第二章1工程流体力学[1]
- 格式:ppt
- 大小:457.50 KB
- 文档页数:33
闻建龙主编的《工程流体力学》习题参考答案第一章 绪论1-1 物质是按什么原则分为固体和液体两大类的?解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。
如空气、水等。
而在同等条件下,固体则产生有限的变形。
因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。
与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。
1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么?解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。
流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。
在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm )内的流动。
1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体分别为C 020的水和C 020时密度为3856m kg 的原油时,移动平板所需的力各为多大?题1-3图解:20℃ 水:s Pa ⋅⨯=-3101μ20℃,3/856m kg =ρ, 原油:s Pa ⋅⨯='-3102.7μ水: 233/410416101m N u=⨯⨯=⋅=--δμτN A F 65.14=⨯=⋅=τ油: 233/8.2810416102.7m N u=⨯⨯=⋅'=--δμτ N A F 2.435.18.28=⨯=⋅=τ1-4 在相距mm 40=δ的两平行平板间充满动力粘度s Pa ⋅=7.0μ液体(图1-4),液体中有一边长为mm a 60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律是直线。
pg2r 22gzC外加边界条件确定 C 如:r 0,z 0, p p 0自由液面上某点的铅直坐标:Zs2r2g第二章 流体的主要物理性质 1.密度 ρ = m /VV V1 V P 7.压缩系数 V V体积模量 Kp T V6.体胀系数V V V VT Pdv x9.牛顿内摩擦定律 F Av/h dy动力黏度: 运动黏度重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学 基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体 静压力的计算(压力体)2. 压强差公式 dp( f x dx f y dy f z dz)等压面: dp=03. 重力场中流体的平衡4. 帕斯卡定理p p 0 g z 0 z p 0 gh5. 真空度 p v p a p6. 等加速直线运动容器内液体的相对平衡7. 等角速度旋转容器中液体的相对平衡8. 静止液体作用在平面上的总压力 9. 静止液体作用在曲面上的总压力第三章流体静力学1.1p xp0水平方向的作用力:dF x dF cos ghdAcos ghdA z垂直方向的作用力dF z dF sin ghdAsin ghdA x总压力F F x2F y2tg F F x Fz第四章流体运动学基础1. .欧拉法加速度场简写为当地加速度:迁移加速度( )2. 拉格朗日法:流体质点的运动速度的拉格朗日描述为3. 流线微分方程:4.流量计算:单位时间内通过dA 的微小流量为d qv=udA 通过整个过流断面流量q v dq v udAA平均流速A5. 水力半径:总流的有效截面积与湿周之比R hN dV6.V连续性方程对于定常流动1A1 1= 2A2 2 对于不可压缩流体,1 = 2 =c A1 1=A2 2= qv 7. 动量方程8. 能量方程:. 不考虑与外界热量交换,质量力只有重力的情况定常流动:v n uCSgz p dA9. 伯努利方程(微流):2v gz p常数10. 皮托管测速:v B 不可压缩理想流体在与外界无热交换的条件下)1/22gh1/211.黏性流体总流的伯努利方程1v12a 2gp1z1 p g12v22a z p22g2ghw(不可压缩黏性流体总流伯努利方程)应用范围:重力作用下,不可压粘性流体定常流动任意缓变流截面11.. 总流的动量方程第六章管内流动和水力计算1.沿程能量损失hfl v2d 2g2.局部能量损失h jv22g3.总能量损失h f h j4.对直径为d 的圆截面管道的雷诺数Revd vd临界雷诺数Re cr =2000,小于2000,流动为层流;大于2000,流动为湍流。
第二章 流体主要物理性质❖ 流体可压缩性计算、牛顿内摩擦定律计算、粘度三种表示方法。
1.密度 ρ = m /V2.重度 γ = G /V3.流体密度和重度有以下关系:γ = ρ g 或 ρ = γ/ g4.密度倒数称为比体积,以υ表示υ = 1/ ρ = V/m5.流体相对密度:d = γ流 /γ水 = ρ流 /ρ水6.热膨胀性7.压缩性. 体积压缩率κ8.体积模量9.流体层接触面上内摩擦力10.单位面积上内摩擦力(切应力)(牛顿内摩擦定律)11..动力粘度μ:12.运动粘度ν :ν = μ/ρ13.恩氏粘度°E :°E = t 1 / t 2第三章 流体静力学❖ 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体压强计算、流体静压力计算(压力体)。
1.常见质量力:重力ΔW = Δmg 、直线运动惯性力ΔFI = Δm·a离心惯性力ΔFR = Δm·r ω2 .2.质量力为F 。
:F = m ·am = m (f xi+f yj+f zk)am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度实例:重力场中流体只受到地球引力作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上分量为 fx = 0 , fy = 0 , fz = -mg /m = -g式中负号表示重力加速度g 及坐标轴z 方向相反3流体静压强不是矢量,而是标量,仅是坐标连续函数。
即:p = p (x ,y ,z ),由此得静压强全微分为:z z p y y p x x p p d d d d ∂∂∂∂∂∂++=4.欧拉平衡微分方程式单位质量流体力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力势函数7.重力场中平衡流体质量力势函数积分得:U = -gz + c8.等压 .面微分方程式 .fx d x + fy d y + fz d z = 0 9.流体静力学基本方程对于不可压缩流体,ρ = 常数。
封面作者:Pan Hongliang仅供个人学习第一章流体及其主要物理性质1-1.轻柴油在温度15ºC时相对密度为0.83,求它的密度和重度。
解:4ºC时相对密度:所以,1-2.甘油在温度0ºC时密度为1.26g/cm3,求以国际单位表示的密度和重度。
解:1-3.水的体积弹性系数为1.96×109N/m2,问压强改变多少时,它的体积相对压缩1%?解:1-4.容积4m3的水,温度不变,当压强增加105N/m2时容积减少1000cm3,求该水的体积压缩系数βp和体积弹性系数E。
解:1-5.用200L汽油桶装相对密度为0.70的汽油,罐装时液面上压强为1个大气压,封闭后由于温度变化升高了20ºC,此时汽油的蒸气压为0.18大气压。
若汽油的膨胀系数为0.0006ºC-1,弹性系数为14000kg/cm2。
试计算由于压力及温度变化所增减的体积?问灌桶时每桶最多不超过多少公斤为宜?解:E=E’·g=14000×9.8×104PaΔp=0.18at所以,从初始状态积分到最终状态得:另解:设灌桶时每桶最多不超过V升,则(1大气压=1Kg/cm2)V=197.6升dV t=2.41升dV p=2.52×10-3升G=0.1976×700=138Kg=1352.4N1-6.石油相对密度0.9,粘度28cP,求运动粘度为多少m2/s?解:1-7.相对密度0.89的石油,温度20ºC时的运动粘度为40cSt,求动力粘度为多少?解:ν=40cSt=0.4St=0.4×10-4m2/sμ=νρ=0.4×10-4×890=3.56×10-2 Pa·s1-8.图示一平板在油面上作水平运动,已知运动速度u=1m/s,板与固定边界的距离δ=1,油的动力粘度μ=1.147Pa·s,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:1-9.如图所示活塞油缸,其直径D=12cm,活塞直径d=11.96cm,活塞长度L=14cm,油的μ=0.65P,当活塞移动速度为0.5m/s时,试求拉回活塞所需的力F=?解:A=πdL , μ=0.65P=0.065 Pa·s , Δu=0.5m/s , Δy=(D-d)/2第二章流体静力学2-1. 如图所示的U形管中装有水银与水,试求:(1)A、C两点的绝对压力及表压各为多少?(2)A、B两点的高度差为多少?解:①p A表=γh水=0.3mH2O=0.03at=0.3×9800Pa=2940Pap A绝=p a+ p A表=(10+0.3)mH2O=1.03at=10.3×9800Pa=100940Pap C表=γhg h hg+ p A表=0.1×13.6m H2O+0.3mH2O=1.66mH2O=0.166at=1.66×9800Pa=16268Pap C绝=p a+ p C表=(10+1.66)mH2O=11.66 mH2O=1.166at=11.66×9800Pa=114268Pa② 30c mH2O=13.6h cmH2Oh=30/13.6cm=2.2cm题2-2 题2-32-2.水银压力计装置如图。
课后答案网 工程流体力学第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yuAT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。