层序地层学
- 格式:wps
- 大小:29.50 KB
- 文档页数:4
层序地层学(一)、层序1.层序:层序是由不整合面或与其对应的整合面作为边界的、一个相对整合的、具有内在联系的地层序列,是层序地层学分析的基本地层单元。
2.巨层序或大层序:它是比层序大得多的最高一级层序,可以与旋回层序中的一级旋回对应,包括若干个层序。
在层序地层分级体系中应为一级层序。
3.超层序:超层序是比层序大的二级层序,包括几个层序,一般认为超层序应是比巨层序小比层序大的一类层序,是与二级旋回相对应的二级层序。
4.构造层序:构造层序是以古构造运动界面为边界的一类层序。
构造层序与巨层序或大层序相当,是一级层序。
5.层序地层学:是根据地震、钻井及露头资料,结合有关的沉积环境及古地理解释,对地层格架进行综合解释的一门科学。
6.不整合面:是一个将新老地层分开的界面,具有明显的沉积间断。
7.可容空间:由海平面上升或地壳下沉或这两种作用联合而形成的沉积物可以沉积的空间场所。
指沉积物表面与沉积基准面之间或供沉积物充填的所有空间。
8.海泛面:是一个将新老地层分开,其上下水深明显地急剧变化的一个界面。
初次海泛面:是Ⅰ型层序内部初次跨越陆架坡折的海泛面是水位体系域和海进体系域的物理界面。
最大海泛面:指的是最大海侵时期形成密集段或下超面,在盆地内分布范围最大,为划分海侵体系域和高水位体系域的界面。
河流平衡剖面:即河流中的沉积基准面,当河床底部与该面重合,沉积作用达到动态平衡,沉积物总量等于水流冲刷掉的物质总量;当河床底部高于该面,向下侵蚀;当河床底部低于该面,发生沉积。
9.全球海平面:全球海平面指一个固定的基准面点,从地心到海表面的测量值。
这个测量值随洋盆和海水的体积变化而发生变化,与局部因素无关10.相对海平面:相对海平面是指海平面与局部基准面如基底之间的测量值。
11.密集段或凝缩段、缓慢沉积段(condensed section):是由薄层的深海(湖)沉积物所组成的地层,这类沉积物是在准层序逐步向岸推进,而盆地又缺少陆源沉积物的时期沉积的。
层序地层学在油气勘探领域中的应用引言层序地层学在油气勘探中扮演着重要的角色。
通过对地层的层序性质进行深入研究,不仅可以帮助地质学家更好地理解地层的时空分布规律,还能够指导油气勘探的开展。
本文将从层序地层学的概念入手,深入探讨其在油气勘探领域中的应用,并共享个人观点和理解。
一、层序地层学概念及基本原理1. 层序地层学的概念层序地层学是地层地质学的一个重要分支,研究地层的堆积和发育规律,以时间和空间为基础,探讨地层的垂直序列和水平关系,揭示地层的层序性质。
通过对地层的层序性质进行认真研究,可以揭示地层的堆积规律、沉积环境和演化历史,为油气勘探提供可靠的地质依据。
2. 层序地层学的基本原理地层的分层规律不仅受沉积条件、构造运动和物源质量等因素控制,还受海平面波动和气候变化等因素的影响。
层序地层学通过对不同层序特征的分析,可以揭示这些影响因素,从而推断出地层的沉积环境和演化过程。
在油气勘探中,这些信息对于确定有利油气形成和富集区具有重要的指导意义。
二、层序地层学在油气勘探中的应用1. 层序地层学与油气勘探的关系油气勘探的关键在于找准有利的油气富集区,而地层的层序性质往往是决定油气勘探目标的关键。
通过对地层的层序特征进行认真研究,可以揭示油气富集区的空间分布规律和聚集规律,指导油气勘探的开展,提高勘探的成功率。
2. 层序地层学在勘探目标的确定中的应用层序地层学通过对地层层序特征的识别和解释,可以帮助地质学家确定有利的油气勘探目标。
特别是在复杂构造、复杂沉积盆地和难以区分的地质构造中,层序地层学的应用尤为突出,对于确立勘探目标和提高勘探效果具有重要的意义。
3. 层序地层学在勘探实践中的案例分析通过对全球范围内的勘探实践案例进行分析,可以发现层序地层学在油气勘探中的重要作用。
在北美地区的页岩气勘探中,层序地层学对于确定页岩气富集区的空间分布和富集规律起到了关键作用,为页岩气的大规模开发提供了可靠的地质依据。
三、个人观点和理解从事多年的油气勘探工作,我深切体会到层序地层学在勘探中的重要作用。
层序地层学层序地层学:是根据露头、钻井、测井和地震资料,结合有关沉积环境和岩相古地理解释,对地层层序格架进行地质综和解释的地层学分支。
层序:是一套相对整一的、成因上存在联系的、顶底以不整合面或与之相对应的整合面为界的地层单元。
准层序:是以一个海泛面或与之相对应的面为界、有成因上有联系的层或层组构成的相对整合序列。
准层序组:是指由成因相关的一套准层序构成的、具特征堆砌样式的一种地层序列,其边界为一个重要的海泛面和与之可对比的面,有时它可以和层序边界一致。
不整合:是一个将新老地层分开的界面,沿着这个界面有证据表明存在指示重大沉积间断的陆上侵消截或陆上暴露现象。
缓慢沉积段(凝缩层):指沉积速率很慢(1—10mm/1000a)、厚度很薄、富含有机质、缺乏陆源物质的半深海和深海沉积物,是在海平面相对上升到最大、海侵最大时期在陆棚、陆坡和盆地平原地区沉积形成的。
体系域:指一系列同期沉积体系的集合体。
沉积体系:指具有成因联系的、相的三维空间。
海泛面:是一个新老底层的分界面。
他们常常是平整的,仅有米级的地形起伏,但穿过这个界面会有证据表明水深的突然增加。
可容空间:指供沉积物潜在堆积的空间。
相对海平面:指海平面与局部基准面之间的测量值。
准层序:是一层序地层分析中最基本的沉寂单元,是一个一海泛面或与之相对应的面为界的、成因上有联系的层或层组构成的相对整合序列。
准层序的边界:是一个海泛面及与之相关的界面。
大多数准层序边界海泛面均存在着深水沉积与浅水沉积的一个截然界面。
准层序沉积特征:是一个向上沉积水体不断变浅的序列,层厚向上增大,生物扰动向上减少,沉积相向上指示水深变浅,三维空间上表现简单的冲刷和变粗的趋势。
准层序形成环境:一个完整准层序的形成是与海平面相对升降变化密切相关的。
在准层序形成的第一阶段,沉积物的沉积速率大与海平面相对上升速率或海平面处于相对下降阶段。
此时沉积物不断向前推进,较浅水沉积相上覆在相对较深水沉积上,形成自下而上沉积水体由深变浅的准层序沉积序列。
地层学——层序地层概念简介译者:王立群层序地层学是试尝关联相对海平面变化到沉积层的一门地质学方面的相对较新的分支。
该方法的基础是根据等时界面的识别进行地层作图(例如:地下不整合面、最大洪泛面),因此其基本点是放在年代地层框架上。
层序地层学是校正只强调岩性特征相似性而没有时间意义的岩性地层学方法的最好选择。
名称中的“层序”涉及旋回沉积,而术语中的“地层学”涉及如下地质过程:1、沉积物形成的地质过程。
2、透过地球表面的时空,这些沉积物如何变化的过程。
目录:1、重要的界面1—1、层序界面1—2、准层序界面2、准层序和准层序组的类型3、地质时期的海平面4、经济意义5、参考文献1、重要的界面1—1、层序界面层序边界被认为是最重要的界面。
层序边界被定义为不整合面或与其相关的整合面。
多期河流砂岩体常常充填与层序边界相关联的海平面下降形成的深切河谷。
层序边界上的深切河谷在侧向上可与河间地区,形成于深切河谷边缘的古土壤相对比。
河谷充填在成因上与先期形成的下覆沉积系统无关。
根据多期砂岩沉积的其它类型有四种区别深切河谷充填的标准:1、比河谷内单河道侵蚀面分布更广泛的高侵面,在区域上可广泛对比。
2、在与下覆地层单元相对比时,相组合反映出盆地在岩相上向前移动。
3、河谷侵蚀面侵蚀掉前期形成的体系域并且在海岸产生时间间隔。
4、增加的河道充填和向上变细的剖面或反映增加可容空间的河流系统特征的变化。
和深切河谷相关的砂岩体是良好的储集层。
目前在这些岩体的对比和分布研究上还存在问题。
层序地层学原理和重要界面的识别有助于解决这些问题。
1—2、准层序界面次要的界面是准层序界面,不过也有人建议描述准层序边界的洪泛面与层序边界相比在侧向上分布更为广泛。
这是因为海岸平原与内陆架相比其倾斜度低的原因。
准层序边界可以用界面上的物理和化学属性的差别相区别,它们是:地层水的含盐度、碳氢化合物的性质、孔隙度、压缩速率和矿物学特征。
准层序边界不阻止油气的聚集,但是它可以抑制储层垂向上的联系。
层序地层学层序地层学是地层学的一个分支,是根据地震、钻井和露头资料进行地层分布型式、沉积环境和岩相综合解释的一门科学。
人们发现,在同一时期的、情况各异的许多沉积盆地内发育着的地层形式,说明存在着一种有效的全球控制因素,这种因素即是全球海平面变化。
P.R.Vail等(1977)曾提出了这样一种观点:大多数地表地质学家普遍见到的旋回性沉积作用基本上或完全受全球范围的海平面升降变化的控制。
层序地层学的产生起源于Mac Jeryey在70年代后期的研究成果,他在数学上模拟和定量表示了产生全球旋回曲线的海平面、构造沉降和物源供给之间的相互关系。
这项工作显示出层序地层学以统一思想对地层学和盆地演化进行研究所产生的巨大潜力。
然而,层序地层学成为独立的学科形成于80年代后期,是由P.R.Vail、J.B.Samgree和J.C.Van Wagoner等学者提出并完善的。
P.R.Vail等(1987)提出的层序地层学概念及其有关沉积模式,是以海洋环境为背景,针对被动大陆边缘提出的。
层序地层学的核心部分是研究全球海平面升降变化对沉积作用的控制。
包括对大陆边缘碎屑沉积作用的控制和对大陆边缘碳酸盐沉积作用的控制。
层序及其内部组成部分体系域是全球海平面升降、地壳沉降以及沉积物供给之间相互作用的产物。
全球海平面升降和构造沉降共同作用的结果,引起海平面的相对变化。
在全球海平面升降的控制下,海平面的相对变化速度是碎屑沉积地层型式和岩相分布的主要控制因素;在长期构造运动的背景下,海平面的相对变化控制碳酸盐沉积地层型式和岩相分布。
根据上述这些相互作用可以建立沉积模式,用以检验人们的认识,预测沉积地层关系和岩相,进行全球不同地域、不同时代地层间的对比。
因此,层序地层学是从四维时空上来认识沉积记录,并将其和全球海平面的周期性变化联系起来,认为沉积记录是全球海平面变化与地壳沉降和沉积物供给的函数,从而增强了全球不同地域、不同时代地层间的可对比性和沉积相的可预测性,将沉积学和地层学推向了一个新的阶段。
1.论述层序地层学发展的主要学派,并阐述他们之间的关键不同点,着重从其形成机制、模式和研究方法论述。
1. 高分辨率层序地层学:是以Cross领导的科罗拉多矿业学院成因地层研究组为代表提出的,邓洪文教授首次将该理论体系在国内作了较为详细的介绍,随后引起了许多地质学家的重视,并逐步在实践中得到应用。
高分辨率层序地层学就是利用高分辨率地震剖面、测井、岩心和露头资料,通过对层序地层基准面的分析,运用精细的层序地层划分对比技术,建立高分辨率层序地层框架,由于时间分辨率的增加,地层预测的准确性大为提高,并能为油藏数值模拟提供可靠的岩石物理模型。
1.理论基础:高分辨率层序地层学理论的核心是:在基准面变化过程中,由于可容纳空间与沉积物通量比值(A/S)的变化,相同沉积体系域或相域中发生沉积物的重新分配作用,导致沉积物的保存程度、地层堆积样式、相序、相类型及岩石结构发生变化。
这些变化是基准面旋回中所处的位置和可容纳空间的函数。
基本理论包括基准面原理、体积划分原理、相分异原理和旋回等时对比法则。
其理论的关键点是基准面变化控制了层序地层的发育。
1.1 高分辨率层序地层学基准面旋回简介:作为对一个基准面旋回变化过程中形成的沉积体进行研究的分支学科,高分辨率层序地层学研究的基本单元是成因层序,即以等时面为界的时间地层单元,研究的基本原理是地层基准面或平衡剖面理论。
地层基准面为一抽象的、动态的非物理界面它是海平面、古构造(区域、局部)、古气候、古物源及沉积物供给速率、古地理等多种影响因子的函数。
基准面位置运动轨迹及方向、波动振幅及频率随时间而变化,并能准确地、动态地反映空间及沉积过程。
基准面在变化中总具有向其幅度的最大值或最小值单向移动的趋势,构成一个完整的上升下降旋回。
一个基准面旋回是等时的,在一个基准面旋回变化过程中(可理解为时代域)保存下来的一套岩石为一个成因地层单元,即成因层序,它以时间面为界,因而为一个时间地层单元。
层序地层学原理层序地层学呀,就像是地球给我们留下的一本超级厚的故事书,每一页都藏着好多秘密呢。
咱先来说说啥是层序地层学。
简单来讲,它就是研究地层的一门学问,不过这个研究可不像我们表面看到的那样,只是看看地层有几层、是什么石头组成的这么简单。
它就像一个超级侦探,要把地层里隐藏的时间、环境变化等各种线索都找出来。
你看,地层一层一层地叠在那儿,就像是地球历史的千层饼。
每一层都像是一个时间胶囊,记录着当时地球上发生的事情。
比如说,有的层里可能有好多贝壳化石,那就说明当时这个地方可能是海洋环境,而且这些贝壳还能告诉我们当时海洋里的生态情况,是不是超级酷?层序地层学里有个很重要的概念叫层序。
这个层序啊,可不是随随便便划分的。
它是根据地层中的一些特定的界面和组合来确定的。
就好比我们把这个千层饼按照不同的图案或者馅料来分成一块一块的。
这些层序的界面呢,有的可能是因为海平面突然上升或者下降形成的。
想象一下,海平面下降的时候,原本在海底的地方可能就会暴露出来,就会形成一种特殊的地层界面。
这就像是大海突然退潮,沙滩上会露出一些之前在水下的东西一样。
那层序地层学是怎么知道地球过去的环境变化的呢?这就涉及到地层里的岩石类型和化石啦。
比如说,如果地层里有很厚的砂岩,那可能说明当时是河流比较活跃的时期,河流把沙子带到这里堆积起来。
要是有石灰岩呢,很大概率当时是在浅海环境,因为石灰岩常常是在海里由生物的骨骼和一些化学沉淀形成的。
而化石就更有趣了,就像前面提到的贝壳化石。
如果发现了一些热带地区特有的化石出现在现在比较寒冷的地方,那就说明这个地方过去的气候和现在可不一样,可能曾经是很温暖的呢。
层序地层学还有一个很厉害的地方,就是它可以帮助我们找石油等资源哦。
石油都喜欢藏在一些特定的地层里。
通过层序地层学的研究,我们就能知道哪些地层可能有石油的“藏身之处”。
就像是我们知道了宝藏的地图一样。
科学家们根据地层的层序、岩石的特性等,在那些可能的地方进行勘探,说不定就能找到大油田呢。
一.名词解释1. 层序地层学:(Sequence Stratigraphy)研究以不整和面或与之相对应的整和面为边界的年代地层格架中具有成因联系的、旋回岩性序列间相互关联的地层学分支学科。
2. 层序:(Sequence)一套相对整一的、成因上存在联系的、顶底以不整和面或与之相对应的整和面为界的地层单元。
3. I型层序边界面:一个区域型不整合界面,是全球海平面下降速度大于沉积滨线坡折带处盆地沉降速度时产生的。
即I型层序界面是在沉积滨线坡折带处,由海平面相对下降产生。
4. II型层序边界面:全球海平面下降速度小于沉积滨线坡折带处盆地沉降速度时产生的,在沉积滨线坡折带处未发生海平面的相对下降。
5. I型层序:底部以I型层序界面为界,顶部以I型层序或II型层序界面为界的层序。
6. II型层序:底部以II型层序界面为界,顶部以I型层序或II型层序界面为界的层序。
7. 沉积滨线坡折带:(Depositional shoreline break)陆架剖面上的一个位置,是沉积作用活动的地形坡折,在此坡折向陆方向,沉积表面接近基准面,而向海方向沉积表面低于基准面。
8.陆棚坡折带:(Shelf-break)大陆架与大陆斜坡之间的过渡地带。
9. 体系域:(Systems tract)一系列同期沉积体系的集合体。
10. 低位体系域: (Lowstand systems tract,简称LST) I型层序中位置最低、沉积最老的体系域,是在相对海平面下降到最低点并且开始缓慢上升时期形成的。
在具陆棚坡折的深水盆地的沉积背景中,低位体系域是由海平面相对下降时形成的盆底扇、斜坡扇和海平面相对上升时形成的低位前积楔状体以及河流深切谷充填物组成的。
低位体系域以初次海泛面为顶界,其上为海进体系域。
11. 海进体系域:(Transgressive systems tract,简称TST):是I型和II型层序中部的体系域,是在全球海平面迅速上升与构造沉降共同产生的海平面相对上升时期形成的,由一系列向陆推进的退积准层序组成,沉积作用缓慢。
层序地层学是研究旋回式、成因上有联系的、以侵蚀面或者与其可以对比的整合面为界的年代地层格架,以及沉积层序内部地层、岩相分布模式的地层学分支学科。
层序地层学通过对地震、测井和露头资料的分析,研究在构造运动、海面升降、沉积物供应和气候等因素控制下,造成相对海平面的升降变化及其与地层层序、层序内部不同级次单位的划分、分布规律;研究其相互之间的成因联系、界面特征和相带分布。
以建立更精确的全球性地层年代对比、定量解释地层沉积史和更科学地进行油藏以及其他沉积矿产的钻前预测。
层序的基本概念在18世纪晚期即已提出,认为地层的顶、底界是不整合的单位。
但第一次明确提出层序一词,并用于北美大陆古生代地层划分的是斯洛斯。
到了20世纪50年代后期,美国地质学家韦尔等,在研究了大量资料的基础上,于1965年提出了第一代的全球海平面相对变化曲线和地震地层学基本原理,成功地解决了北海盆地的中生代地层划分,引起了石油地质界的重视,并于1977年出版了《地震地层学在油气勘探中的应用》一书。
它标志着地震地层学的诞生和层序地层学的奠基。
1987年,美国哈克、韦尔、哈登博尔等,在总结各项成果的基础上,提出第二代海平面相对变化曲线,并系统地提出层序地层学的基本理论与概念。
出版了《层序地层学原理》,它标志着层序地层学进入成熟和蓬勃发展阶段。
层序地层学是在地震地层学的基础上发展起来的,它概括了地震地层学的基本概念和方法,并综合了生物地层学、同位素地层学、磁性地层学、沉积学和构造地质学的最新成果。
其基本原理是构造运动、全球绝对海平面的变化和沉积物供应速度综合作用的结果,产生了地层记录,也可称作地层信号。
这些记录反映了上述诸作用的规模、强弱、持续时间和影响范围。
其中,构造作用与海平面变化的结合,引起了全球性相对海平面变化,它控制了沉积物形成的潜在空间。
构造作用与气候变化的结合,控制了沉积物的类型和沉积数量,以及可容纳空间中被沉积物充填的比例。
而河流和海洋环境中的沉积作用,又由于水流与地形和水深间的相互影响而引起不同的岩相分布。
层序地层学层序地层学是一门关于地球历史和地质结构的学科,也被称为地层学。
它研究地球表面各个层次的形成、演变、叠置、形态、性质性质和含矿条件等问题。
层序地层学是地质学中的一支重要学科,通过对地质历史进行层序分析,揭示出地球历史的演化过程和构造变化规律,对于理解地球演化史、指导矿产资源勘探开发、支持地质工程和环境保护等具有重要的意义。
下面是层序地层学的详细介绍。
一、层序地层学的概述层序地层学的研究对象是地球表层及其下部岩石的垂直柱状截面(地层柱)、水平展布面(地层露头)、空间分布(地层相)和时空演化过程。
它研究的目的是根据岩性、结构、古生物化石、古地理和特征地质事件等方面的特征,建立地层序列和地层层位,随着研究范围的不同,可以分为区域层序分析、盆地地层学、海相地层学、非海相地层学、构造地层学等。
层序地层学的研究方法主要包括岩石与古生物学、构造地层学、地震地层学、地球化学等方面的技术手段,通过对各种地质现象进行分析和比较,以正确的地图解读和理解,建立真实的地质模型。
二、层序地层学的研究目的和意义1. 研究地球历史和地质构造演化层序地层学的一个主要目的是了解地球历史和地质构造演化。
地球历史是地层学的主要内容之一,通过层次系统对地球历史进行分段和分类,对过去地球环境的演化和特征进行研究,可以推断出古环境、古地理、古气候和地球演化史的重要信息。
2. 指导矿产资源的勘探和开发层序地层学还可以指导矿产资源的勘探和开发。
通过对地层中各种矿产赋存环境、古地理环境和矿床类型的研究,可以确定矿床的分布规律和含矿性质的特征,从而提高矿床的勘探效果和开采利用效率。
3. 支持地质工程和环境保护层序地层学还可以支持地质工程和环境保护。
地层信息可以为工程地质勘察、工程建设和水文地质调查等提供有力的支持,帮助工程师设计科学合理的工程方案,为环境保护、资源可持续性利用和人类生存提供保障。
三、层序地层学的基本概念1. 地层地层是以一定标志为界限所划分出来的,具有一定厚度和广泛垂直分布的自然地质单元。
层序地层学地理学学科
《层序地层学》是一门涉及地质结构、矿物学、地层结构的地的理学科。
随着地质年代学的发展,在19世纪,层序地层学开始成为独特的学科,成为地球科学中的一个重要分支。
层序地层学也称作“层序地层结构学”。
层序地层学主要研究地壳的历史演变,如形成地层的物质来源,探究岩石构成的演变过程、层序的历史发展以及其所表示的地质年代的研究。
为了更好地识别和分析地层,研究者需要运用各种实验和分析技术,如岩石薄片、地壳测绘、地球物理、地球化学等,来分析和揭示岩石的层序特征。
层序地层学在识别油气藏和矿产资源中有着重要的作用。
准确识别目标油气藏或矿产资源所在的层序,是油气勘探与矿产勘探中的基础性工作。
层序地层学研究成果,可以帮助油气勘探者更有效的探测油气藏和矿产资源,从而更快的获得收益和利润。
层序地层学是一门复杂的学科,它综合了地质学、地球物理、地球化学等多学科的知识,涉及面广泛,内容繁杂,也是地质工程学科中的重要组成部分。
通过系统交叉学科研究、层序地层学研究,研究者可以获得更深入的了解地壳的历史演化及其表示的地质信息。
层序地层学也可以用于地质教育和地质科普,帮助地质教师和科普人员熟悉地质历史的演化过程及其表象,因此可以发挥重要作用。
在地质教学中,层序地层学可以普及科学知识,可以帮助学生更好地理解地质学中自然现象,从而更好地了解地质历史及其表示的地质信
息。
因此,层序地层学在地质科学研究中具有十分重要的意义。
通过系统的层序地层学研究,可以更好地了解地质历史的演化,发挥其在油气勘探和矿产勘探中的作用,也可以帮助更好地普及科学知识,推动地质科学进步。
层序地层学总结理论部分:1层序地层学的基本概念层序:一套相对整一的、成因上有联系的地层,顶、底以不整合和可以与之对比的整合为界所限定的三维沉积组合体。
体系域;同一时期内具成因联系的沉积体系组合,为层序构成单元。
每个体系域都解释为与全球海水面变化曲线的某一特定间段。
基准面:分割侵蚀作用与沉积作用的理论均衡面。
“在该面之上,沉积物不能停留;在该面之下,可以发生沉积作用和埋藏作用”。
可容纳空间;指可供沉积物堆积的空间,是海平面升降变化和构造沉降二者的函数。
(=全球海面变化增量+盆地沉降增量+沉积压实增量)最大海泛面;一个层序中最大海侵时形成的界面,是海侵体系域与高位体系域的分界面,是海侵体系域的顶界面并被上覆的高位体系域下超。
密集段:指在极缓速度下沉积的地层段,一般很薄,缺乏陆源物质,发育于海平面相对上升到最大,海岸线海侵最大时期,沉积于陆架、陆坡和盆地平原地区。
其代表大陆边缘饥饿性沉积时期内的缓慢沉积作用,并且能够与下超面相对应。
2其他概念及知识点层序地层学:研究以侵蚀面或无沉积作用面、或者与之可以对比的整合面为界的、重复的、成因上有联系的地层的年代地层框架内岩石间的关系。
准层序;由相对整合、成因上相关的层或层组所组成的序列,以海(湖)泛面和与之可以对比的面为界。
相当于四级或五级沉积旋回。
准层序组;由成因上相关的若干小层序所组成的序列,其垂向上构成一个特征的叠加型式。
准层序组内的各小层序的叠加型式有前积、退积和加积三种。
不整合:一个分开新老地层的界面,沿着这个面存在陆上侵蚀削截(在某些地区为可与之对比的海底侵蚀面)的证据,或者存在明确重要沉积间断的陆上暴露的证据,并具有的明确的沉积间断。
Ⅰ型不整合;发育于快速的海平面下降、更迅速的构造沉降期。
海岸线可能移至陆架边缘,伴随着陆架下切谷的发育和海底峡谷的深切作用,陆表遭受广泛的侵蚀作用。
碎屑岩块沿着峡谷体系被搬运至陆架斜坡的底部,形成了广泛的低水位体系域。
层序地层学原理及应用层序地层学是一种研究地层堆积规律的学科,它通过分析和解释地层中不同岩性、沉积体系和古地理环境的特征,揭示地球历史的演变和沉积作用的原理。
层序地层学的原理和应用在油气勘探、水文地质、环境地质等领域具有重要意义。
一、层序地层学的原理:层序地层学主要包括沉积相、海平面变化及沉积体系等原理。
1. 沉积相原理:不同沉积相的岩性和沉积特征可以反映不同的沉积环境和沉积作用。
通过对沉积相的研究,可以揭示地层中不同地区和时期的沉积环境变化,从而推测地层的堆积规律和古地理演化。
2. 海平面变化原理:根据全球的海平面变化曲线以及沉积序列中的海侵和海退相特征,可以推测地层的相对时代和地层联系。
在地层划分和对比中,海平面变化起着重要的作用,可以确认地层的对应关系。
3. 沉积体系原理:沉积体系是指在特定沉积环境中形成的具有一定规模和岩性组合的沉积单元。
通过对沉积体系的分析,可以揭示沉积环境的变化和沉积作用的机制,进而推测地层的层序关系。
二、层序地层学的应用:层序地层学在下面几个方面有重要的应用:1. 油气勘探:层序地层学可以揭示不同沉积体系的油气储集规律和分布特征。
通过对沉积相、海平面变化和沉积体系的分析,可以确定含油气层的位置、分布范围和储集类型,为油气勘探提供重要的依据。
2. 水文地质:层序地层学可以揭示地下水的流动和分布规律。
通过对地层的划分,可以确定地下水的赋存状态和供水能力,为地下水资源的开发利用提供科学依据。
3. 工程地质:层序地层学可以揭示地质灾害的形成机制和演化规律。
通过对地层的分析,可以确定不同地层的稳定性和工程地质条件,为工程建设和地质灾害防治提供参考。
4. 环境地质:层序地层学可以揭示环境演变和气候变化的历史。
通过对地层的分析,可以了解过去地球环境的变化和人类活动对环境的影响,为环境保护和生态建设提供参考。
综上所述,层序地层学通过分析和解释地层中不同岩性、沉积体系和古地理环境的特征,揭示地球历史的演变和沉积作用的原理。
层序地层学的基本概念层序、体系域、与准层序概念之异同与比较一.层序层序指一套相对整一的、成因上有联系的、其顶底面以不整合面或者与这些不整合面可以对比的整合面为界的地层(V ail,1977)。
层序是在海平面升降周期曲线上相邻的两个下降速度转折点之间沉积的,它由一套体系域所组成。
依据层序单元底部界面(不整合类型),层序可分为两种:I型层序和II型层序。
我国陆相沉积盆地中,大多数地层发育的是I型层序,国外的海相层序也是如此。
1.1 I型层序I型层序底部以I型层序边界为界,顶部以I型或II型层序边界为界。
I型层序边界(图1-1)以与河流复壮作用、岩相的向盆地方向转移、海岸上超的向下转移以及上覆地层的上超伴生的陆上暴漏及同时发生的陆上侵蚀作用为特征。
作为岩相向盆地方向转移的结果,非海相或很浅的海相岩层,如层序边界之上的辫状河道或河口湾砂岩,可能直接盖在界面以下的较深水海相岩层。
如下临滨砂岩或者陆架泥岩之上,而没有穿插着在中间沉积环境中沉积的岩石。
I型层序界面经解释为全球海面下降速度超过在沉积滨线坡折带处盆地沉降速度,在该处产生海面相对下降时形成的,即海面相对下降超过推覆坡折点后形成的层序。
图1-1 I型层序1.2 II型层序II型层序底部以II型层序边界为界,顶部以I型或II型层序边界为界。
II型层序边界(图1-2)的特征沉积滨岸线坡折带朝陆地方向的水上和暴露和海岸上超的向下转移;然而,它既没有与河道回春所用伴生的陆上侵蚀,也没有岩相的朝盆地方向转移。
沉积滨线坡折带朝陆地方向上覆地层的上超,也是II型层序边界的特征。
II型层序边界是全球海面下降速度小于沉积滨线坡折带处盆地沉降速度时形成的,因此在这个位置上没有发生海平面相对下降。
图1-2 II型不整合二、体系域体系域是指一系列同期沉积体系的组合(systems tract)。
体系域是一个三维沉积单元,是由一系列具有内在成因联系的、同时代的沉积体系所组成的地层单元。
层序地层学层序地层学( sequence stratigraphy):研究旋回式的、成因上有联系的、以侵蚀面( 或无沉积作用面) 或者与其可以对比的整合面为界的年代地层格架, 以及沉积层序内部地层、岩相分布模式的学科,是地层学的分支学科。
——就是根据露头、钻测井和地震资料,结合有关沉积环境和岩相古地理解释,对地层层序格架进行地质综合解释的地层学分支学科。
曲线对比的共同点:1、突变界面2、沉积旋回3、沉积背景第一章绪论第一节层序地层学的形成和发展一、层序地层学的萌芽阶段——概念萌芽阶段(1949-1977)20世纪70年代以前,主要建立了层序地层学赖以发展的地质基础,包括以生物地层学、岩石地层学、年代地层学及动力地貌学为依据建立的一些层序、旋回及均衡剖面理论等。
1、地质学的核心-地层学;地层学的核心——国际地层表(或国际地质年代表)成了讨论任何与沉积地质学有关问题的准绳和尺度。
2、国际地层表的根本问题:①地层表中各代、纪、世、期的命名没有反映出各地质时代的地质特征和它们内在成因联系,存在人为的主观因素。
部分“系”是两分的,部分“系”是三分的。
②地层划分指南中提出的生物地层、年代地层和岩石地层是一个三元分类系统。
没有把此三元分类系统统一到带有纵向成因演化特征的“年代地层单元”这一最根本的客观标准上3、层序地层学的诞生和发展首先得益于“层序”概念的提出。
1)Hutton (1788)首次指出“不整合面”是区分隆起、剥蚀和沉积旋回的物理界面。
2) Lyell和Agassiz(1835,1840)提出的冰川理论中就初步讨论了海平面变化与构造作用之间的关系;3)Suess (1906)发展了冰川理论并进一步讨论了海平面升降与沉积物上超和下超之间的关系。
4)Chamberlin (1909)论述了地壳运动控制了世界范围内海平面变化。
从这个意义上说,可以认为Chamberlin 是当代层序地层学的先驱。
4、层序的概念:“层序是以主要区域不整合为边界的地层集合体”二、地震地层学形成发展阶段——孕育阶段(1977-1988)1、新理论和新方法的出现1) 精确定年方法:同位素年代定年;古地磁测量定年;超微生物分带定年2)板块构造理论发展成熟——深海钻探计划(ODP)的实施(1)地球物理和盆地分析方法去分析地壳的垂向升降、横向伸缩以及各种构造活动、(2)火山活动、重大地质事件发生的时代和规模(3)不同板块演化阶段和不同板块部位发育不同沉积类型组合3)古地理背景研究古沉积:沉积体系的概念和地质与地球物理资料研究古水深:沉积岩性、古生态学、特殊矿物古气候:孢粉组合、沉积岩性以及颜色古水温和古盐度:碳氧同位素、微量元素和包裹体4)高分辨率数字地震勘探技术的发展地质学家可以得到比较精确的、能够反映地下地层形态、岩性、物性、流体性质的不同维数的图像。
一、名词解释1、层序地层学:层序地层学是在地震地层学基础上发展起来的一门相对新兴的地层学分支学科,研究以侵蚀面或无沉积作用面、或者与之可以对比的整合面为界的、重复的、成因上有联系的地层的年代地层框架内岩石间的关系的学科。
2、地震地层学:是根据地震资料总的地震特征来划分沉积层序,分析沉积相和沉积环境,进一步预测沉积盆地的有利油气聚集带的一门学科。
是一门利用地震资料来研究地层和沉积相的地学分支学科。
它是地球物理学与地层学概念、地震技术与沉积学理论结合的新范畴。
3、层序:是一套相对整一的、成因上有联系的、其顶、底面以不整合面或与这些不整合面可以对比的整合面为界的地层。
层序是对应于海面升降周期曲线上相临的两个下降速度转折点(翼拐点)之间沉积的,它由一套体系域组成。
是层序地层学研究的基本单元。
4、凝缩层:又称浓缩层、密集段、缓慢沉积段,以沉积速率极低为特征的一种薄的海(湖)相沉积地层层段(沉积速率小于10-100mm/万年),是在相对海面上升到最大、水域扩大最大时期(海岸线海侵最大时期)在外陆架、陆坡和盆地底部沉积的沉积物。
一般由厚度很薄的、缺乏陆源物质的半深海和深海沉积物组成5、超覆:当相对海(湖)平面上升时,沉积盆地的水体逐渐扩大,沉积范围也逐渐扩大,在盆地的边缘地带,越来越新的沉积地层依次向陆地方向扩展,逐渐超越下面的较老地层,直接覆盖于盆地边缘陆地的剥蚀面上,形成不整合接触,称为超覆。
6、退覆:当相对海(湖)平面下降时,部分海(湖)水退出陆地,陆地面积相对扩大,海水或湖水面积相对缩小,即海(湖)退。
在地层垂直剖面上,自下而上沉积物粒度由细变粗;由于水体面积越来越小,在盆地边缘新形成的岩层分布面积小于老地层面积,从而形成了退覆现象。
7、基准面:分隔沉积区和剥蚀区的物理面。
8、基准面旋回:地层基准面并不是一个完全固定不变的界面,它在变化过程中总是表现出向基准面幅度最大值或最小值单向移动的趋势,构成一个完整的基准面上升或者下降旋回,这种基准面的一个上升或下降的旋回称为基准面旋回。
层序地层学读书报告01111220111004087程晓枫一、层序地层学发展历程1. 1 层序地层学起源阶段(1948~1976) 层序的基本概念在18 世纪晚期即已提出,第一次明确提出层序一词,并用于北美大陆古生代地层划分的是Sloss(1948) 。
至20 世纪70 年代,随着计算机技术发展,以Peter R. Vail 为首的Exxon 石油公司的地质学家们将地质理论、地震勘探技术与现代计算机技术紧密结合,创立了地震地层学,使得地层学的发展跃上了一个新的台阶。
1.2 经典层序地层学的形成与发展(1977~1987)Vail 和Exxon 石油公司的学者们进行了一系列的研究,主要表现在以下几个方面: ①层序的定义有所修改; ②将Sloss 的层序进行了修改,缩小了层序的时间跨度,原来的Sloss 的层序成为修改后的超层序; ③提出了层序演化机理的主导因素—海平面升降。
1.3 层序地层学综合发展阶段(1988~至今)1988 年,正式出版了由Wilgus 主编的《海平面变化综合分析》,标志层序地层学的综合发展阶段。
1991年,由D. 1.Macdonald 主编的《活动边缘的沉积作用、构造运动和全球海平面变化》一书,进一步把层序地层研究扩展到活动大陆边缘。
层序地层的理论日趋完善,应用范围不断扩大,出版了一系列层序地层理论及应用的著作,成为地层学及沉积学及能源盆地地质学领域的热点。
二、层序地层学的基本概念2.1、层序地层学的基本定义层序地层学是上个世纪70 年代末由美国Riee大学V ail P R 及其在Exxon公司卡特研究中心的同行Mitchum R M 和Sarg ree J B 等在地震地层学基础上创立起来的一门新的地层学分支科学。
层序地层学是研究以侵蚀面或无沉积作用面、或者与之可以对比的整合面为界的、重复的、成因上有联系的地层的年代地层框架内的岩石关系。
2.2、基准面和可容纳空间基准面和可容纳空间是层序地层学中的两个最重要的概念。
基准面的经典定义来自于Wheeler(1964):基准面是指分割开沉积带和剥蚀带的物理面(Base level, which separates deposition zone from erosion zone.)。
基准面也曾叫作平衡面(equilibrium profile),它是由无数个平衡点组成的面,在这个面上,沉积作用等于剥蚀作用,也就是说,在该面上既无沉积作用,也无剥蚀作用。
基准面分隔开下伏的沉积带和上覆的剥蚀带。
早期,人们将基准面与海平面等同起来,把它看作是一个水平面。
可容纳空间的经典定义来自于Jervey(1979):可容纳空间是指可供潜在沉积物堆积的空间(The space made available for potential sediment accumulation.)。
可容纳空间是一种潜在的、可供沉积物堆积的空间(Vail et al., 1988)。
Cross提出一种修正方案,他(1994)认为“随地史演化而产生(或消失)的、可用于沉积物堆积(或剥蚀)的、潜在的堆积空间被定义为可容纳空间”。
可容纳空间限制了在各个地理部位中堆积的沉积物体积,它也取决于填充的速率即地表搬运过程的效率。
通常总可容纳空间向海盆方向逐渐增加,而有效可容纳空间(总可容纳空间减去未利用空间)的变化则较复杂。
由于可容纳空间向盆地方向增加,而潜在的可容纳空间又逐步被充填,因而有效容纳空间向盆地方向的变化比较复杂。
有效可容纳空间在地质历史中随地质年代在不断的变化,并且这种变化主要由构造升降运动、沉积填充后的残余地貌形态、海平面相对升降变化、沉积压实作用、沉积充填物负荷的岩石圈补偿和热流作用等因素所控制。
2.3、层序与不整合(1)层序层序地层学的基本单位是层序。
层序是一个成因上相关、内部相对整合连续的地层单元, 其顶、底被不整合面或与之相对应的整合面所限定。
由于层序界面的等时性和层序内沉积的连续性, 使层序体现了年代地层和岩石地层的双重属性。
一个层序可以分为体系域,它们是以它们在层序内的位置以及以海泛面为界的准层序组和准层序的叠置方式来定义的。
层序、准层序组和准层序的边界,提供了沉积岩对比和作图的年代地层框架。
层序、准层序组与准层序是通过地层的物理关系定义和确认的,其中包括这些地层单位界面的侧向连续性和几何关系,这些地层单位内部地层的垂向和侧向叠置方式和侧向几何关系。
绝对厚度、形成它们的时间长度、以及区域和全球成因的解释没有用于定义层序地层单位。
层序及其地层成分形成于全球海面变化、沉降和沉积物供应速度间的相互作用。
这些相互作用可以模拟,而这些模型通过预测地质资料有限的地区内的地层关系和推测其年代的观察得到证实。
准层序和准层序组是层序的基本构筑单位。
一个准层序是以海泛面和与之可以对比的面为界的成因上有联系的、相对整一的一套岩石或岩层组。
海泛面是一个把较新地层与较老地层分开的面,跨过这个面有水深突然增加的证据。
准层序组是一套成因上有联系的准层序,它们形成一种在多数情况下以大的海泛面和可以与之对比的面为界的独特的叠置方式。
沉积体系是一种三维岩相组合体,体系域是一连串同期的沉积体系。
体系域是根据界面类型,它们在层序内的位置,以及准层序及层序叠置模式客观地加以定义的。
体系域还用几何结构和相组合加以表征。
沉积地层划分为层序、准层序和体系域,提供了分析沉积地层内时间和岩石关系的有力方法。
层序和层序边界将沉积岩划分为以具有年代地层学意义的界面为界的成因上有联系的地层单位。
(2)不整合不整合(unconformity)是指一个分割新老地层的间断面,沿此面有明显的水上暴露侵蚀特征(或相应的水下剥蚀)(Wagoner et al,1988)。
与此相关的其它一些术语有非整合(nonconformity)、假整合(disconformity)、小间断(diastem)、中断(hiatuse)。
层序地层中所运用的不整合是指在地层记录中不同级别包括从局部到全球规模的时间间断(temporal break)。
识别以不整合面为边界的层序是大范围内利用不整合面进行作图的重要前提。
这样的不整合面清楚地表明了广泛的幕式运动或全球海平面变化。
在地层中,由于存在深部的侵蚀作用、明显的角度不整合等证据,以及在上覆地层中底砾岩的存在,构造作用形成的局部角度不整合的证据也可能是非常明显的。
然而,沿着构造走向或远离构造活动带进入相邻成因盆地或克拉通地区,很少能追踪到大范围分布的不整合。
区域不整合可能几乎没有表现出角度不整合的性质,并且在露头中也没有显现出它们的重要性。
因此,必须通过细心的区域作图和对比,才能识别出不整合的重要性。
以不整合来确定地层层序,主要基于如下两个关键性的特征:a.沉积间断比记录更重要,即地表上任何地方的沉积,只是漫长地史史时期微小而零星的记录(Ager,1981)。
不整合代表了一个恒定的、最大时间范围内沉积作用的中断。
b.不整合面之上的沉积物较其以下地层年轻。
通常,这种类型的不整合是由于陆上暴露产生的侵蚀作用而形成的,绝大多数不整合属此类型。
然而,对于第二点则有一些例外,这主要表现在以不整合为特征的时间关系上。
如与水下侵蚀作用有关的(diachronous unconformities)和与侵蚀作用无关的(drowming unconformities),它们在时间关系上与陆上暴露产生的侵蚀不整合是不同的。
(3)不整合与层序边界类型①整合边界类型Ⅰ型不整合(type I unconformity)发育于快速的海平面下降、更迅速的构造沉降期。
海岸线可能移至陆架边缘,伴随着陆架下切谷的发育和海底峡谷的深切作用,陆表遭受广泛的侵蚀作用。
碎屑岩块沿着峡谷体系被搬运至陆架斜坡的底部,形成了广泛的低水位体系域。
在I型不整合中,沉积相迅速地向盆地方向迁移。
不整合面之下的高水位体系域遭受广泛的侵蚀作用。
在碳酸盐岩体系中,由于台地边缘遭受严重的侵蚀及碳酸盐角砾岩和浊积岩向盆迁移,暴露的台地可能导致发育广泛的喀斯特体系和内部溶蚀作用(Sarg,1988)。
Ⅱ型不整合(type Ⅱunconformity)发育于相对海平面缓慢下降时期,其结果导致相域逐渐向海迁移,并伴随少量的陆上暴露和侵蚀作用。
根据Vail等人(1987,1991)的观点,陆架边缘体系域形成Ⅱ型不整合。
由于Ⅱ型不整合没有发育明显的侵蚀或大的相带迁移,因此在地震资料和露头中极难识别。
②层序边界类型Vail等人(1991)依据沉积滨线坡折带处海平面下降速率与盆地沉降速率之间的关系以及层序边界不整合类型,进一步将层序划分为Ⅰ型层序和Ⅱ型层序两类。
Ⅰ型层序以Ⅰ型不整合面为底部边界,自下而上由低水位体系域、海侵体系域、高水位体系域组成。
Ⅰ型层序边界以河流复壮作用、岩相的向盆地方向转移、海岸上超的向下转移以及上覆地层的上超伴生的陆上暴露及同时发生的陆上侵蚀作用为特征。
其边界上下出现大的岩相跳跃。
Ⅰ型层序界面被解释为全球海平面下降速度超过在沉积滨线坡折带处盆地沉降速度,在该处产生海平面相对下降时形成的。
Ⅱ型层序是以Ⅱ型不整合为底部边界的、自下而上由陆棚边缘体系域、海侵体系域、高水位体系域组成,它可以沉积在陆棚的任何地方,并由一个或多个进积至加积准层序组构成。
Ⅱ型层序边界的特征是沉积滨线坡折带朝陆地方向的水上和暴露和海岸上超的向下转移;然而,它既没有与河道回春作用伴生的陆上侵蚀,也没有岩相的朝盆地方转移。
沉积滨线坡折带朝陆地方向上覆地层的上超、也是Ⅱ型层序边界的特征。
Ⅱ型层序边界是全球海面下降速度小于沉积滨线坡折带处盆地沉降速度时形成的,因此,在这个位置上没有发生海平面相对下降。
三、层序地层学存在的问题(1) 过度强调了全球海平面变化对沉积地层影响。
层序地层中认为全球海平面变化是控制层序发育的主控因素,也就是全球海平面对层序的发育起了绝对的影响,这在被动大陆边缘能够得到应用,但是在陆相盆地的研究中,忽略了构造、气候、沉积物供给等多因素综合影响,则会造成很大的错误,同时依据海岸上超来解释全球海平面变化则忽略了不同沉积盆地构造背景的影响,这样制作的海平面变化曲线具有一定的局限性。
将层序地层学的方法应用于陆相含油气盆地仍然存在着一定的难度。
由于海、陆相沉积层序之间有很多不同,尤其是各大控制因素在层序形成过程中的作用更具有争议性,因而许多学者认为,虽然层序地层学已成功地应用于海相盆地,但对于湖泊沉积盆地,尤其是对以冲积沉积体系为主的陆相盆地或海陆过渡型沉积盆地而言,层序地层学的概念、理论和模式受到严峻挑战。
四、层序地层学的应用前景经典层序地层学在陆相沉积盆地中应用受阻,许多问题长期争鸣未决,加上低频层序难以满足当前油气田勘探开发的需要,这就需要不断探索并逐步完善陆相地层的层序模式, 进而形成陆相层序地层学的理论体系,此即预示着该学科重大突破已经来临。