O ⊙,则4=CE ,5=CD 若E.于点BC 的切线交O ⊙的 258.D 256.C 4 .B 3 .A(第1题)(第2题)BC,交BAC ∠平分AD 上一点,弦O ⊙为C 的直径,O ⊙为AB .如图,2)(的长为AE ,则5=AD ,6=AB ,E 于点 3.2.D 3 .C 2.8 .B 2.5 .A ,E 于点BC 交AD ,AC =AB 上的四个点,O ⊙是D ,C ,B ,A .如图,3)(的长为AB ,则4=ED ,3=AE 53.D 21.C 32.B 3 .A(第3题)(第4题) 二、填空题,则图中与BC ∥DE ,AB ⊥CD 在圆上,C 的直径,点O ⊙是AB .如图,4个.________相似的三角形有ABC △ 不与(上的一个动点O ⊙是P ,A 相切于点O ⊙的4与半径为l .如图,直线5的y -x ,则y =PB ,x =PA 设PA.,连接B ,垂足为l ⊥PB 作P ,过点)重合A 点.________最大值是(第5题)三、解答题,与DE 的切线O ⊙作B 的弦,过点O ⊙是AC 的直径,O ⊙是AB .如图,6 E.于点DE 交AC ⊥AE ,作D 的延长线交于点AC ;E ∠=BAD ∠求证:(1) 的长.BE ,求8=AC ,5的半径为O ⊙若(2)(第6题),D 于点AC ,交O 为直径作半圆AB ,以BC =BA 中,ABC △.如图,在7 E.,垂足为点BC ⊥DE 作D ,过点DB 连接(第7题)的切线;O 为半圆DE 求证:(1) AB·BE.=2DB 求证:(2)是圆O的直径,点AB.如图,过点8,CD∠CAB.AD平分上,且在圆O的垂线,与ACACD作AB的延长线相交于点的延长线相交于点F.,与E求证:(1)EF与圆相切;O=6AB(2),若,求的长.AD2EF4=(第8题)O的直径,点C⊙9在.如图,AB是⊙⊙OO的平分线交于点CAB上,∠AC的垂线交作ACD,过点D于点F.的延长线于点AD交E,连接BC猜想(1)ED⊙与的位置关系,并证明你的猜想;O=6AB(2),若5AF,求的长.AD=(第9题)⊙O是的直径,点.如图,AB10DBCBED.E=∠∠是上的一点,求证:(1)BC是的切线;O⊙=3AD(2),已知的长.BCCD,求2=(第10题)的切线互相C 和过点AE 上一点,O ⊙为C 径,点的直O ⊙是B A .如图,11,AC ,连接P 的延长线于点AB 交EC ,直线D 于点O ⊙交AE ,E 垂直,垂足为 2.1=PC PB ,BC ;BAD ∠平分AC 求证:(1) 之间的数量关系,并说明理由;AB ,PB 探究线段(2)的面积.ABC △,求3=AD 若(3)(第11题)答案专训1 ∽△PAB △,RDQ ∽△PCQ △,PAB ∽△PCQ △,BER ∽△BCP △(1)解:.1RDQ.行四边形.都是平ACED 和四边形ABCD 四边形∵(2) ,BER ∽△BCP ∴△,DE ∥AC ,CE =AD =BC ∴ .12=PC RE ,PR =BP ∴,12=BC BE =BP BR =PC RE 则 RE.=DR ∴的中点,DE 是R 点∵ .12=PC RE =PC DR =PQ QR ∴,DR ∥PC 又 2PQ.=QR ∴ ,3PQ =QR +PQ =PR =BP ∵又 2.13=QR PQ BP ∴ C.2 4.81.6=AC CD ∴4.8.=1.6-6.4=CD -AD =AC ∴,1.6=CD ,6.4=AD ∵证明:.3 3.= .BC EC =AC CD ∴,3=9.33.1=BC EC ∵又,90°=DCE ∠=ACB ∴∠,AD ⊥BC ∵又 DEC.∽△ABC ∴△(第4题)是等边三角形,ABC ∵△证明:(1).4 60°.=ACB ∠=A ∴∠ 0°.12=ACF ∴∠ 是外角平分线,CE ∵ 60°.=120°×12=ACF ∠12=ACE ∴∠ ACE.∠=A ∴∠ CED.∽△ABD ∴△,CDE ∠=ADB ∵∠又 .33=BM ,3=CM =AM ,则M 于点AC ⊥BM 如图,作解:(2) 1.=MD 则4.=AD ,2=CD ∴,2CD =AD ∵ .72=BM2+MD2=BD 中,BDM △Rt 在,2=27ED ,即AD CD =BD ED 得CED ∽△ABD △由 .73=ED +BD =BE ∴.7=ED ∴ ,CAE ∠=DBA ∴∠在同一条直线上,E ,A ,B ,点AC ∥BD ∵证明:.5CAE.∽△ABD ∴△,3=BD AE =AB AC ∵又 ,通过已知条件寻找两边成演绎推理和数形结合思想本题运用了方法规律:比例并且夹角相等,从而证明两三角形相似.BD.⊥AD ∴的高,ABC △是AD ∵证明:.6的中点.AC ,AB 分别是F ,E ∵又 上的中线.AB 斜边为DE 中,ABD △Rt 在∴ .12=DF AC 同理.12=DE AB ,即AB 12=DE ∴ 的中位线,ABC △为EF ∵ .12=EF BC ,即BC 12=EF ∴ ABC.∽△DEF ∴△.DF AC =EF BC =DE AB ∴专训2 上的两个三等分点,BC 是边F ,E ∵,DF 接如图,连解:.1 FC.=EF =BE ∴ CD.=AD ∴的中点,AC 是D ∵ 的中位线.ACE △是DF ∴ PE.∥DF ∴AE.12=DF ,且AE ∥DF ∴ .BP BD =BE BF ∴BFD.∽△BEP ∴△ 2PE.=DF ∴PD.=BP ∴2BP.=BD ∴,2BE =BF ∵ DFQ.∠=PAQ ∠,FDQ ∠=APQ ∴∠,AE ∥DF ∵ .AP DF =PQ QD ∴FDQ.∽△APQ ∴△ 3a.=AP ,2a =DF 则,a =PE 设 2.3=DF AP =QD PQ ∴ 2.35=QD PQ BP ∴(第1题)(第2题)G.的延长线于点AE 交AB ∥CG 作C 如图,过点解:.2 G.∠=DAF ∴∠,AB ∥CG ∵ DF.=CD ∴的中点,CF 为D ∵又 ⎩⎨⎧∠DAF =∠G ,∠ADF =∠CDG ,DF =CD ,中,GDC △和ADF △在 CG.=AF ∴.)AAS GDC(≌△ADF ∴△ 2.5=AF AB ∴,23=AF BF ∵ GCE.∽△ABE ∴△CG.∥AB ∵ .52=AB AF =AB CG =BE EC ∴ N.的延长线于点AD 交CF ∥BN 作B 如图,过点证明:.3 NBD.∠=ECD ∠,AE EN =AF FB ∴.CD BD =ED DN ∴NDB.∽△EDC ∴△,BDN ∠=CDE ∵∠又 EN.12=DN =ED ∴,CD =BD ∵ FB.2AF =ED AE ∴.AE 2ED =AF FB ∴(第3题)(第4题),F 于点DP 交AB ∥CF 作C 如图,过点证明:.4 .BD CF =BP CP ∴PBD.∽△PCF ∴△ EFC.∠=ADE ∴∠,CF ∥AD ∵ AED.∠=ADE ∴∠,AE =AD ∵ CF.=EC ∴CEP.∠=EFC ∴∠,CEP ∠=AED ∵∠ .BD EC =BP CP ∴ ,F 于点DE ,交AB ∥CF 作C 过点)方法一(证明:.5 .CD BD =CF BE ∴E.BD ∽△CDF ∴△ CM.=AM ∴边的中点,AC 为M 点∵ MCF.∠=BAC ∴∠,AB ∥CF ∵ CF.=AE ∴CMF.≌△AME ∴△,CMF ∠=AME ∵∠又 .13=AE BE ∴3AE.=BE ∴,AE -AB =BE ,AB 14=AE ∵ 3CD.=D B ,即13=CD BD =AE BE ∴,CD BD =CF BE ∵ 2CD.=BC ∴,CD +BC =BD ∵又 ,F 于点AB ,交DE ∥CF 作C 过点)方法二( .AM AC =AE AF ∴ 2AM.=AC ∴边的中点,AC 为M 点∵又 EF.=AE ∴AF.=2AE ∴ 2.=BF EF ∴,AB 14=AE ∵又专训3 D3. C 2. B 1.一、=(1)解:5.三、 中,ABCD ,证明:在矩形CDE ∽△BCF △;选CDE ∽△DBC ∽△F BC △(2)∠中,BDEF 在矩形90°.=DCE ∠+BCF ∴∠上,EF 在边C ,且点90°=BCD ∠∴,DCE ∠=CBF ∴∠,90°=BCF ∠+CBF ∠中,BCF △Rt 在∴,90°=E ∠=F )答案不唯一CDE.(∽△BCF △ COM.∠=B ∴∠,90°=COM ∠由折叠可知,证明:(1).6 CBA.∽△COM ∴△,ACB ∠=MCO ∠又⎩⎨⎧AB =AD ,∠PAB =∠PAD ,AP =AP ,中,APD △和APB △在 .)SAS APD(≌△APB ∴△ ABP.∠=ADP ∠,PB =DP ∴,APD ≌△APB ①∵△解:(2) ⎩⎨⎧∠FDP =∠EBP ,DP =BP ,∠FPD =∠EPB ,中,BEP △和DFP △在BE.=DF ,PE =PF ∴,)ASA BEP(≌△DFP ∴△ .GD AB=DF FA ∴,FAB ∽△FDG ∴△,AB ∥GD ∵ .32=DG BE ∴,13=BE AB ,12=GD AB ∴,21=FA DF ∵ .DG EB =DP PE ∴,EPB ∽△DPG ∴△,BE ∥DG ∵ x.23=y ∴,x y =32∴,PF =PE ∵ ,6=PB =DP ,4=PE =PF ∴,4=6×23=y 时,6=x 当② ,12=FG 10∴,12=DG AB =FG BF ∴,FAB ∽△FDG ∵△ 5.的长为FG ,故线段5=FG 解得 ,考查了相似三角形、全等三角形和函数知演绎推理本题运用了方法规律:是解题的关键.13=BE AB ,12=DG AB 性的问题.推出识,是一个综合专训4 C3. B 2. D 1.一、 25. 44.二、 ,90°=ABE ∴∠的直径,O ⊙为AB ,B 点相切于DE 与O ∵⊙证明:(1)6.三、∠=BAD ∴∠,90°=BAE ∠+BAD ∴∠,90°=DAE ∵∠又90°.=E ∠+BAE ∴∠ E.AB,8=AC ∵90°.=ACB ∴∠的直径,O ⊙为B A ∵,BC 接如图,连解:(2),E ∠=BAC ∠,90°=ABE ∠=BCA ∵∠又6.=AB2-AC2=BC ∴,10=5×2=.BC AB =AC EB ∴,EAB ∽△ABC ∴△.403=BE∴.610=8EB∴(第6题)(第7题)AB∵90°.=ADB∴∠的直径,O为半圆AB∵OD.如图,连接(1)证明:.7=ODE∴∠,BC⊥DE∵BC.∥OD∴中点,AB为O∵中点.AC为D∴,BC=的切线.O为半圆DE∴,0°9=CED∠,90°=DEB∠=ADB∠又DBA.∠=CBD∴∠,90°=ADB∠,BC=AB∵(2)AB·BE.=2DB,即DBBE=ABDB∴DEB.∽△ADB∴△又因ODA.∠=OAD∠,所以OD=OA如图.因为,OD连接:证明(1).8AE.∥OD所以CAD.∠=ODA∠,所以CAD∠=OAD∠,所以BAC∠平分AD为相切.O与圆EF,所以EF垂直于OD,所以AE垂直于EF又因为ACB∠是直径,所以AB为因BD.=CD则,BC,BD,CD如图,连接解:(2)=AB2-AD2=BD,所以24=AD,6=AB又因为90°.=ADB∠=,所90°=E∠=ADB∠,CAD∠=OAD∠因为2.=CD,所以2=62-(42)2CDE△Rt在.423=DE,所以2DE=642,所以BDDE=ABAD,所以ABD∽△ADE△以DG是矩形,所以CEDG易得四边形.23=22-⎝⎛⎭⎪⎫4232=CD2-DE2=CE中,=GB中,OGB△Rt在.73=23-3=OG,23=DG所以90°.=OGB∠,CE=,所以EF∥BC,所以90°=E∠=ACB∠因为.423=32-⎝⎛⎭⎪⎫732=OB2-OG2+DE=EF所以.1227=DF,所以423DF=733,所以GBDF=OGOD,所以ODF∽△OGB△.64221=1227+423=DF(第8题)(第9题)2.∠=1∴∠,OD =OA ∵OD.图,连接切.证明:如相O ⊙与(1)ED 解:.9DE.⊥OD ∴,DE ⊥AE ∵AE.∥OD ∴3.∠=1∴∠3.∠=2∴∠,CAB ∠平分AD ∵的切线.O ⊙是DE ∴上,O ⊙在D ∵ 2AD -2AB =2BD ,则90°=ADB ∴∠,的直径O ⊙是AB ∵BD.如图,连接(2)∽DFB ∴△,90°=BDF ∠=ADB ∵∠4.∠=2∴∠,2∠=3∠,4∠=3∵∠11.=.145=115-5=DF -AD =AF 则.115=BD2AD =DF ∴,DF BD =BD AD ∴DBA.△ ,BED ∠=BAD ∵∠又90°.=DB A ∴∠直径,的O ⊙是AB ∵证明:(1).10=ABD ∠+DBC ∠=ABD ∠+BAD ∴∠,DBC ∠=BAD ∴∠,DBC ∠=BED ∠的切线.O ⊙是BC ∴,90°=ABC ∴∠,90° ,即CA BC =BC CD ∴,BDC ∽△ABC ∴△,C ∠=C ∠,DBC ∠=BAD ∵∠解:(2),10=CD)·CD +(AD =AC·CD =2BC .10=BC ∴(第11题)90°.=OCP ∴∠PE.⊥OC ∴相切,O ⊙与PE ∵OC.连接如图,证明:(1).11,OC =OA ∵OCA.∠=CAD ∴∠AE.∥OC ∴OCP.∠=90°=AEP ∴∠,PE ⊥AE ∵BAD.∠平分AC ∴OAC.∠=CAD ∴∠OAC.∠=OCA ∴∠ 的直径,O ⊙为AB ∵理由如下:3PB.=B A 数量关系为之间的AB ,PB 解:(2)∵∠ABC.∠=OCB ∴∠,OC =OB ∵90°.=ABC ∠+BAC ∴∠90°.=ACB ∴∠=PC PB ∴PBC.∽△PCA ∴△P.∠=P ∵∠PAC.∠=PCB ∴∠,90°=OCB ∠+PCB 3PB.=AB ∴4PB.=PA ∴2PB.=PC ∴,21=PC PB ∵PB·PA.=2PC ∴.PA PC OCEH,四边形32=AD 12=AH ,则,如图H 于点AD ⊥OH 作O 过点解:(3)。