(完整版)高中数学必修2知识点总结,推荐文档
- 格式:docx
- 大小:203.94 KB
- 文档页数:6
必修二数学知识点整理一、立体几何初步。
(一)空间几何体。
1. 结构特征。
- 棱柱。
- 有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
- 棱柱的底面、侧面、侧棱、顶点等概念。
按底面多边形的边数可分为三棱柱、四棱柱、五棱柱等。
- 棱锥。
- 有一个面是多边形,其余各面都是有一个公共顶点的三角形。
- 棱锥的底面、侧面、侧棱、顶点等概念。
按底面多边形的边数可分为三棱锥(四面体)、四棱锥等。
- 棱台。
- 用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
- 棱台的上底面、下底面、侧面、侧棱、顶点等概念。
- 圆柱。
- 以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
- 圆柱的轴、底面、侧面、母线等概念。
- 圆锥。
- 以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体。
- 圆锥的轴、底面、侧面、母线等概念。
- 圆台。
- 用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
- 圆台的上底面、下底面、侧面、母线等概念。
- 球。
- 以半圆的直径所在直线为轴,半圆面旋转一周形成的几何体。
- 球心、半径、直径等概念。
2. 三视图和直观图。
- 三视图。
- 正视图(主视图)、侧视图(左视图)、俯视图的概念。
- 画三视图的规则:长对正、高平齐、宽相等。
- 通过三视图还原空间几何体的方法:先根据视图的轮廓想象出基本的几何体形状,再根据视图中的线段长度等确定几何体的具体尺寸。
- 直观图。
- 斜二测画法的步骤:- 在已知图形中取互相垂直的x轴和y轴,两轴相交于点O。
画直观图时,把它们画成对应的x'轴和y'轴,两轴相交于点O',且∠x'O'y' = 45°(或135°)。
- 已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x'轴或y'轴的线段。
- 已知图形中平行于x轴的线段,在直观图中长度不变;平行于y轴的线段,长度变为原来的一半。
数学必修二知识点归纳一、函数的概念与性质1. 函数的定义:函数是从一个集合(称为定义域)到另一个集合(称为值域)的映射,每个定义域中的元素都有一个唯一的值与之对应。
2. 函数的表示方法:常用f(x) = y,其中x是自变量,y是因变量。
3. 函数的性质:包括单调性、奇偶性、周期性和有界性等。
- 单调性:函数在某个区间内单调递增或递减。
- 奇偶性:函数可能是奇函数(f(-x) = -f(x))或偶函数(f(-x) = f(x))。
- 周期性:函数如果存在一个非零常数T,使得对于所有x都有f(x + T) = f(x),则称函数具有周期T。
- 有界性:函数的值在某个范围内,即存在上界和下界。
二、基本初等函数1. 幂函数:形如y = x^n的函数,其中n是实数。
2. 指数函数:形如y = a^x的函数,其中a > 0且a ≠ 1。
3. 对数函数:形如y = log_a(x)的函数,其中a > 0且a ≠ 1。
4. 三角函数:包括正弦函数、余弦函数、正切函数等。
- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)三、函数的图像与变换1. 函数图像的绘制:通过坐标系中的点来表示函数的图像。
2. 函数的平移:包括水平平移(左加右减)和垂直平移(上加下减)。
3. 函数的伸缩:包括水平伸缩(y = af(x))和垂直伸缩(y =f(bx))。
4. 函数的对称性:函数图像关于x轴、y轴或原点的对称性。
四、函数的应用1. 实际问题的建模:将实际问题转化为函数关系式进行求解。
2. 最值问题:求解函数的最大值和最小值。
3. 函数的复合:两个或多个函数的组合,如(f ∘ g)(x) = f(g(x))。
五、极限与连续性1. 极限的概念:描述函数在某一点附近的行为。
2. 极限的性质:包括唯一性、局部有界性、保号性等。
3. 连续函数:在定义域内任意一点都连续的函数。
高中数学必修二·空间几何体空间几何体的结构棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如'B'C'D'E'五棱柱ABCDE A几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等'B'C'D'E'表示:用各顶点字母,如五棱锥P A几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的局部分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
1圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的局部几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
球体定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
《必修二》知识点归纳【知识点一】表面积和体积1.①(为弧长,为半径) ③ (为母线长)② ④ (为母线长)⑤ (为上下底面半径,为母线长)2. ① ② ③ ④【知识点二】判定几何中有关平行的方法1.判定线线平行 (1)利用平行公理:; (2)线面平行⇒线线平行:;(3)面面平行⇒线线平行:; (4)线面垂直⇒线线平行:.2. 判定线面平行 (1)判定定理:; (2)面面平行⇒线面平行:3判定面面平行 (1)判定定理:; (2)面面平行⇒线面平行:;(3)面面平行的判定(垂直与平行的转化):.【知识点三】判定几何中有关垂直的方法1 .判定线线垂直:线面垂直⇒线线垂直:2 .判定线面垂直 (1)判定定理1(线线垂直 ⇒ 线面垂直):(2)面面垂直的性质定理(面面垂直 ⇒ 线面垂直):(3)判定定理2(平行与垂直的转化):; (4)面面平行的性质:3 .判定面面垂直:判定定理(线面垂直 ⇒ 面面垂直):.【知识点四】几何中求角和点面距离的方法1. 求异面直线所成角的步骤:(1) 作:用平移法作出异面直线所成角;(2)证:证明作出的角就是所求角;(3)计算:常放入三角形中求角的值.2. 直线和平面所成角:平面内的一条斜线和它在平面上的射影所成的锐角.关键是找面的垂线(线面垂直)3. 求二面角的平面角:以二面角的棱上任一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成角即为二面角的平面角.4. 点到面的距离:①等体积法;②找面的垂线.【知识点五】外心、内心、重心三角形的外心:外接圆的圆心,即三条垂直平分线的交点; 三角形的内心:内接圆的圆心,即三条角平分线的交点;三角形的重心:三条中线的交点(重心将中线分成1:2); 三角形的垂心:三高的交点设三棱锥的顶点在平面的射影是,则:(1)若两两垂直,则是的—垂心; (2)若,则是的—外心;(3)若到的距离都相等,则是的—内心;(4)若,则是的—垂心;(5)若,且,则是——边上的中点;(6)若二面角、二面角和二面角都相等,则是的——内心;(7)若直线与底面所成的角都相等,则是的——外心.【知识点六】直线与方程1. 求斜率——①定义:,其中为直线的倾斜角;②两点斜率公式:2. 直线的五种表示形式名称方程常数的几何意义适用条件点斜式一般情况y-y0=k(x-x0)(x0,y0)是直线上的一个定点,k是斜率直线不垂直于x轴斜截式y=kx+bk是斜率,b是直线在y轴上的截距直线不垂直于x轴两点式一般情况=(x1,y1),(x2,y2)是直线上的两个定点直线不垂直于x轴和y轴截距式+=1a,b分别是直线在x轴,y轴上的两个非零截距直线不垂直于x轴和y轴,且不过原点一般式Ax+By+C=0A,B不同时为0A,B,C为系数任何情况特殊直线x=a(y轴:x=0)垂直于x轴且过点(a,0)斜率不存在y=b(x轴:y=0)垂直于y轴且过点(0,b)斜率k=0①已知直线上一点:设点斜式(分斜率存在和不存在两个情况讨论);②已知直线的斜率:设斜截式;③有关直线在坐标轴的截距:设截距式(注意判断是否需要分情况讨论).3. 两条直线平行与垂直的判定设两直线为;.4. 距离公式类别已知条件公式两点间的距离点到直线的距离两平行线间的距离【知识点七】圆与方程1.(1)圆的标准方程:,圆心为,半径为圆的一般方程:①当时,表示圆心为,半径为的圆;②当时,表示一个点; ③当时,不表示任何图形.2. 点与圆的位置关系判断点和圆或(1) ;(2) ;(3) .3. 直线与圆的位置关系直线与圆的位置关系,设圆心到直线的距离为,则:(1) 判断直线与圆的位置关系的两种方法——和①;②;③.(2) 当直线与圆相交时,求弦长和中点弦的坐标设直线和圆相交于两点,则①求弦长(利用垂径定理与勾股定理):;②求线段的中点的坐标:利用韦达定理求出.(3)当直线和圆相切时,求切线方程①若点在圆上,求过点的切线只有一条,根据,代入点斜式方程即可(其中为圆心).②若点在圆外,求过点的切线有两条,情况一:不存在,则切线方程为:,再判断是否与圆相切;情况二:存在,设切线方程为,根据圆心到切线的距离等于半径:.4. 圆与圆的位置关系(1)设圆和圆,两圆心的距离,则①; ②; ③;④; ⑤.(2) 当两圆相交时,求公共弦方程将两圆化成一般式,两式相减即得公共弦方程(即为公共弦方程)。
数学必修二第二章知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!数学必修二第二章知识点总结数学必修二第二章知识点总结通用4篇社会学科的知识能够让我们更好地了解社会,理解人性。
必修2知识点归纳第一章 空间几何体1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
简单组合体的构成形式:一种是由简单几何体拼接而成,例如课本图1.1-11中(1)(2)物体表示的几何体; 一种是由简单几何体截去或挖去一部分而成,例如课本图1.1-11中(3)(4)物体表示的几何体。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
1、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。
(1)定义:正视图:光线从几何体的前面向后面正投影得到的投影图; 侧视图:光线从几何体的左面向右面正投影得到的投影图; 俯视图:光线从几何体的上面向下面正投影得到的投影图。
几何体的正视图、侧视图和俯视图统称为几何体的三视图。
(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''xOy∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;一般地,原图的面积是其直观图面积的22倍,即22S S 原图直观=4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R lr S ⋅⋅+⋅⋅=ππ侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体;()13V h S S S S =+⋅+下下台体上上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。
高中数学必修二知识点总结及公式大全高中数学是培养学生逻辑思维和抽象能力的重要学科。
《必修二》作为高中数学课程的重要组成部分,涉及了许多核心知识点和基础公式。
本文将为您详细总结《必修二》的知识点,并整理出一份公式大全,帮助您更好地掌握这门学科。
一、高中数学必修二知识点总结1.函数概念与性质- 函数的定义、表示方法、分类- 函数的性质(单调性、奇偶性、周期性、对称性等)- 反函数及其求法2.指数函数与对数函数- 指数函数的定义、性质、图像- 对数函数的定义、性质、图像- 指数方程与对数方程的解法3.三角函数- 角度制与弧度制互换- 三角函数的定义、图像、性质- 三角恒等变换- 三角方程与不等式的解法4.数列- 等差数列与等比数列的定义、性质、求和公式- 数列的通项公式与求和公式- 数列的极限5.平面向量- 向量的定义、表示、线性运算- 向量的坐标表示与几何表示- 向量的数量积与垂直关系- 向量的平行四边形法则与三角形法则6.解析几何- 直线方程的求法(点斜式、截距式、一般式等)- 圆的方程与性质- 常见图形的面积、周长、体积计算二、高中数学必修二公式大全1.函数类- y=f(x) 的反函数:y=f^(-1)(x)- 幂函数:y=x^a(a 为常数)- 指数函数:y=a^x(a>0 且a≠1)- 对数函数:y=log_a(x)(a>0 且a≠1)2.三角函数类- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 三角恒等变换公式(和差公式、倍角公式、半角公式等)3.数列类- 等差数列通项公式:a_n=a_1+(n-1)d- 等差数列求和公式:S_n=n/2(a_1+a_n)- 等比数列通项公式:a_n=a_1q^(n-1)- 等比数列求和公式:S_n=a_1(1-q^n)/(1-q)(q≠1)4.向量类- 向量加法:A+B=(a_x+b_x, a_y+b_y)- 向量减法:A-B=(a_x-b_x, a_y-b_y)- 向量数量积:A·B=a_xb_x+a_yb_y- 向量模长:|A|=√(a_x^2+a_y^2)5.解析几何类- 点斜式直线方程:y-y_1=k(x-x_1)- 截距式直线方程:x/a+y/b=1- 圆的标准方程:(x-a)^2+(y-b)^2=r^2总结:本文为您详细总结了高中数学必修二的知识点,并整理了一份公式大全。
必修2数学知识点总结在本文中,我将总结大家必修2数学课程中的重要知识点,包括代数、几何和概率。
本课程是高中数学课程中的一部分,是学生打好数学基础的重要一步。
所以,让我们一起来回顾一下这些重要的数学知识点吧!一、代数1.1 多项式与因式分解多项式是一个或多个项的和的代数式,每一项都是一个数字与一个或多个未知数的乘积。
例如,2x^2 + 3x + 1 就是一个多项式,其中2x^2,3x和1分别是三个项。
因式分解是将一个多项式表示为两个或多个乘积的形式。
例如,对于多项式2x^2 + 3x + 1,我们可以分解为(2x + 1)(x + 1)。
因式分解在解方程、求导、积分等数学问题中都有重要的应用。
1.2 一元二次方程一元二次方程是一个形如ax^2 + bx + c = 0的方程,其中a、b和c是常数且a不等于0。
一元二次方程的解可以通过公式x = (-b ± √(b^2 - 4ac)) / (2a)来求得,称为二元一次方程的求根公式。
1.3 不等式不等式是一种用于表示两个数之间的关系的数学表达式。
例如,x > 3表示x大于3,x < 5表示x小于5。
解不等式的步骤与解方程的步骤类似,但需要注意不等式两侧的符号是否需要反转。
1.4 三角函数三角函数是以三角形的角度为自变量的一种函数。
常见的三角函数包括正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)等。
三角函数在解决三角形相关的问题、信号处理、电子工程等领域有广泛的应用。
1.5 指数与对数指数和对数是一对互为逆运算的运算符。
指数是一种表示多次乘法的简写形式,例如2^3表示2乘以自身3次,即8。
对数是指数的逆运算,例如以10为底的对数log10(100) =2表示10的几次方等于100。
1.6 序列与数列序列是按照一定的次序排列的一组数,其中每个数称为序列的项。
数列是一个序列的特殊情况,其中每一项都是按照一定的规律来确定。
高中数学必修2知识点总结高中数学必修二知识点总结1. 一元二次方程一元二次方程的标准形式为ax^2+bx+c=0,并且a≠0。
求解一元二次方程的方法是配方法、公式法和因式分解法。
2. 三角函数常用的三角函数有正弦函数、余弦函数、正切函数和余切函数。
三角函数的定义域和值域以及其性质和图像都是必须掌握的。
3. 三角恒等式包括正弦、余弦和正切等三角函数的恒等式,例如正弦函数的和差公式、倍角公式、半角公式等。
三角恒等式是解决三角函数问题的重要工具。
4. 二次函数的图像和性质二次函数的标准形式为y=ax^2+bx+c,其中a≠0。
二次函数的图像是一个开口朝上或开口朝下的抛物线,其对称轴为x=-b/2a。
必须掌握二次函数的顶点、零点、对称轴等性质,这些性质是判断图像和求解问题的重要方法。
5. 平面向量平面向量包括向量的定义、向量之间的运算、向量的坐标表示等。
向量的运算包括向量的加法、减法、数量积和向量积。
向量的坐标表示是将向量投影在坐标轴上来表示的。
6. 点、直线、平面和空间几何点、直线、平面和空间几何的基本概念和性质是必须掌握的,例如点的坐标、直线的一般式方程、平面的法向量等。
此外,必须掌握两条直线和两个平面之间的位置关系、垂直平分线以及中垂线等概念。
7. 三视图和轴测图三视图是立体图形的三个视图,包括正视图、左视图和俯视图。
轴测图是用于三维图形表示的一种图形表示方法,包括斜二测和等轴测。
8. 四边形和圆的性质四边形和圆的主要性质包括四边形内角和定理、对角线定理、圆的周长和面积计算公式、圆内部和圆外部点与圆的位置关系等。
9. 三角形和圆的性质三角形和圆的主要性质包括三角形内角和、三角形的面积计算公式、圆心角和圆弧、圆的切线和切点等。
10. 函数及其应用函数的概念和图像、定义域和值域、单调性等性质必须掌握。
函数的应用包括函数的极值、最大值和最小值等问题。
以上是高中数学必修二知识点的总结,这些知识点是高中数学教育的重点和难点,学好这些知识点对于提高数学成绩和发展数学思维能力都具有重要的意义。
必修二数学知识点归纳第一章空间几何1. 直线和平面的方程2. 直线与平面的位置关系3. 直线与平面的交点4. 直线与平面的夹角和距离5. 空间中的平行和垂直关系6. 直线与空间中的曲面的位置关系7. 空间中的投影和距离第二章解析几何1. 平面直角坐标系2. 点、直线和曲线的坐标表示3. 点、直线和曲线的性质4. 直线的斜率和截距5. 直线的倾斜角和斜率的关系6. 直线与圆的位置关系7. 圆的标准方程和一般方程8. 曲线的一般方程和特殊方程第三章函数与导数1. 函数的概念和表示方法2. 函数的性质和分类3. 函数的图像与性质4. 极坐标系和参数方程5. 函数的单调性和极值点6. 幂函数、指数函数与对数函数7. 三角函数及其性质8. 函数的复合与反函数9. 导数的定义和性质10. 导数的计算和应用第四章导数的应用1. 函数的极值与最值2. 函数的单调性与凹凸性3. 高阶导数与函数的泰勒展开式4. 函数的图形与导数5. 函数的极限和连续性6. 驻点和拐点的判断7. 函数的应用问题:最优化问题,曲线的切线与法线,函数的估值与逼近第五章不等式与函数图像1. 代数不等式的基本性质2. 一元二次不等式的解法3. 高次多项式不等式的解法4. 绝对值不等式的解法5. 不等式的证明方法6. 函数图像的性质与变化趋势7. 函数的奇偶性与对称性8. 根据函数的图像作函数不等式的解第六章概率与统计1. 随机事件与样本空间2. 概率的基本概念和性质3. 条件概率与乘法定理4. 全概率公式与贝叶斯公式5. 随机变量的概念和性质6. 随机变量的分布函数与概率密度函数7. 期望值与方差的概念和计算8. 典型离散分布和连续分布9. 抽样分布与统计推断10. 统计图表和统计量的应用。
数学必修二知识点总结框架第一章函数与导数1.1 函数的概念与性质1.1.1 函数的定义1.1.2 函数的性质1.1.3 函数的图像与性态1.2 基本初等函数1.2.1 幂函数1.2.2 指数函数1.2.3 对数函数1.2.4 三角函数1.2.5 反三角函数1.2.6 三角函数的诱导函数1.3 函数的运算1.3.1 函数的和、差、积、商的运算1.3.2 复合函数1.3.3 反函数1.4 函数的图像与性态1.4.1 函数的单调性1.4.2 函数的奇偶性1.4.3 函数的周期性1.4.4 函数的对称性1.4.5 函数的图像与性态1.5 导数的概念1.5.1 导数的定义1.5.2 导数的几何意义1.5.3 导数的计算1.6 函数的导数1.6.1 函数的导数1.6.2 基本初等函数的导数1.6.3 函数的运算与导数的运算法则1.6.4 反函数的导数1.7 函数的单调性和曲线的凹凸性1.7.1 函数的单调性1.7.2 曲线的凹凸性1.7.3 曲线与切线1.8 函数的应用1.8.1 极值与最值1.8.2 函数的单调性与曲线的凹凸性1.8.3 函数的图像与导数1.8.4 函数的应用实例第二章三角函数2.1 角度与三角函数2.1.1 角的概念2.1.2 弧度制2.1.3 三角函数概念及其性质2.2 三角函数的图像与性态2.2.1 正弦函数、余弦函数、正切函数、余切函数的图像 2.2.2 三角函数图像的平移与变换2.2.3 三角函数性质2.3 三角函数的基本关系2.3.1 同角三角函数的基本关系 2.3.2 和差化积2.3.3 倍角公式2.3.4 万能角2.4 三角函数的应用2.4.1 角的正弦定理与余弦定理 2.4.2 应用题解析第三章数列与数学归纳法3.1 数列的概念与表示3.1.1 数列的定义3.1.2 数列的通项公式3.1.3 数列的图像3.2 等差数列3.2.1 等差数列的性质3.2.2 等差数列的通项公式3.2.3 等差数列的前n项和3.3 等比数列3.3.1 等比数列的性质3.3.2 等比数列的通项公式3.3.3 等比数列的前n项和3.4 递推数列3.4.1 递推数列的概念3.4.2 递推数列的性质3.4.3 递推数列的通项公式3.5 数学归纳法3.5.1 数学归纳法的概念3.5.2 数学归纳法的证明方法 3.5.3 数学归纳法的应用第四章平面向量4.1 向量的概念及表示4.1.1 向量的定义4.1.2 向量的性质4.1.3 向量的表示4.2 向量的运算4.2.1 向量的加减法4.2.2 向量的数量积4.2.3 向量的数量积几何意义 4.2.4 向量的数量积的性质 4.2.5 向量的数量积的运算 4.2.6 向量的线性运算4.3 平面向量的应用4.3.1 向量的基本运算4.3.2 平面向量的应用4.3.3 平面向量的坐标表示 4.3.4 平面向量的数量积应用第五章解析几何5.1 平面直角坐标系5.1.1 平面直角坐标系的概念 5.1.2 平面直角坐标系的性质5.1.3 平面直角坐标系的相关概念5.2 参数方程与一般方程5.2.1 参数方程的概念5.2.2 参数方程与一般方程的相互转化 5.2.3 参数方程的规律5.3 直线和圆的方程5.3.1 直线的一般方程5.3.2 直线的参数方程5.3.3 圆的一般方程5.3.4 圆的参数方程5.4 圆锥曲线的一般方程5.4.1 椭圆的一般方程5.4.2 双曲线的一般方程5.4.3 抛物线的一般方程5.5 空间直角坐标系5.5.1 空间直角坐标系的概念5.5.2 空间直角坐标系的性质5.5.3 空间直角坐标系的应用第六章空间解析几何初步6.1 空间直线和空间平面6.1.1 空间直线的方程6.1.2 空间平面的方程6.1.3 空间直线与空间平面的位置关系6.2 空间几何体的性质6.2.1 点、直线、平面6.2.2 圆锥曲线及其特性6.2.3 空间几何体的视图6.3 空间向量的运算6.3.1 空间向量的数量积6.3.2 空间向量的叉积6.3.3 空间向量的三线共面第七章立体几何初步7.1 空间图形的投影7.1.1 三视图与剖视图7.1.2 图形的投影7.1.3 空间图形的展开图7.2 空间图形的计算7.2.1 空间图形的体积7.2.2 空间图形的表面积7.2.3 空间图形的计算7.3 空间几何体的位置关系7.3.1 空间几何体的位置关系 7.3.2 空间几何体的三视图 7.3.3 空间几何体的投影第八章概率初步8.1 随机事件与概率8.1.1 随机事件的概念8.1.2 随机事件的性质8.1.3 概率的概念8.1.4 概率的性质8.2 条件概率8.2.1 条件概率的概念8.2.2 互斥事件与对立事件的概率计算8.2.3 定理的概率计算8.3 事件间的关系8.3.1 独立事件8.3.2 事件间的关系8.3.3 事件运算法则8.4 随机变量8.4.1 随机变量的定义8.4.2 随机变量的分布8.4.3 随机变量的分布列8.5 随机事件与概率的应用8.5.1 样本空间8.5.2 概率模型的应用8.5.3 概率的应用实例以上是数学必修二的知识点总结,希望对您复习整理有所帮助。
高中数学必修2知识点总结一、函数基础1. 函数的概念- 定义:一个从非空数集A到非空数集B的映射,记为y=f(x)。
- 函数的表示:解析式、图象、表格。
- 函数的符号:f(x),x∈A。
2. 函数的性质- 单调性:函数在某个区间内,随着x的增加,y值单调递增或递减。
- 奇偶性:f(-x)=f(x)为偶函数,f(-x)=-f(x)为奇函数。
- 周期性:存在正数T,使得f(x+T)=f(x)。
3. 函数的运算- 四则运算:两个函数的和、差、积、商。
- 复合函数:f(g(x))。
- 反函数:满足f(f^(-1)(x))=x的函数。
4. 基本初等函数- 幂函数:y=x^a,a∈R。
- 指数函数:y=a^x,a>0,a≠1。
- 对数函数:y=log_a(x),a>0,a≠1。
- 三角函数:正弦、余弦、正切等。
二、三角函数1. 三角函数的定义- 正弦、余弦、正切函数的定义。
- 弧度制与角度制的转换。
2. 三角函数的图象与性质- 周期性、单调性。
- 最大值、最小值。
- 特殊角的三角函数值。
3. 三角函数的运算- 三角函数的和差公式。
- 二倍角公式、半角公式。
- 积化和差与和差化积公式。
4. 解三角形- 正弦定理、余弦定理。
- 三角形面积公式。
三、数列1. 数列的概念- 定义:按照一定顺序排列的一列数。
- 有穷数列与无穷数列。
2. 等差数列与等比数列- 定义与通项公式。
- 求和公式。
- 性质与判定。
3. 数列的极限- 极限的概念。
- 极限的性质。
- 极限的运算法则。
四、解析几何1. 平面直角坐标系- 点的坐标。
- 距离公式、中点坐标公式。
2. 直线的方程- 点斜式、斜截式、一般式。
- 两直线的交点、平行与垂直。
3. 圆的方程- 标准方程。
- 一般方程。
4. 圆锥曲线- 椭圆、双曲线、抛物线的方程与性质。
五、概率与统计1. 随机事件与概率- 事件的概率定义。
- 条件概率、独立事件。
2. 随机变量及其分布- 离散型随机变量与连续型随机变量。
高中数学必修二重要知识点系统归纳第一章、简单的空间几何体(一)空间几何体的结构特征(熟悉)(1)多面体——由若干个平面多边形围成的几何体.(2) 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
(了解)2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。
x o y中画直观图时,已知图形中平行于坐标轴的线段保持平行性4.斜二测法:在坐标系'''不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。
(掌握)(三)空间几何体的表面积与体积1、空间几何体的表面积①棱柱、棱锥的表面积: 各个面面积之和 ②圆柱的表面积 (重点记忆)③圆锥的表面积2Srl r ππ=+(重点记忆) ④圆台的表面积22S rl r Rl R ππππ=+++ ⑤球的表面积24S R π= ⑥扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径) 2、空间几何体的体积①柱体的体积 V S h =⨯底 ②锥体的体积 13V S h =⨯底 ③台体的体积1)3V S S h =++⨯下上( ④球体的体积343V R π=第二章、空间点线面的位置关系知识点归纳一、基本公理(熟悉)1.平面的基本性质公理1如果一条直线上的两个点都在一个平面内,那么这条直线上的所有点都在这个平面内,,A B l A B α∈⎫⎬∈⎭l α⇒⊂ 2.平面的基本性质公理2(确定平面的依据)经过不在一条直线上的三个点,有且只有一个平面3.平面的基本性质公理2的推论(1)经过一条直线和直线外的一点,有且只有一个平面(2)经过两条相交直线,有且只有一个平面(3)经过两条平行直线,有且只有一个平面4.平面的基本性质公理3如果两个不重合的平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是一条直线222r rl S ππ+=A A αβ∈⎫⎬∈⎭⇒l A lαβ=∈I5.异面直线的定义与判定(1)定义:不同在任何一个平面内的两条直线,既不相交也不平行(2)判定:过平面外一点与平面内一点的直线,与平面内不经过该点的直线是异面直线二、.直线与平面平行判定及其性质(1)线面平行的判定定理如果不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行a α⊄,b α⊂,////a b a α⇒(2)线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行//l α,l β⊂,//m l m αβ=⇒I三.平面与平面平行判定及其性质1,面面平行的判定定理(1)如果一个平面内有两条相交直线,分别平行于另一个平面,那么这两个平面平行a α⊂,b α⊂,a b A =I ,//a β,////b βαβ⇒(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
数学必修二第二章知识点总结一、函数的概念与表示方法1. 函数定义:一个从集合A到集合B的映射,记为$f: A\rightarrow B$。
2. 函数的表示方法:- 公式法:$y = f(x)$- 图像法:通过坐标平面上的点集表示函数- 表格法:列出一系列的$(x, f(x))$值对二、函数的性质1. 单调性:- 单调递增:对于任意$x_1 < x_2$,有$f(x_1) \leq f(x_2)$ - 单调递减:对于任意$x_1 < x_2$,有$f(x_1) \geq f(x_2)$ 2. 奇偶性:- 奇函数:满足$f(-x) = -f(x)$- 偶函数:满足$f(-x) = f(x)$3. 周期性:存在正数T,使得对于任意x,有$f(x + T) = f(x)$三、函数的基本类型1. 一次函数:$y = ax + b$,其中a和b为常数2. 二次函数:$y = ax^2 + bx + c$,其中a、b和c为常数3. 指数函数:$y = a^x$,其中a>0且a≠14. 对数函数:$y = \log_a(x)$,其中a>0且a≠15. 三角函数:- 正弦函数:$y = \sin(x)$- 余弦函数:$y = \cos(x)$- 正切函数:$y = \tan(x)$四、函数的运算1. 函数的加法、减法、乘法和除法:- $(f + g)(x) = f(x) + g(x)$- $(f - g)(x) = f(x) - g(x)$- $(f \cdot g)(x) = f(x) \cdot g(x)$- $(f / g)(x) = \frac{f(x)}{g(x)}$,要求$g(x) \neq 0$ 2. 复合函数:$(f \circ g)(x) = f(g(x))$五、函数的图像1. 一次函数图像:直线2. 二次函数图像:抛物线3. 指数函数图像:指数曲线4. 对数函数图像:对数曲线5. 三角函数图像:- 正弦函数:波形曲线- 余弦函数:波形曲线- 正切函数:周期性波动曲线六、函数的应用1. 实际问题的建模与解决2. 优化问题中的最值求解3. 物理和工程问题中的应用请将以上内容复制到Word文档中,并根据实际需要进行格式设置,如标题加粗、分点符号的使用、段落缩进等,以确保文档的专业性。
第二章点、直线、平面之间的地址关系空间点、直线、平面之间的地址关系一、平面1、平面及其表示2、平面的基本性质①公义 1:A lB llAB②公义 2:不共线的三点确定一个平面③公义 3:Pl 则P lP二、点与面、直线地址关系1、A1、点与平面有 2 种地址关系2、B1、A l2、点与直线有 2 种地址关系2、 B l三、空间中直线与直线之间的地址关系1、异面直线2、直线与直线的地址关系订交共面平行异面3、公义 4 和定理公义 4:l1 Pl3l1 Pl 2l 2 Pl3定理:空间中若是两个角的两边分别对应平行,那么这两个角相等或互补。
4、求异面直线所成角的步骤:① 作:作平行线获取订交直线;② 证:证明作出的角即为所求的异面直线所成的角;③ 构造三角形求出该角。
提示: 1、作平行线常有方法有:直接平移,中位线,平行四边形。
2、异面直线所的角的范围是00 ,900。
四、空间中直线与平面之间的地址关系地址关系直线 a在平面内直线 a与平面订交直线 a与平面平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示a a I Aa P图形表示五、空间中平面与平面之间的地址关系地址关系两个平面平行两个平面订交公共点没有公共点有一条公共直线符号表示P I a图形表示直线、平面平行的判断及其性质一、线面平行1、判断:ba b Pb Pa(线线平行,则线面平行)2、性质:a PaPa b b(线面平行,则线线平行)二、面面平行1、判断:aba b P Pa Pb P(线面平行,则面面平行)2、性质 1:PI a a PbI b(面面平行,则线面平行)性质 2:Pm Pm(面面平行,则线面平行)说明( 1)判断直线与平面平行的方法:① 利用定义:证明直线与平面无公共点。
② 利用判判定理:从直线与直线平行等到直线与平面平行。
③ 利用面面平行的性质:两个平面平行,则其中一个平面内的直线必平行于另一个平面。
(2)证明面面平行的常用方法①利用面面平行的定义:此法一般与反证法结合。
高中数学必修2知识点总结归纳
1、二次函数及其图像的性质:二次函数的定义,形式,及其未知量的解析解,二次
函数图像的性质,凹凸性和极值点位置,及其判定方法。
2、三角函数及其图形:正弦函数、余弦函数、正切函数的定义,平面直角坐标系下
的正弦余弦正切函数图像的性质及其判定方法,正弦定理,余弦定理,根据图形求三角函
数值,及其应用。
3、小数和分数的运算:常用的小数转分数的方法,小数和分数的加减乘除运算,及
其规律性的分析。
4、指数及对数:指数的定义,特殊指数的运算及其规律性,指数函数的图像及性质,对数的定义及其特殊性质,对数函数及其图形性质,及其一元二次多项式的变换。
5、多项式及其因子分解:多项式的基本定义,及其分母和分子的几何概念,多项式
的因子分解,及其唯一性的判断。
6、不定积分及其应用:不定积分的定义及其特殊性,常用的不定积分计算方法,及
其实际应用,求积分近似值的方法,以及实际的应用案例。
7、应用题中的数字变换:应用题中常见的实数变化,及其最高次数的判定,同时变
化的最小公倍数及其关系,求解应用题中特殊方程组的方法,及其实际案例。
8、圆的参数方程及极坐标方程:圆的定义,参数方程与极坐标方程的转换,园的性质,及其圆上点的定位方法,过定点且与圆的关系及应用。
9、高等函数及应用:高次函数的定义,及其图像的特点,高次函数的求解及其实际
应用,对数及指数函数的求解及应用,以及多项式、二次曲线等拟合应用。
10、三角型函数与几何图形的关系:三角型函数的定义及其特殊性质,三角型函数的
变换及其图形改变,及其三角函数与几何图形联系的应用。
高中数学必修2知识点总结高中数学必修2是中学数学中的一门重要课程,它为我们打下了坚实的数学基础。
在这门课中,我们学习了许多关于代数、几何和概率等方面的知识点。
以下是我对这门课程的一些总结。
一、代数知识点1. 二次函数与一次函数的比较:二次函数是一次函数的平方和常数项的和。
我们可以通过比较二次函数与一次函数的图像特点,如开口方向、顶点坐标和对称轴等来进行比较。
2. 因式分解与二次根式:因式分解是将一个多项式拆分成若干个乘积的形式。
对于含有二次根式的因式分解,我们需要注意判断二次根式是否可以开方,若不能开方,则需要进行有理化处理。
3. 分式方程与分式不等式:分式方程是指方程中含有分式的形式,而分式不等式是指不等式中含有分式的形式。
对于分式方程和分式不等式,我们需要注意分母是否为0的情况,并对其进行合理化简和求解。
二、几何知识点1. 三角形的相似性:当两个三角形的对应角相等时,我们可以判断这两个三角形是相似的。
通过相似三角形的性质,我们可以推导出诸如边长比例、高线比例和面积比例等相关结论。
2. 圆的性质与相关定理:对于圆,我们需要了解它的常见性质,如圆心角、弧、弦和切线等。
同时,还需要掌握诸如切线定理、切割定理和切线长定理等相关定理。
3. 二次曲线的基本概念与性质:二次曲线包括抛物线、椭圆和双曲线等类型。
我们需要了解它们的基本方程、几何性质以及与坐标轴的关系,通过这些了解可以更好地理解和分析二次曲线的特点。
三、概率知识点1. 事件与概率:事件是指某一结果或一组结果的集合,而概率是指某一事件发生的可能性。
我们可以通过概率的计算公式来计算事件发生的概率,同时也需要了解事件的互斥、独立以及相等概率等相关概念。
2. 条件概率与事件独立性:条件概率是指在已知某一条件下,另一事件发生的概率。
我们需要掌握条件概率的计算方法,以及事件之间是否独立的判断条件。
3. 排列与组合:排列是指从若干个元素中选取一部分按照一定的顺序排列的方式;组合是指从若干个元素中选取一部分无序排列的方式。
⎨ 01 = 1( x高中数学必修 2 知识点一、直线与方程 (1) 直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与 x 轴平行或重合时,我们规定它的倾斜角为 0 度。
因此,倾斜角的取值范围是 0°≤α<180° (2) 直线的斜率①定义:倾斜角不是 90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用 k 表示。
即 k = tan 。
斜率反映直线与轴的倾斜程度。
当∈ [0 ,90 时, k ≥ 0 ;当∈ (90 ,180 )时, k < 0 ; 当= 90 时, k 不存在。
y 2 - y 1②过两点的直线的斜率公式: k = (x 1 ≠ x 2 )x 2 - x 1注意下面四点:(1)当 x 1 = x 2 时,公式右边无意义,直线的斜率不存在,倾斜角为 90°;(2)k 与 P 1、P 2 的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3) 直线方程 ①点斜式: y - y 1 = k (x - x 1 ) 直线斜率 k ,且过点(x 1, y 1 )注意:当直线的斜率为 0°时,k=0,直线的方程是 y =y 1。
当直线的斜率为 90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因 l 上每一点的横坐标都等于 x 1,所以它的方程是 x =x 1。
②斜截式: y = kx + b ,直线斜率为 k ,直线在 y 轴上的截距为 b ③两点式: y - y x - x ≠ x , y ≠ y )直线两点(x , y ), (x , y )y - y x - x1 2 1 2 1 1 2 2 2 1 2 1 ④截矩式: x + y= 1a b其中直线 l 与 x 轴交于点(a , 0) ,与 y 轴交于点(0,b ) ,即 l 与 x 轴、 y 轴的截距分别为 a ,b 。
⑤一般式: Ax + By + C = 0 (A ,B 不全为 0)注意:○1 各式的适用范围 ○2 特殊的方程如: 平行于 x 轴的直线: y = b (b 为常数);平行于 y 轴的直线: x = a (a 为常数);(5) 直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线 A 0 x + B 0 y + C 0 = 0 ( A 0 , B 0 是不全为 0 的常数)的直线系: A 0 x + B 0 y + C = 0 (C 为常数) (二)过定点的直线系(ⅰ)斜率为 k 的直线系: y - y 0 = k(x - x 0 ),直线过定点(x , y );(ⅱ)过两条直线 l 1 : A 1x + B 1 y + C 1 = 0 , l 2 : A 2 x + B 2 y + C 2 = 0 的交点的直线系方程为(A 1x + B 1 y + C 1 )+ (A 2 x + B 2 y + C 2 )= 0 (为参数),其中直线 l 2 不在直线系中。
(6) 两直线平行与垂直当l 1 : y = k 1 x + b 1 , l 2 : y = k 2 x + b 2 时,l 1 // l 2 ⇔ k 1 = k 2 , b 1 ≠ b 2 ; l 1 ⊥ l 2 ⇔ k 1k 2 = -1注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7) 两条直线的交点l 1 : A 1x + B 1 y + C 1 = 0 l 2 : A 2 x + B 2 y + C 2 = 0 相交交点坐标即方程组⎧A 1x + B 1 y + C 1 = 0 的一组解。
A x + B y + C = 0 ⎩ 2 2 2方程组无解⇔ l 1 // l 2 ; 方程组有无数解⇔ l 1 与l 2 重合(8) 两点间距离公式:设 A (x 1 , y 1 ),()x 2 , y 2 则| AB |=是平面直角坐标系中的两个点,(x - x )2 + ( y - y )2 2 1 2 1Aa + Bb + C A 2 + B 2-(9) 点到直线距离公式:一点 P (x 0 , y 0 )到直线l 1 : Ax + By + C = 0 的距离d = (10) 两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。
二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程(1) 标准方程(x - a )2 + (y - b )2 = r 2 ,圆心 (a , b ),半径为 r ;(2) 一般方程 x 2 + y 2 + Dx + Ey + F = 0 当 D 2 + E 2 - 4F > 0 时,方程表示圆,此时圆心为⎛ DE ⎫ ,半径为r =,- ⎪ ⎝ 2 2 ⎭2 当 D 2 + E 2 - 4F = 0 时,表示一个点; 当 D 2 + E 2 - 4F < 0 时,方程不表示任何图形。
(3) 求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程,需求出 a ,b ,r ;若利用一般方程,需要求出 D ,E ,F ;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:(1) 设直线l : Ax + By + C = 0 ,圆C :(x - a )2 + (y - b )2 = r 2 ,圆心C (a , b )到 l 的距离为d =,则有 d > r ⇔ l 与C 相离; d = r ⇔ l 与C 相切; d < r ⇔ l 与C 相交(2) 设直线l : Ax + By + C = 0 ,圆C :(x - a )2 + (y - b )2 = r 2 ,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为∆ ,则有∆ < 0 ⇔ l 与C 相离; ∆ = 0 ⇔ l 与C 相切; ∆ > 0 ⇔ l 与C 相交 注:如果圆心的位置在原点,可使用公式 xx 0 示半径。
(3)过圆上一点的切线方程:+ yy 0 = r 2 去解直线与圆相切的问题,其中 (x 0 , y 0 )表示切点坐标,r 表①圆 x 2 +y 2 =r 2,圆上一点为(x 0,y 0),则过此点的切线方程为 xx 0+ yy =0 r 2 (课本命题).②圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 2 (课本命题的推广).4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
设圆C : (x - a )2 + (y - b )2 = r 2 , C : (x - a )2 + (y - b )2 = R 2111222两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
当 d > R + r 时两圆外离,此时有公切线四条;当 d = R + r 时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当 R - r < d < R + r 时两圆相交,连心线垂直平分公共弦,有两条外公切线;当 d = 当 d < R - r 时,两圆内切,连心线经过切点,只有一条公切线;R - r 时,两圆内含; 当d = 0 时,为同心圆。
三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱 ABCDE - A ' B 'C ' D ' E ' 或用对角线的端点字母,如五棱柱 AD 'Ax 0+ By 0+ CA 2 +B 21 D2 + E 2 - 4FS ' S S 'S 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥 P - A ' B 'C ' D ' E '几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台 P - A ' B 'C ' D ' E '几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4) 圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5) 圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6) 圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7) 球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与 x 轴平行的线段仍然与 x 平行且长度不变;②原来与 y 轴平行的线段仍然与 y 平行,长度为原来的一半。