中南大学自动控制原理—线性系统的校正实验报告
- 格式:doc
- 大小:181.50 KB
- 文档页数:4
线性系统的校正试验报告一、引言线性系统是指输入与输出之间存在线性关系的系统。
在实际应用中,为了保证系统的准确性和可靠性,需要对线性系统进行校正。
本次试验的目标是校正线性系统,测试其输入与输出之间的线性关系,并验证其准确性和可靠性。
二、实验目的1.校正线性系统,获取其输入与输出之间的线性关系。
2.验证线性系统的准确性和可靠性。
三、实验仪器与材料1.线性系统2.信号发生器3.示波器4.电缆5.计算机四、实验步骤1.连接实验仪器与材料,确保信号发生器与示波器与线性系统的输入与输出正确连接。
2.设置信号发生器的输出信号频率和幅度,并记录相关参数。
3.将信号发生器输出信号连接至线性系统的输入端口,将示波器连接至线性系统的输出端口。
4.通过示波器观察线性系统的输出波形,并记录相关参数。
5.重复步骤2至4,获取多组输出波形数据。
6.根据信号发生器的输出信号和示波器的输出波形数据,绘制输入与输出之间的线性关系曲线。
7.分析曲线的线性程度,评估线性系统的准确性和可靠性。
五、实验结果与分析根据实验步骤所获得的数据,绘制输入与输出之间的线性关系曲线。
根据曲线的趋势和拟合度,可以判断线性系统的准确性和可靠性。
六、结论根据实验结果与分析,可以得出线性系统在一定范围内满足线性关系,但在较大输入幅度时可能存在非线性失真。
线性系统的准确性和可靠性需要根据具体应用场景进行评估,对于要求较高准确性和可靠性的应用,可能需要进行进一步校正或选择其他更适合的系统。
七、实验心得通过这次实验,我对线性系统的校正工作有了更深入的了解。
在实际应用中,校正线性系统是确保系统准确性和可靠性不可或缺的一步,对于研究和开发工作具有重要意义。
同时,实验过程中也学会了使用信号发生器和示波器进行测量和观察,提高了实验操作能力。
[1]系统校正方法与技术研究,XXX,XXX出版社,2024年。
[2]信号源与示波器的使用方法,XXX,XXX期刊,20XX年。
线性系统的校正实验报告翻译:摘要:本实验通过给定的线性系统对其进行校正,在不同的频率下对系统进行稳态和瞬态测试,通过测试结果分析系统性能和误差,掌握线性系统的基本原理和校正方法。
引言:线性系统广泛应用于各种工业、科技领域,而线性系统的准确度和稳定性关系到整个系统的效率和安全性。
因此,对线性系统进行校正是保证其正常运行的必要手段。
本实验将针对一个给定的线性系统进行校正,分析其校正效果。
实验设计:1. 实验仪器本实验要求使用信号发生器、数字脉冲计数器和示波器。
2. 实验内容(1)信号发生器的设置设置输出波形类型和频率,使其跟线性系统的工作频率相同。
(2)数字脉冲计数器的设置通过数字脉冲计数器测试稳态和瞬态响应,并对脉冲计数器进行校准。
(3)示波器的设置观测线性系统的输出信号,分析系统的稳态和动态响应。
(4)线性系统的测试使用信号发生器输入不同频率的正弦波和方波信号,观测输出信号,并记录数字脉冲计数器的计数。
3.实验步骤(1)准备工作将信号发生器和示波器连接线性系统的输入和输出接口,调节信号发生器的频率和幅度。
(2)瞬态响应测试在信号发生器上输入方波信号,在示波器上观测输出信号的瞬态响应,通过计数器获取相关数据。
在信号发生器上输入正弦波信号,通过调整幅度和相位,使其和线性系统的工作频率相同,记录计数器的数据,并分析系统的稳态响应。
结果分析:通过本实验的测试,得到了不同频率下线性系统的稳态和瞬态响应。
观察稳态响应的幅频响应曲线,分析系统的性能。
通过瞬态响应和数字脉冲计数器的数据,计算误差,判断系统的准确度和稳定性。
运用基本的线性系统校准方法对系统进行校准,进一步提高系统的准确度和稳定性。
结论:。
自控实验中三线性系统的校正实践与总结在自控实验中,三线性系统的校正实践是一个重要的环节。
通过对系统参数进行准确的校正,可以提高系统的稳定性和控制精度。
本文将对三线性系统的校正实践进行总结,并探讨实践中的一些经验和技巧。
首先,三线性系统的校正实践需要确定系统的数学模型。
根据系统的物理特性和控制要求,可以建立系统的传递函数或状态空间模型。
通过实验数据的采集和分析,可以进一步优化模型的参数,使其更贴近实际情况。
其次,校正实践需要选择合适的校正方法。
常用的校正方法包括开环校正、闭环校正和最优校正等。
开环校正是在系统输入端加入一定的激励信号,通过观察输出响应来分析系统的动态特性。
闭环校正是在系统的控制回路中采集反馈信号,通过调整控制器参数来优化系统的控制效果。
最优校正是通过最小化系统误差的某个性能指标,来确定最佳的校正参数。
在实践中,有一些重要的技巧和经验可以帮助我们进行三线性系统的校正。
首先,建议采用逐步逼近法进行校正。
即先根据初始参数进行校正,然后逐步调整参数,直到达到目标控制效果。
这样可以避免参数调整过快导致系统不稳定。
其次,注意系统的灵敏度和鲁棒性。
灵敏度表示系统输出对参数变化的敏感程度,鲁棒性表示系统对参数变化的容忍程度。
通过优化系统的灵敏度和鲁棒性,可以提高系统的稳定性和可靠性。
在实践中,还需要注意一些常见的问题和挑战。
首先,系统的非线性特性可能会导致校正的困难。
针对非线性系统,可以采用线性化的方法进行校正,即在一定工作范围内假定系统是线性的。
其次,存在传感器误差和信号干扰等问题,这会对校正的准确性产生影响。
为了解决这些问题,可以采用滤波和校正算法等技术手段,提高系统的鲁棒性。
最后,校正实践的总结对于进一步改进系统性能和设计控制策略具有重要意义。
通过总结和分析校正过程中的经验和教训,可以发现系统的优缺点,找到改进的方向。
同时,总结还可以为未来的实验提供参考,提高实验的效率和质量。
综上所述,三线性系统的校正实践是一个复杂而重要的过程。
自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1. 熟悉并掌握TD-ACC+( TD-ACS设备的使用方法及各典型环节模拟控制电路的构成方法。
2. 熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。
对比差异、分析原因。
3. 了解参数变化对典型环节动态特性的影响。
二.实验设备PC机一台,TD-ACC+( TD-ACS实验系统一套。
三.实验内容1. 比例环节2. 积分环节3. 比例积分环节4. 惯性环节5. 比例微分环节6. 比例积分微分环节四、实验感想在本次实验后,我了解了典型环节的时域响应方面的知识,并且通过实践,实现了时域响应相关的操作,感受到了实验成功的喜悦。
实验二、线性系统的矫正一、目的要求1.掌握系统校正的方法,重点了解串联校正。
2.根据期望的时域性能指标推导出二阶系统的串联校正环节的传递函数、仪器设备PC机一台,TD-ACC+或TD-ACS)教学实验系统一套三、原理简述所谓校正就是指在使系统特性发生变接方式可分为馈回路之内采用的测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3.串联校正环节的理论推导四、实验现象分析校正前:校正后:校正前:校正后:六、实验心得次实验让我进一步熟悉了TD-ACC实验系统的使用,进一步学习了虚拟仪器,更加深入地学习了自动控制原理,更加牢固地掌握了相关理论知识,激发了我理论学习的兴趣。
实验三、线性系统的频率响应分析、实验目的1 .掌握波特图的绘制方法及由波特图来确定系统开环传函2 .掌握实验方法测量系统的波特图。
、实验设备PC机一台,TD-ACC系列教学实验系统一套三、实验原理及内容(一)实验原理1 .频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(3由0变至%)而变化的特性。
频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。
实验五线性系统串联校正设计实验原理:(1)串联校正环节原理串联校正环节通过改变系统频率响应特性,进而改善系统的动态或静态性能。
大致可以分为(相位)超前校正、滞后校正和滞后-超前校正三类。
超前校正环节的传递函数如下Tαs+1α(Ts+1),α>1超前校正环节有位于实轴负半轴的一个极点和一个零点,零点较极点距虚轴较近,因此具有高通特性,对正频率响应的相角为正,因此称为“超前”。
这一特性对系统的穿越频率影响较小的同时,将增加穿越频率处的相移,因此提高了系统的相位裕量,可以使系统动态性能改善。
滞后校正环节的传递函数如下Tαs+1Ts+1,α<1滞后校正环节的极点较零点距虚轴较近,因此有低通特性,附加相角为负。
通过附加低通特性,滞后环节可降低系统的幅值穿越频率,进而提升系统的相位裕量。
在使系统动态响应变慢的同时提高系统的稳定性。
(2)基于Baud图的超前校正环节设计设计超前校正环节时,意图让系统获得最大的超前量,即超前网络的最大相位超前频率等于校正后网络的穿越频率,因此设计方法如下:①根据稳态误差要求确定开环增益。
②计算校正前系统的相位裕度γ。
③确定需要的相位超前量:φm=γ∗−γ+(5°~12°) ,γ∗为期望的校正后相位裕度。
④计算衰减因子:α−1α+1= sin φm。
此时可计算校正后幅值穿越频率为ωm=−10lgα。
⑤时间常数T =ω√α。
(3)校正环节的电路实现构建待校正系统,开环传递函数为:G(s)=20s(s+0.5)电路原理图如下:校正环节的电路原理图如下:可计算其中参数:分子时间常数=R1C1,分母时间常数=R2C2。
实验记录:1.电路搭建和调试在实验面包板上搭建前述电路,首先利用四个运算放大器构建原系统,将r(t)接入实验板AO+和AI0+,C(t)接入AI1+,运算放大器正输入全部接地,电源接入±15V,将OP1和OP2间独立引出方便修改。
基于另外两运算放大器搭建校正网络,将所有电容值选为1uF,所有电阻引出方便修改。
中南大学自动控制原理实验报告--------------------------------------------------------------------------作者: _____________--------------------------------------------------------------------------日期: _____________信息科学与工程学院本科生实验报告实验名称自动控制原理实验预定时间实验时间姓名学号授课教师实验台号专业班级实验一 1.1典型环节的时域分析实验目的:1.熟悉并掌握 TD-ACC+(或 TD-ACS)设备的使用方法及各典型环节模拟电路的构成方法。
2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。
对比差异、分析原因。
3.了解参数变化对典型环节动态特性的影响。
实验设备:PC 机一台, TD-ACC+(或 TD-ACS)实验系统一套。
模拟电路图如下:实验结果:当R0=200K;R1=100K。
输出电压约为输入电压的1/2,误差范围内满足理论波形,当R0 = 200K; R1 = 200K。
积分环节模拟电路图:当R0=200K;C=1uF。
实验结果:当R0 = 200K; C = 2uF。
比例积分环节 (PI)模拟电路图:取 R0 = R1 = 200K; C = 1uF。
实验结果取 R0=R1=200K; C=2uF。
惯性环节(T)模拟电路图:取 R0=R1=200K; C=1uF。
取 R0=R1=200K; C=2uF。
比例微分环节(PD)模拟电路图:取 R0 = R2 = 100K, R3 = 10K, C = 1uF; R1 = 100K。
取 R0=R2=100K, R3=10K, C=1uF; R1=200K。
比例积分微分环节(PID)模拟电路图:取 R2 = R3 = 10K, R0 = 100K, C1 = C2 = 1uF; R1 = 100K。
自动控制原理实验报告实验名称:线性系统的时域分析线性系统的频域分析线性系统的校正与状态反馈班级:学号:姓名:指导老师:2013 年12 月15日典型环节的模拟研究一. 实验目的1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响二.实验内容及步骤观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。
改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。
具体用法参见用户手册中的示波器部分1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。
图3-1-1 典型比例环节模拟电路传递函数:01(S)(S)(S)R R K KU U G i O === ; 单位阶跃响应: K )t (U = 实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V (D1单元‘右显示)。
(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V 阶跃),观测A5B 输出端(Uo )的实际响应曲线。
试验五 系统超前校正(4课时)本试验为设计性试验 一、试验目旳1. 理解和观测校正装置对系统稳定性及动态特性旳影响。
2. 学习校正装置旳设计和实现措施。
二、试验原理工程上常用旳校正措施一般是把一种高阶系统近似地简化成低阶系统, 并从中找出少数经典系统作为工程设计旳基础, 一般选用二阶、三阶经典系统作为预期经典系统。
只要掌握经典系统与性能之间旳关系, 根据设计规定, 就可以设计系统参数, 进而把工程实践确认旳参数推荐为“工程最佳参数”, 对应旳性能确定为经典系统旳性能指标。
根据经典系统选择控制器形式和工程最佳参数, 据此进行系统电路参数计算。
在工程设计中, 常常采用二阶经典系统来替代高阶系统(如采用主导极点、偶极子等概念分析问题)其动态构造图如图7-1所示。
同步还常常采用“最优”旳综合校正措施。
图7-1二阶经典系统动态构造图二阶经典系统旳开环传递函数为)2()1()(2n n s s Ts s Ks G ξωω+=+= 闭环传递函数2222)(nn ns s s ωξωω++=Φ 式中 , 或者 二阶系统旳最优模型 (1)最优模型旳条件根据控制理论, 当 时, 其闭环频带最宽, 动态品质最佳。
把 代入 得到, , 这就是进行校正旳条件。
(2)最优模型旳动态指标为%3.4%100%21/=⨯=--ξξπσe,T t ns 3.43≈=ω三、试验仪器及耗材1.EL —AT3自动控制原理试验箱一台; 2.PC 机一台; 3.数字万用表一块 4.配套试验软件一套。
四、试验内容及规定未校正系统旳方框图如图7-2所示, 图7-3是它旳模拟电路。
图7-2未校正系统旳方框图矫正后未调整电路图图7-3未校正系统旳模拟电路设计串联校正装置使系统满足下述性能指标(1) 超调量%σ≤5% (2) 调整时间t s ≤1秒(3) 静态速度误差系数v K ≥20 1/秒 1. 测量未校正系统旳性能指标 (1)按图7-3接线;(2)加入单位阶跃电压, 观测阶跃响应曲线, 并测出超调量 和调整时间ts 。
自动控制实验实验五线性定常系统的串联校正姓名: 学号: 班级:实验指导老师: __________________ 成绩: ____________________一、实验目的1 对系统性能进行分析, 选择合适的校正方式, 设计校正器模型。
2 通过仿真实验, 理解和验证所加校正装置的结构、特性和对系统性能的影响;3 通过模拟实验部分进一步理解和验证设计和仿真的结果, 进而掌握对系统的实时调试技术。
二、实验内容1 对未加校正装置时系统的性能进行分析, 根据性能要求进行校正器模型的理论设计2 Matlab仿真(1)观察校正前系统的时域、频域性能。
(2)观察校正后系统的时域、频域性能。
(3)对比1.2中结果分析校正器性能, 在保证校正效果的前提下并根据实验台实际参数进行校正器模型调整。
3 模拟实验。
(1)搭接校正前的系统模拟电路。
(2)搭接校正器模拟电路(3)验证是否满足设计要求。
三、实验数据或曲线1 MATLAB仿真部分选取实验题目三系统模型g0=tf([20],[1 1 0]);Bode(g0)gf=feedback(g0,1);step(gf)gc=tf([0.38 1],[0.05 1]);g=g0*gc;Bode(g0,g)gcf=feedback(g,1);step(gcf)校正前系统伯德图由图可知系统的性能不满足性能要求, 考虑采用串联超前校正。
阶跃响应曲线校正后系统的伯德图校正器模型(0.4s+1)/(0.05s+1),由图知系统的性能均满足性能要求, 校正器模型合理。
校正后闭环系统的阶跃响应曲线从校正前后系统的阶跃响应曲线上显示的参数可见, 系统的性能得到了改善。
2 模拟部分校正前系统的阶跃响应曲线校正后系统的阶跃响应曲线四、实验结论控制系统设计的思路之一就是在原系统特性的基础上, 对原特性加以校正, 使之达到要求的性能指标。
常用的串联校正装置有超前校正、滞后校正和超前滞后校正装置。