(完整版)圆周运动基础练习题(含答案)
- 格式:doc
- 大小:42.62 KB
- 文档页数:2
高考物理生活中的圆周运动的基本方法技巧及练习题及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==3.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()221 2A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.4.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
高中物理必修二第六章圆周运动考点精题训练单选题1、一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直平面内作半径为R的圆周运动,如图所示,则()A.小球过最高点时,杆所受弹力一定不为零B.小球过最高点时的最小速度是√gRC.小球过最高点时,杆的弹力可以向上,此时杆对球的作用力一定不大于重力D.小球过最高点时,杆对球的作用力一定跟小球所受重力的方向相反答案:CA.小球过最高点时,若只靠小球重力提供向心力时,杆所受弹力为零,故A错误;B.由于小球连接的轻杆,所以小球过最高点时的最小速度可以为零,故B错误;C.当小球过最高点,杆的弹力可以向上时,杆对小球的作用力反向向下,此时重力和杆的弹力的合力提供向心力,即mg−F=m v2 RF=mg−m v2 R此时杆对球的作用力小于或者等于重力,故C正确;D.当小球过最高点时的速度v>√gR时,此时合外力提供向心力,即F 合=mv2R>mg此时杆对球的作用力与小球的重力方向相同,故D错误。
故选C。
2、如图所示,质量相同的质点A、B被用轻质细线悬挂在同一点O,在同一水平面内做匀速圆周运动,则()A.A的线速度一定比B的线速度大B.A的角速度一定比B的角速度大C.A的向心力一定比B的向心力小D.A所受细线的拉力一定比B所受细线的拉力小答案:AAB.设细线与竖直方向的夹角为θ,根据mgtanθ=mLsinθ⋅ω2=mv2 L sinθ得v=√gLsinθtanθω=√gL cosθA球细线与竖直方向的夹角较大,则线速度较大,两球L cosθ相等,则两球的角速度相等,故A正确,B错误;C.向心力F n=mgtanθA球细线与竖直方向的夹角较大,则向心力较大,故C错误;D.根据竖直方向上受力平衡有Fcosθ=mgA球与竖直方向的夹角较大,则A球所受细线的拉力较大,故D错误。
故选A。
3、如图所示为走时准确的时钟面板示意图,M、N为秒针上的两点。
以下判断正确的是()A.M点的周期比N点的周期大B.N点的周期比M点的周期大C.M点的角速度等于N点的角速度D.M点的角速度大于N点的角速度答案:C由于M、N为秒针上的两点,属于同轴转动的两点,可知M与N两点具有相同的角速度和周期。
1 f; T匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为v =s=2r t T其方向沿轨迹切线,国际单位制中单位符号是m/s;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为==2t T在国际单位制中单位符号是rad/s;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是Hz;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r/min.2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v=rω.T =,v =2,= 2 f 。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为v 2 a n=r 公式:=2r 42rT 21. 线速度V=s/t=2πr/T ;== v 2. 角速度 ω=Φ/t =2π/T =2πf 3. 向心加速度 a =V 2/r =ω2r =(2π/T)2r4. 向心力 F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5. 周期与频率:T =1/f6. 角速度与线速度的关系:V =ωr7. 角速度与转速的关系 ω=2πn (此处频率与转速意义相同)8. 主要物理量及单位:弧长 s:米(m);角度 Φ:弧度(rad );频率 f :赫(Hz );周期 T :秒(s );转速n :r/s ;半径 r :米(m );线速度 V :(m/s );角速度 ω:(rad/s );向心加速度:(m/s 2)。
备战2020高考物理-高三第一轮基础练习:圆周运动一、单选题 1.如图所示,某物体沿光滑圆弧轨道由最高点滑到最低点过程中,物体的速率逐渐增大,则()A. 物体的合外力为零B. 物体的合力大小不变,方向始终指向圆心OC. 物体的合外力就是向心力D. 物体的合力方向始终与其运动方向不垂直(最低点除外)2.明代出版的《天工开物》一书中就有牛力齿轮翻车的图画(如图),记录了我们祖先的劳动智慧.若A、B、C三齿轮半径的大小关系如图,则()A. 齿轮A的角速度比C的大B. 齿轮A与B角速度大小相等C. 齿轮B与C边缘的线速度大小相等D. 齿轮A边缘的线速度比C边缘的大3.如图所示,一半径为R的球体绕轴O1O2以角速度ω匀速转动,A、B为球体上两点。
下列说法中正确的是()A. A,B两点具有相同的角速度B. A,B两点具有相同的线速度C. A,B两点具有相同的向心加速度D. A,B两点的向心加速度方向都指向球心4.如图所示,轻杆的一端固定在水平轴上的O点,另一端固定一个小球.小球以O为圆心在竖直平面内做圆周运动,且能通过最高点.小球可视为质点,下列说法正确的是()A. 小球通过最低点时所受轻杆的作用力方向一定竖直向上B. 小球通过最高点时所受轻杆的作用力方向一定竖直向上C. 小球通过最高点时所受轻杆的作用力方向一定竖直向下D. 小球到达最高点时所受轻杆作用力不可能为零5.如图所示,O1为皮带传动的主动轮的轴心,轮半径为r1,O2为从动轮的轴心,轮半径为r3;r2为固定在从动轮上的小轮半径.已知r3=2r1,r2=1.5r1.A、B和C分别是3个轮边缘上的点,质点A、B、C的线速度之比是()A. 3:3:4B. 4:4:3C. 3:4:3D. 3:4:46.如图,匀速转动的圆盘上有a、b、c三点,已知,则下面说法中错误的是()A. a、b、c三点的角速度相同B. a、b两点线速度相等C. c点的线速度大小是a点线速度大小的一半D. a点的加速度是c点的两倍7.铁路在弯道处的内外轨道高度是不同的,如图5所示,已知内外轨道平面对水平面倾角为θ,弯道处的圆弧半径为R,若质量为m的火车转弯时速度小于,则()A. 内轨对内侧车轮轮缘有挤压B. 外轨对外侧车轮轮缘有挤压C. 这时铁轨对火车的支持力等于D. 这时铁轨对火车的支持力等于8.在中轴线竖直且固定的光滑圆锥形容器中,固定了一根光滑的竖直细杆,细杆与圆锥的中轴线重合,细杆上穿有小环(小环可以自由转动,但不能上下移动),小环上连接了一轻绳,与一质量为m的光滑小球相连,让小球在圆锥内作水平面上的匀速圆周运动,并与圆锥内壁接触,如图所示,图(a)中小环与小球在同一水平Ian上,图(b)中轻绳与竖直轴成θ角,设(a)图和(b)图中轻绳对小球的拉力分别为T a和T b,圆锥内壁对小球的支持力分别为N a和N b,则在下列说法中正确的是()A. T a一定为零,T b一定为零B. T a可以为零,T b可以为零C. N a一定不为零,N b一定不为零D. N a可以为零,N b可以为零9.下列关于甲、乙两个做匀速圆周运动的物体的有关说法,正确的是()A. 甲、乙两物体线速度相等,角速度一定也相等B. 甲、乙两物体角速度相等,线速度一定也相等C. 甲、乙两物体周期相等,角速度一定也相等D. 甲、乙两物体周期相等,线速度一定也相等二、多选题10.在光滑圆锥形容器中,固定了一根光滑的竖直细杆,细杆与圆锥的中轴线重合,细杆上穿有小环(小环可以自由转动,但不能上下移动),小环上连接一轻绳,与一质量为m的光滑小球相连,让小球在圆锥内做水平面上的匀速圆周运动,并与圆锥内壁接触.如图所示,图a中小环与小球在同一水平面上,图b中轻绳与竖直轴成θ(θ<90°)角.设图a和图b 中轻绳对小球的拉力分别为T a和T b,圆锥内壁对小球的支持力分别为N a和N b,则在下列说法中正确的是()A. T a一定为零,T b一定为零B. T a、T b是否为零取决于小球速度的大小C. N a一定不为零,N b可以为零D. N a、N b的大小与小球的速度无关11.在修筑铁路时,弯道处的外轨会略高于内轨,当火车在弯道处以规定的速度v转弯时,弯道内外轨均不会受到轮缘的挤压,则下列说法正确的是()A. 火车可能受到重力、支持力和向心力作用B. 当火车速率小于v时,外轨将受到轮缘的挤压C. 当火车速率大于v时,外轨将受到轮缘的挤压D. 当火车的质量改变时,规定的行驶速度v不改变12.如图所示,小球m在竖直放置的光滑圆形管道内做圆周运动,下列说法中正确的有()A. 小球通过最高点的最小速度为v=B. 小球通过最高点的最小速度为0C. 小球在水平线ab以下管道中运动时,外侧管壁对小球一定有作用力D. 小球在水平线ab以上管道中运动时,内侧管壁对小球可能有作用力13.如图所示,自行车车轮的半径为,小齿轮的半径为,大齿轮的半径为.某种向自行车车灯供电的小发电机的上端有一半径为的摩擦小轮紧贴车轮,当车轮转动时,因静摩擦作用而带动摩擦小轮转动,从而使发电机工作.在这四个转动轮中()A. 摩擦小轮边缘质点的向心加速度最大B. 摩擦小轮的线速度最小C. 大、小齿轮的角速度之比为D. 小齿轮与摩擦小轮的角速度之比为14.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶的速度为v,则下列说法中正确的是()A. 当火车以v的速度通过此弯路时,火车所受重力与轨道面支持力的合力提供向心力B. 当火车以v的速度通过此弯路时,火车所受重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力C. 当火车速度大于v时,轮缘挤压外轨D. 当火车速度小于v时,轮缘挤压外轨15.(多选)一小球质量为m,用长为L的悬绳(不可伸长,质量不计)固定于O点,在O点正下方处钉有一颗钉子.如图所示,将悬线沿水平方向拉直无初速度释放后,当悬线碰到钉子后的瞬间,则()A. 小球的角速度突然增大B. 小球的线速度突然减小到零C. 小球的向心加速度突然增大D. 小球的向心加速度不变16.在如图所示的皮带传动装置中,轮A和B同轴、B、C分别是三个轮边缘的质点,且,如果三质点的线速度分别为、、,三质点的角速度分别为、、,向心加速度分别为、、,则下列说法正确的是A. ::2B. ::2C. ::1D. ::117.如图所示,可视为质点的、质量为m的小球,在半径为R的竖直放置的光滑圆形管道内做圆周运动,下列有关说法中正确的是:()A. 小球能够通过最高点时的最小速度为0B. 小球能够通过最高点时的最小速度为C. 如果小球在最高点时的速度大小为2 ,则此时小球对管道的外壁有作用力D. 如果小球在最低点时的速度大小为,则小球对管道的作用力为5mg三、实验探究题18.用如图所示的实验装置来探究小球作圆周运动所需向心力的大小F与质量m、角速度ω和半径r之间的关系,转动手柄使长槽和短槽分别随变速轮塔匀速转动,槽内的球就做匀速圆周运动。
1.在观看双人花式溜冰表演时,观众有时会看到女运动员被男运动员拉着走开冰面在空中做水平方向的匀速圆周运动.已知经过目测预计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力加快度为g= 10 m/s2,若已知女运动员的体重为35 k g,据此可估量该女运动员()A .遇到的拉力约为350 2 NB .遇到的拉力约为350 NC.向心加快度约为10 m/s2 D .向心加快度约为10 2 m/s2图 4-2-111.分析:此题考察了匀速圆周运动的动力学剖析.以女运动员为研究对象,受力剖析如图.依据题意有 G=mg= 350 N;则由图易得女运动员遇到的拉力约为350 2 N,A 正确;向心加快度约为10 m/s2,C 正确.答案:AC2.中央电视台《今天说法》栏目近来报导了一同发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭受了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲入李先生家,造成三死一伤和房子严重损毁的血腥惨案.经公安部门和交通部门合力调查,画出的现场表示图如图4-2- 12 所示.交警依据图示作出以下判断,你以为正确的选项是()A.由图可知汽车在拐弯时发生侧翻是因为车做离心运动B.由图可知汽车在拐弯时发生侧翻是因为车做向心运动C.公路在设计上可能内 (东 )高外 (西 )低D.公路在设计上可能外 (西) 高内 (东 )低图 4-2-12 2分析:由题图可知发惹祸故时,卡车在做圆周运动,从图能够看出卡车冲入民宅时做离心运动,故选项 A 正确,选项 B 错误;假如外侧高,卡车所受重力和支持力供给向心力,则卡车不会做离心运动,也不会发惹祸故,应选项 C 正确.答案: AC3. (2010 湖·北部分要点中学联考)如图 4- 2- 13 所示,质量为m 的小球置于正方体的圆滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加快度为 g,空气阻力不计,要使在最高点时盒子与小球之间恰巧无作使劲,则()A .该盒子做匀速圆周运动的周期必定小于2πR gB.该盒子做匀速圆周运动的周期必定等于2πR gC.盒子在最低点时盒子与小球之间的作使劲大小可能小于2mgD.盒子在最低点时盒子与小球之间的作使劲大小可能大于2mg图 4-2-133 分析: 要使在最高点时盒子与小球之间恰巧无作使劲,则有mg = mv 2R ,解得该盒子做匀速圆周运动的速2πR R度 v = gR ,该盒子做匀速圆周运动的周期为T = v= 2πg .选项 A 错误, B 正确;在最低点时,盒子mv2与小球之间的作使劲和小球重力的合力供给小球运动的向心力,由F - mg = R ,解得 F = 2mg ,选项 C 、D 错误. 答案: B4.图示所示 , 为某一皮带传动装置.主动轮的半径为r 1 ,从动轮的半径为 r 2.已知主动轮做顺时针转动,转速为 n ,转动过程中皮带不打滑.以下说法正确的选项是()A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r1 D .从动轮的转速为 r 2nnr2r 14 分析: 此题考察的知识点是圆周运动.因为主动轮顺时针转动,从动轮经过皮带的摩擦力带动转动,所以从动轮逆时针转动,选项A 错误B 正确;因为经过皮带传动,皮带与轮边沿接触处的速度相等,n 为频次, 2πn 为角速度,得从动轮的转速为nr 1所以由 2πnr 1= 2πn 2r 2 n 2= r 2 ,选项 C 正确D 错误. 答案: BC5.质量为 m 的石块从半径为 R 的半球形的碗口下滑到碗的最低点的过程中,假如摩擦力的作用使得石块的速度大小不变,如图 4- 2-17 所示,那么 ()A .因为速率不变,所以石块的加快度为零B .石块下滑过程中受的合外力愈来愈大C .石块下滑过程中受的摩擦力大小不变D .石块下滑过程中的加快度大小不变,方向一直指向球心图 4-2-175 分析:因为石块做匀速圆周运动, 只存在向心加快度, 大小不变, 方向一直指向球心, D 对,A 错.由 F 合=F向 =ma向知合外力大小不变,B 错,又因石块在运动方向(切线方向)上合力为零,才能保证速率不变,在该方向重力的分力不停减小,所以摩擦力不停减小,答案: DC 错.6.2008 年 4 月 28 日清晨,山东境内发生两列列车相撞事故,造成了大批人员伤亡和财富损失.引起事 故的主要原由是此中一列列车转弯时超速行驶.如图 4- 2- 18 所示,是一种新式高速列车,当它转弯 时,车厢会自动倾斜, 供给转弯需要的向心力; 假定这类新式列车以 360 km/h 的速度在水平面内转弯, 弯道半径为 1.5 km ,则质量为 75 kg 的乘客在列车转弯过程中所遇到的合外力为 ()A . 500 NB .1 000 NC .500 2 ND .0图 4-2- 186 分析:360 km/h = 100 m/s ,乘客在列车转弯过程中所受的合外力供给向心力 F =mv 21002r = 75×1.5× 103 N= 500 N.答案: A7.如图 4- 2- 19 甲所示,一根细线上端固定在 S 点,下端连一小铁球 A ,让小铁球在水平面内做匀速圆周运动,此装置组成一圆锥摆 (不计空气阻力 ).以下说法中正确的选项是 ( )A .小球做匀速圆周运动时,遇到重力、绳索的拉力和向心力作用gB .小球做匀速圆周运动时的角速度必定大于 l (l 为摆长 )C .还有一个圆锥摆,摆长更大一点,二者悬点相同,如图 4- 2- 19 乙所示,假如改变两小球的角速 度,使二者恰幸亏同一水平面内做匀速圆周运动,则 B 球的角速度大于 A 球的角速度D .假如两个小球的质量相等,则在图乙中两条细线遇到的拉力相等图 4- 2-197 分析: 以以下图所示,小铁球做匀速圆周运动时,只遇到重力和绳索的拉力,而向心力是由重力和拉力的合力供给,故 A 项错误.依据牛顿第二定律和向心力公式可得: mgtan θ=ml ω2sin θ,即 ω= g/lcos θ.当小铁球做匀速圆周运动时, θ必定大于零,即 cos θ必定小于 1,所以,当小铁球做匀速圆周运动时角速度必定大于g/l ,故 B 项正确.设点 S 到点 O 的距离为 h ,则 mgtan θ=mh ω2tan θ,即 ω= g/h ,若两圆锥摆的悬点相同,且二者恰幸亏同一水平面内做匀速圆周运动时,它们的角速度 大小必定相等,即C 项错误.如右上图所示,细线遇到的拉力大小为F T =mg,当两个小球的质量相cos θ等时,因为 θABABB 球遇到的拉力,从而能够判断两条< θ,即 cos θ> cos θ,所示 A 球遇到的拉力小于细线遇到的拉力大小不相等,故 D 项错误. 答案: B8.汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿 半径方向遇到的摩擦力分别为 Ff 甲 和 Ff 乙. 以下说法正确的选项是 ( )A . Ff 甲 小于 Ff 乙B .Ff 甲 等于 Ff 乙C . Ff 甲大于 Ff 乙D . Ff 甲和 Ff 乙 大小均与汽车速率没关8 分析: 此题要点考察的是匀速圆周运动中向心力的知识.依据题中的条件可知,两车在水平面做匀速圆周运动,则地面对车的摩擦力来供给其做圆周运动的向心力,则F 向= f ,又有向心力的表达式F mv 2向= ,因为两车的质量相同, r两车运转的速率相同, 所以轨道半径大的车的向心力小,即摩擦力小,A 正确.答案: A9. 在高速公路的拐弯处,往常路面都是外高内低.如图 4- 2- 20 所示,在某路段汽车向左拐弯,司机左侧的路面比右边的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为 h ,路 基的水平宽度为 d ,路面的宽度为 L.已知重力加快度为g.要使车轮与路面之间的横向摩擦力(即垂直于行进方向 )等于零,则汽车转弯时的车速应等于 ()A.gRhB.gRh C.gRL D.gRdLdhh图 4-2- 209 分析: 考察向心力公式.汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力供给,且向心力的方向水平,向心力大小F 向= mgtan θ,依据牛顿第二定律:F 向=m v2hv =gRh R , tan θ= ,解得汽车转弯时的车速d,B 对.d答案: B 10.如图 4- 2- 24 所示,一个竖直搁置的圆锥筒可绕此中心 OO ′转动,筒内壁粗拙,筒口半径和筒高分别为 R 和 H ,筒内壁 A 点的高度为筒高的一半. 内壁上有一质量为m 的小物块随圆锥筒一同做匀速转动,则以下说法正确的选项是 ( ) A .小物块所受合外力指向 O 点B .当转动角速度ω= 2gH时,小物块不受摩擦力作用RC .当转动角速度ω>2gH 时,小物块受摩擦力沿AO 方向RD .当转动角速度ω<2gH 时,小物块受摩擦力沿AO 方向R图 4-2-2410 分析: 匀速圆周运动物体所受合外力供给向心力,指向物体圆周运动轨迹的圆心, A 项错;当小物块在 A 点随圆锥筒做匀速转动,且其所遇到的摩擦力为零时,小物块在筒壁 A 点时遇到重力和支持力的作用,它们的合力供给向心力,设筒转动的角速度为2R,由几何关系得: tan θω,有: mgtan θ= m ω ·2= H R ,联立以上各式解得 ω= 2gH R , B 项正确;当角速度变大时,小物块所需向心力增大,故摩擦力沿 AO 方向,其水平方向分力供给部分向心力,C 项正确;当角速度变小时,小物块所需向心力减小,故摩擦力沿 OA 方向,抵消部分支持力的水均分力, D 项错.答案: BC11. 如图 4- 2- 25 所示,一水平圆滑、距地面高为h 、边长为 a 的正方形 MNPQ 桌面上,用长为 L 的不行伸长的轻绳连结质量分别为m A 、m B 的 A 、B 两小球,两小球在绳索拉力的作用下,绕绳索上的某点 O 以不一样的线速度做匀速圆周运动, 圆心 O 与桌面中心重合, 已知 m A = 0.5 kg ,L = 1.2 m ,L AO = 0.8 m ,a = 2.1 m , h = 1.25 m , A 球的速度大小 v A = 0.4 m/s ,重力加快度 g 取 10 m/s 2,求:(1) 绳索上的拉力 F 以及 B 球的质量 m B ;(2) 若当绳索与 MN 平行时忽然断开,则经过 1.5 s 两球的水平距离; (与地面撞击后。
高中物理第六章圆周运动典型例题单选题1、如图将红、绿两种颜色石子放在水平圆盘上,围绕圆盘中心摆成半径不同的两个同心圆圈。
圆盘在电机带动下由静止开始转动,角速度缓慢增加。
每个石子的质量都相同,(石子与圆盘间的动摩擦因数μ均相同。
则下列判断正确的是()A.红石子先被甩出B.红、绿两种石子同时被甩C.石子被甩出的轨迹一定是沿着切线的直线D.在没有石子被甩出前,红石子所受摩擦力小于绿石子的答案:DABD.由受力分析可知,由静摩擦力提供向心力,由牛顿第二定律可知f=mω2r知当角速度增大时,静摩擦力也增大,由于绿石子的半径大于红石子的半径,绿石子的的静摩擦力大于红石子的静摩擦力,且绿石子的静摩擦力先达到最大值,所以绿石子先被甩出,故AB错误,D正确;C.被甩出时做离心运动,轨迹为曲线,故C错误。
故选D。
2、杂技演员表演“水流星”,在长为0.8m的细绳的一端,系一个与水的总质量为m=0.5kg的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,如图所示,若“水流星”通过最高点时的速率为4m/s,则下列说法正确的是(g=10m/s2)()A.“水流星”通过最高点时,有水从容器中流出B.“水流星”通过最高点时,绳的张力及容器底部受到的压力均为零C.“水流星”通过最高点时,处于完全失重状态,不受力的作用D.“水流星”通过最高点时,绳子的拉力大小为5N答案:DABD.当水对桶底压力为零时有mg=m v2 r解得v=√gr=2√2m/s“水流星”通过最高点的速度为2√2m/s时,知水对桶底压力为零,不会从容器中流出;对水和桶分析,有T+mg=m v2 r解得T=5N知此时绳子的拉力不为零,AB错误,D正确;C.“水流星”通过最高点时,受重力和绳子的拉力,C错误。
故选D。
3、如图,在水平圆盘上沿半径放有质量均为m=3kg的两物块a和b(均可视为质点),两物块与圆盘间的动摩擦因数均为μ=0.9,物块a到圆心的距离为r a=0.5m,物块b到圆心的距离为r b=1m。
《圆周运动》练习(二)1.如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg2.如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点所用的时间相等.则下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在M、N间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在A、B盘的边缘,A、B两盘的半径之比为2∶1,a、b 分别是与A盘、B盘同轴的轮,a、b轮半径之比为1∶2.当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为()A.2∶1 B.4∶1C.1∶4 D.8∶15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上的A、B两点,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.23mg B.3mgC .2.5mg D.73mg26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( ) A. 5 rad/s B. 3 rad/s C .1.0 rad /s D .0.5 rad/s7.如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求: (1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )10.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m /s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内(取重力加速度g =10 m/s 2)?11.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h=________,圆盘转动的角速度大小ω=________.12.一长l=0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m.开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g=10 m/s2.求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面上的C点,求C点与B点之间的水平距离;(3)若OP=0.6 m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案1. 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa=kgl;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb = kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 2. 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误. 3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误. 4. 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误. 5. 答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3T -mg =m v 2232L ③联立①②③得,T =23mg 故A 正确,B 、C 、D 错误. 6. 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.7. 审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围. 解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2 小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l因此钉子所在位置的范围为76l ≤x ≤54l .答案 (1)7mg (2)76l ≤x ≤54l8. 解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v yv 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为N .则由向心力公式得:N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821 m9. 答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩10. 答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:T +mg sinα=m v 21l ①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°.11. 答案 gR 22v 2 2n πvR(n =1,2,3,…)解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR (n =1,2,3,…)12. 答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s (2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离 x =v B2(H -l )g=0.80 m (3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。
高中物理必修二第6章圆周运动练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某活动中有个游戏节目,在水平地面上画一个大圆,甲、乙两位同学(图中用两个点表示)分别站在圆周上两个位置,两位置的连线为圆的一条直径,如图所示,随着哨声响起,他们同时开始按图示方向沿圆周追赶对方.若甲、乙做匀速圆周运动的速度大小分别为v1和v2,经时间t乙第一次追上甲,则该圆的直径为()A.t(v2−v1)πB.2t(v2−v1)πC.t(v1+v2)πD.2t(v1+v2)π2. 如图所示,光滑水平面上,小球在绳拉力作用下做匀速圆周运动,若小球运动到P 点时,绳突然断裂,小球将()A.将沿轨迹Pa做离心运动B.将沿轨迹Pb做离心运动C.将沿轨迹Pc做离心运动D.将沿轨迹Pd做离心运动3. 如图所示,用长为l的细绳拴着质量为m的小球在竖直平面内做圆周运动,则下列说法中正确的是()A.小球在圆周最高点时所受的向心力一定为小球的重力B.小球在最高点时绳子的拉力可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为零D.小球过最低点时绳子的拉力一定等于小球重力4. 如图所示,一个小球绕圆心O做匀速圆周运动,已知圆周半径为r,该小球运动的角速度大小为ω,则它运动线速度的大小为()A.ωrB.ωr C.ω2rD.ωr25. 关于做圆周运动的物体,下列说法中正确的是()A.所受合力一定指向圆心B.汽车通过凹形桥时处于超重状态C.汽车水平路面转弯时由重力提供向心力D.物体做离心运动是因为物体运动过慢6. 下列关于离心运动的说法错误的是()A.汽车转弯时限制速度,铁路转弯处轨道的外轨高于内轨都是为了更好地做离心运动B.脱水机的脱水原理是对离心原理的应用C.游乐场中高速转动磨盘把人甩到边缘上去是属于离心现象D.把低轨道卫星发射发射到高轨道上去,需要加速,是应用了离心原理7.如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘面间的动摩擦因数相同.当匀速转动的圆盘转速恰为两物体刚好未发生滑动时的转速,烧断细绳,则两物体的运动情况将是()A.两物体沿切线方向滑动B.两物体沿半径方向滑动,离圆盘圆心越来越远C.两物体仍随圆盘一起做匀速圆周运动,不发生滑动D.物体A仍随圆盘一起做匀速圆周运动,物体B发生滑动,离圆盘圆心越来越远8. 如图所示,一偏心轮绕O点做匀速转动.偏心轮边缘上A、B两点的()A.线速度大小相同B.角速度大小相同C.向心加速度大小相同D.向心加速度方向相同9. 下列关于圆周运动的说法正确的是()=k,公式中的k值对所有行星和卫星都相等A.开普勒行星运动的公式R3T2B.做匀速圆周运动的物体,其加速度一定指向圆心C.在绕地做匀速圆周运动的航天飞机中,宇航员对座椅产生的压力大于自身重力D.相比较在弧形的桥底,汽车在弧形的桥顶行驶时,陈旧的车轮更不容易爆胎10. 甲、乙做匀速圆周运动的物体,它们的半径之比为3:1,周期之比是1:2,则()A.甲与乙的线速度之比为1:3B.甲与乙的线速度之比为6:1C.甲与乙的角速度之比为6:1D.甲与乙的角速度之比为1:211. 请对下列实验探究与活动进行判断,说法正确的题后括号内打“√”,错误的打“×”.(1)如图甲所示,在“研究滑动摩擦力的大小”的实验探究中,必须将长木板匀速拉出________(2)如图乙所示的实验探究中,只能得到平抛运动在竖直方向的分运动是自由落体运动,而不能得出水平方向的运动是匀速直线运动________(3)如图丙所示,在“研究向心力的大小与质量、角速度和半径之间的关系”的实验探究中,采取的主要物理方法是理想实验法________.12. 物体以4m/s的速度在半径为8m的水平圆周上运动,它的向心加速度是________m/s2,如果物体的质量是5kg,则需要________N的向心力才能维持它在圆周上的运动.13. 如图所示,A、B为啮合传动的两齿轮,已知R A=2R B,则A、B两轮边缘上两点角速度之比ωA:ωB=________,向心加速度之比a A:a B=________.14. 某中学的高一同学在学习了圆周运动的知识后,设计了一个课外探究性的课题,名称为:快速测量自行车的骑行速度.自行车的结构如图所示,他的设想是:通过计算踏脚板转动的角速度,推算自行车的骑行速度.经过骑行,他得到如下的数据:在时间t秒内踏脚板转动的圈数为N,那么脚踏板转动的角速度=________;为了推算自行车的骑行速度,这位同学还测量自行车的半径为R,计算了牙盘的齿数为m,飞轮齿数为n,则自行车骑行速度的计算公式可用以上已知数据表示为v=________.15. 一质点做半径为1m的匀速圆周运动,在1s的时间内转过30∘,则质点的角速度为________,线速度为________,向心加速度为________.16. 如图所示,在“用圆锥摆验证向心力表达式”的实验中,若测得小球质量为m,圆半径为r,小球到悬点大竖直高度为ℎ,则小球所受向心力大小为________.17. 汽车过平直桥、拱形桥、凹形桥,分别画出受力分析示意图并列出方程.18. 摩托车手在水平地面转弯时为了保证安全,将身体及车身倾斜,车轮与地面间的动摩擦因数为μ,车手与车身总质量为M,转弯半径为R.为不产生侧滑,转弯时速度应不大于________;设转弯、不侧滑时的车速为v,则地面受到摩托车的作用力大小为________.19. 自行车的大齿轮、小齿轮、后轮是相互关联的三个转动部分,三个轮子的半径不一样,它们的边缘有三个点分别为A、B、C,如图所示,当自行车运动时A、B、C三点中角速度最小的是________,向心加速度最大的是________.20. 某兴趣小组用如图甲所示的装置与传感器结合验证向心力表达式.实验时用手拨动旋臂产生圆周运动,力传感器和光电门固定在实验器上,实时测量角速度和向心力.(1)电脑通过光电门测量挡光杆通过光电门的时间,并由挡光杆的宽度d、挡光杆通过光电门的时间Δt、挡光杆做圆周运动的半径r自动计算出砝码做圆周运动的角速度,则其计算角速度的表达式为________.(2)图乙中取①②两条曲线为相同半径、不同质量下向心力与角速度的关系图线,由图可知.曲线①对应的砝码质量________(填“大于”或“小于”)曲线②对应的砝码质量.21. 如图所示,竖直平面内粗糙水平轨道AB与光滑半圆轨道BC相切于B点,一质量m1=1kg的小滑块P(视为质点)在水平向右的力F作用下,从A点以v0=0.5m/s的初速度滑向B点,当滑块P滑到AB正中间时撤去力F,滑块P运动到B点时与静止在B点的质量m2=2kg的小滑块Q(视为质点)发生弹性碰撞(碰撞时间极短),碰撞后小滑块Q恰好能滑到半圆轨道的最高点C,并且从C点飞出后又恰好落到AB的中点,小滑块P恰好也能回到AB的中点.已知半圆轨道半径R=0.9m,重力加速度g=10m/s2,求:(1)与Q碰撞前的瞬间,小滑块P的速度大小;(2)力F所做的功.22. 如图所示,长为L的轻绳下端连着质量为m的小球,上端悬于天花板上。
描述圆周运动的物理量知识梳理:一、描述圆周运动的物理量1、线速度和角速度:2、周期和频率(转速):3、相关模型:共轴传动: 皮带传动:齿轮传动:n 1、n 2分别表示齿轮的齿数v A =v B ,T A T B = r 1r 2 = n 1n 2,ωA ωB = r 2r 1 = n 2n 1. 基本概念( 圆周运动是 运动。
填匀速或变速 )1.下列四组物理量中,都是矢量的一组是( )A .线速度、转速B .角速度、角度C .时间、路程D .线速度、位移2.多选 当物体做匀速圆周运动时,下列说法中正确的是( )A .物体处于平衡状态B .物体由于做匀速圆周运动而没有惯性C .物体的速度由于发生变化而会有加速度D .物体由于速度发生变化而受合力作用3.多选 做匀速圆周运动的物体,下列各物理量中不变的是( )A .线速度B .角速度C .周期D .转速4.下列关于甲乙两个做匀速圆周运动的物体的有关说法中正确的是( )A .若甲乙两物体的线速度大小相等,则角速度一定相等B .若甲乙两物体的角速度大小相等,则线速度一定相等C .若甲乙两物体的周期相等,则角速度一定相等D .若甲乙两物体的周期相等,则线速度一定相等相关模型的应用1.如图所示,皮带转动装置转动时,皮带上A 、B 点及轮上C 点的运动情况是( )A .v A =vB ,v B >vC B .ωA =ωB ,v B >v C C .v B =v C ,ωA =ωBD .ωA >ωB , v B =v C2.如图所示,O 1为皮带传动装置的主动轮的轴心,轮的半径为r 1;O 2为从动轮的轴心,轮的半径为r 2;r 3为与从动轮固定在一起的大轮的半径.已知r 2=1.5r 1,r 3=2r 1.A 、B 、C 分别是三个轮边缘上的点,那么质点A 、B 、C 的线速度之比是 ,角速度之比是 ,周期之比是 .3.两个小球1、2固定在一根长为l 的杆的两端,绕杆上的O 点做圆周运动,如图所示,当小球1的速度为υ1时,小球2的速度为υ2,则转轴O 到小球1的距离是( ).A .112l υυυ+B .212l υυυ+C .121()l υυυ+D .122()l υυυ+ 4.多选 如图所示,有一个环绕中心线OO' ,以角速度ω转动的球,则有关球面上的A ,B 两点的线速度和角速度的说法正确的是( )A .A ,B 两点的角速度相等 B .A ,B 两点的线速度相等C .若θ=30°,则v A :v B =:2D .以上答案都不对5.如图所示,一个环绕中心线AB 以一定的角速度转动,P 、Q 为环上两点,位置如图,下列说法正确的是( )A .P 、Q 两点的角速度相同B .P 、Q 两点的线速度相同C .P 、Q 两点的角速度之比为3:1D .P 、Q 两点的线速度之比为3:16.多选 如图所示,当正方形薄板绕着过其中心O 并与板垂直的转动轴转动时,板上A 、B 两点的 ( )A .角速度之比ωA ∶ωB =1∶B .角速度之比ωA ∶ωB =1∶1C .线速度之比v A ∶v B =1∶D .线速度之比v A ∶v B =∶17.如图所示是一个玩具陀螺.a 、b 和c 是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是( )A .a 、b 和c 三点的角速度相等B .a 、b 和c 三点的线速度大小相等A B C8.如图所示,A 、B 是两只相同的齿轮,A 被固定不能转动。
高考物理生活中的圆周运动题20套(带答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.3.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m4.如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD 光滑,内圆的上半部分B′C′D′粗糙,下半部分B′A′D′光滑.一质量m=0.2kg 的小球从轨道的最低点A 处以初速度v 0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m ,取g=10m/s 2.(1)若要使小球始终紧贴着外圆做完整的圆周运动,初速度v 0至少为多少? (2)若v 0=3m/s ,经过一段时间小球到达最高点,内轨道对小球的支持力F C =2N ,则小球在这段时间内克服摩擦力做的功是多少?(3)若v 0=3.1m/s ,经过足够长的时间后,小球经过最低点A 时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保留三位有效数字) 【答案】(1)0v 10m/s (2)0.1J (3)6N ;0.56J 【解析】 【详解】(1)在最高点重力恰好充当向心力2Cmv mg R= 从到机械能守恒220112-22C mgR mv mv =解得010m/s v =(2)最高点'2-CC mv mg F R= 从A 到C 用动能定理'22011-2--22f C mgR W mv mv =得=0.1J f W(3)由0=3.1m/s<10m/s v 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,由于摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做往复运动.设此时小球经过最低点的速度为A v ,受到的支持力为A F212A mgR mv =2-AA mv F mg R= 得=6N A F整个运动过程中小球减小的机械能201-2E mv mgR ∆=得=0.56J E ∆5.如图甲所示,轻质弹簧原长为2L ,将弹簧竖直放置在水平地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为L .现将该弹簧水平放置,如图乙所示.一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5L 的水平轨道,B 端与半径为L 的光滑半圆轨道BCD 相切,半圆的直径BD 在竖直方向上.物块P 与AB 间的动摩擦因数0.5μ=,用外力推动物块P ,将弹簧压缩至长度为L 处,然后释放P ,P 开始沿轨道运动,重力加速度为g .(1)求当弹簧压缩至长度为L 时的弹性势能p E ;(2)若P 的质量为m ,求物块离开圆轨道后落至AB 上的位置与B 点之间的距离; (3)为使物块P 滑上圆轨道后又能沿圆轨道滑回,求物块P 的质量取值范围.【答案】(1)5P E mgL = (2) 22S L = (3)5532m M m # 【解析】 【详解】(1)由机械能守恒定律可知:弹簧长度为L 时的弹性势能为(2)设P 到达B 点时的速度大小为,由能量守恒定律得:设P 到达D 点时的速度大小为,由机械能守恒定律得:物体从D 点水平射出,设P 落回到轨道AB 所需的时间为θ θ 22S L =(3)设P 的质量为M ,为使P 能滑上圆轨道,它到达B 点的速度不能小于零 得54mgL MgL μ> 52M m <要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C ,得212BMv MgL '≤ 2142p BE Mv MgL μ='+6.如图所示,半径R=0.40m 的光滑半圆环轨道处于竖起平面内,半圆环与粗糙的水平地面相切于圆环的端点A .一质量m=0.10kg 的小球,以初速度V 0=7.0m/s 在水平地面上向左做加速度a=3.0m/s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点.求(1)小球到A 点的速度 (2)小球到B 点时对轨道是压力(3)A 、C 间的距离(取重力加速度g=10m/s 2).【答案】(1) 5/A V m s = (2) 1.25N F N = (3)S AC =1.2m 【解析】 【详解】(1)匀减速运动过程中,有:2202A v v as -=解得:5/A v m s =(2)恰好做圆周运动时物体在最高点B 满足: mg=m 21Bv R,解得1B v =2m/s假设物体能到达圆环的最高点B ,由机械能守恒:12mv 2A =2mgR+12mv 2B 联立可得:v B =3 m/s因为v B >v B1,所以小球能通过最高点B .此时满足2N v F mg m R+=解得 1.25N F N =(3)小球从B 点做平抛运动,有:2R=12gt 2 S AC =v B ·t得:S AC =1.2m . 【点睛】解决多过程问题首先要理清物理过程,然后根据物体受力情况确定物体运动过程中所遵循的物理规律进行求解;小球能否到达最高点,这是我们必须要进行判定的,因为只有如此才能确定小球在返回地面过程中所遵循的物理规律.7.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端分别拴着质量为m 、2m 的小球A 和小物块B ,开始时B 静止在细管正下方的水平地面上。
圆周运动练习题
1.下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是 (选C )
A .物体除其他的力外还要受到—个向心力的作用 C .向心力是一个恒力
B .物体所受的合外力提供向心力 D .向心力的大小—直在变化
2.关于匀速圆周运动的角速度与线速度,下列说法中正确的是(选BC )
A .半径一定,角速度与线速度成反比
B .半径一定,角速度与线速度成正比
C .线速度一定,角速度与半径成反比
D .角速度一定,线速度与半径成正比
3.正常走动的钟表,其时针和分针都在做匀速转动,下列关系中正确的是 (选B)
A .时针和分针的角速度相同
B .分针角速度是时针角速度的12倍
C .时针和分针的周期相同
D .分针的周期是时针周期的12倍
4.A 、B 两个质点,分别做匀速圆周运动,在相同的时间内它们通过的路程之比s A ∶s B =2∶3,转过的角度之比ϕA ∶ϕB =3∶2,则下列说法正确的是(选BC )
A .它们的半径之比R A ∶R
B =2∶3 B .它们的半径之比R A ∶R B =4∶9
C .它们的周期之比T A ∶T B =2∶3
D .它们的周期之比T A ∶T B =3∶2
5. 如图所示的圆锥摆中,摆球A 在水平面上作匀速圆周运动,关于A 的受力情况,下列说法中正确的是(选C )
A .摆球A 受重力、拉力和向心力的作用;
B .摆球A 受拉力和向心力的作用;
C .摆球A 受拉力和重力的作用;
D .摆球A 受重力和向心力的作用。
6.汽车甲和汽车乙质量相等,以相等速度率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿半径方向受到的摩擦力分别为F f 甲和F f 乙,以下说法正确的是(选A )
A . F f 甲小于F f 乙
B . F f 甲等于F f 乙
C . F f 甲大于F f 乙
D . F f 甲和F f 乙大小均与汽车速率无关
7.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是(选D )
A .a 处
B .b 处
C .c 处
D .d 处
8.游客乘坐过山车,在圆弧轨道最低点处获得的向心加速度达到20 m/s 2,g 取10 m/s 2,
那么在此位置座椅对游客的作用力相当于游客重力的 (选C )
A .1倍
B .2 倍
C .3倍
D .4倍
9.一汽车通过拱形桥顶点时速度为10 m/s ,车对桥顶的压力为车重的
4
3,如果要使汽车在桥顶对桥面没有压力,车速至少为(选B )
A .15 m/s
B .20 m/s
C .25 m/s
D .30 m/s 10.如图所示,轻杆的一端有一个小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力,则F (选D ) A.一定是拉力 B.一定是推力 C.一定等于零
D.可能是拉力,可能是推力,也可能等于零 (第5题)(第15题)
11.飞机在飞越太平洋上空的过程中,如果保持飞行速度的大小和距离海平面的高度不变,则以下说法中正确的是(选C)
A.飞机做的是匀速直线运动
B.飞机上的乘客对座椅的压力略大于地球对乘客的引力
C.飞机上的乘客对座椅的压力略小于地球对乘客的引力
D.飞机上的乘客对座椅的压力为零
12.一滑雪者连同他的滑雪板质量为70kg ,他滑到凹形的坡底时的速度是20m/s ,坡底的圆弧半径是50m ,则在坡底时雪地对滑雪板的支持力是多少?
1260N
13.质量为m 的小球,用一条绳子系在竖直平面内做圆周运动,小球到达最高点时的速度为v ,到达最低点时的速变为24v gR ,则两位置处绳子所受的张力之差是多少?
6mg
14.汽车沿半径为R = 100m 的圆跑道行驶,设跑道的路面是水平的,路面作用于车的最大静摩擦力是车重的
10
1,要使汽车不致冲出圆跑道,车速最大不能超过多少?
10s m /。