石墨烯的应用领域
- 格式:docx
- 大小:199.09 KB
- 文档页数:41
材料界“网红一哥”——石墨烯5大应用领域,产业浪潮开启看点:应用领域不断拓展,石墨烯大规模产业化即将开始。
石墨烯属于二维碳纳米材料,具有优秀的力学特性和超强导电性导热性等出色的材料特性,其下游应用主要涵盖基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。
石墨烯的大规模商业应用方向主要分为粉体和薄膜,其中石墨烯粉体目前主要用于新能源、防腐涂料等领域,石墨烯薄膜主要应用于柔性显示和传感器等领域,其中来自新能源的需求超过 70%。
全球石墨烯行业市场规模呈稳步增长态势。
预计到 2020 年末,全球和国内石墨烯行业市场规模分别为 95 亿美元和 200 亿元,中国石墨烯市场规模约占全球石墨烯总市场规模的 30%,并有逐年提高的趋势。
本期的智能内参,我们推荐国信证券的研究报告,揭秘石墨烯的性能特点、产业链概况、下游需求和国内外行业现状。
本期内参来源:国信证券1性能强大的新材料之王石墨烯是 2004 年用微机械剥离法从石墨中分离出的一种由碳原子以sp²杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,英文名为 Graphene,为一层碳原子构成的二维晶体。
石墨烯与其他有机高分子材料相比,有比较独特的原子结构和力学特性。
石墨烯的理论杨氏模量达 1.0TPa,固有的拉伸强度为 130Gpa,是已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,被誉为“新材料之王”、“黑金”。
▲典型的石墨烯结构图▲ 单层石墨烯是其他碳材料的基本元素石墨烯按照层数可分为单层石墨烯、双层石墨烯、少层石墨烯和多层石墨烯。
按照功能化形式可以分为氧化石墨烯、氢化石墨烯、氟化石墨烯等。
按照外在形态、又可分为片、膜、量子点、纳米带或三维状等。
▲石墨烯分类石墨烯具有超强导电性、良好的热传导性、良好的透光性、溶解性、渗透率、高柔性和高强度等出色的材料特性。
它的的应用领域非常广泛,主要集中在基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。
石墨烯在新能源材料中的应用一、石墨烯的概述石墨烯是由碳原子组成的一种单层薄膜材料,具有极高的强度、导电性和导热性。
它是一种二维材料,厚度只有一个原子层,因此被称为“二维之王”。
二、石墨烯在新能源领域的应用1. 太阳能电池太阳能电池是将太阳光转化为电能的装置。
传统太阳能电池使用硅等半导体材料,但这些材料价格昂贵且制造过程复杂。
而使用石墨烯作为太阳能电池中的电极材料可以大大降低成本,并提高效率。
2. 锂离子电池锂离子电池是目前最主流的可充电电池之一,广泛应用于手机、笔记本等移动设备中。
使用石墨烯作为锂离子电池负极材料可以提高其容量和循环寿命。
3. 超级电容器超级电容器是一种储存和释放大量能量的设备,在汽车、船舶等领域有广泛应用。
使用石墨烯作为超级电容器的电极材料可以提高其能量密度和功率密度。
4. 燃料电池燃料电池是一种将氢气等可再生能源转化为电能的装置。
使用石墨烯作为燃料电池中的催化剂可以提高其效率和稳定性。
三、石墨烯在新能源材料中的优势1. 高导电性:石墨烯具有极高的导电性,可以提高太阳能电池、锂离子电池等设备的效率。
2. 高强度:由于只有一个原子层厚度,因此石墨烯具有极高的强度,可以增加材料的耐久性。
3. 高导热性:石墨烯具有极高的导热性,可以提高设备散热效果。
4. 超大比表面积:由于只有一个原子层厚度,因此石墨烯具有超大比表面积,可以增加催化剂对反应物质的接触面积。
四、未来展望随着科技不断发展,人们对新能源领域的需求不断增加。
而石墨烯作为一种具有优异性能的材料,将在新能源领域中发挥越来越重要的作用。
未来,石墨烯可能会被广泛应用于太阳能电池、锂离子电池、超级电容器、燃料电池等领域,并带来更高效、更稳定的能源设备。
石墨烯的应用
石墨烯是一种具有单层碳原子排列成的二维晶格结构的材料,具有许多独特的物理、化学和机械性质,因此在多个领域都有广泛的应用。
以下是一些常见的石墨烯应用:
1.电子器件:由于石墨烯具有高电子迁移率、高载流子迁移率和优异的电导率,因此被广泛应用于电子器件中,如场效应晶体管(FET)、透明导电膜、逻辑电路等。
2.光学器件:石墨烯具有宽带隙和高吸收率的特点,可用于太阳能电池、光电探测器、激光器等光学器件中,提高光电转换效率和传感性能。
3.储能设备:石墨烯在锂离子电池、超级电容器等能量存储设备中具有重要应用。
其大表面积、高电导率和快速离子传输性能有助于提高能量密度和充放电速度。
4.传感器:石墨烯具有高比表面积和化学惰性,可用于气体传感器、生物传感器等传感器设备中,检测环境中的气体、生物分子等。
5.强化材料:石墨烯可以增强复合材料的力学性能,提高材料的强度、刚度和耐磨性,常用于航空航天、汽车制造、体育用品等领域。
6.生物医学:石墨烯在生物医学领域具有潜在应用,可用于药物输送、生物成像、组织工程等。
其生物相容性和表面修饰的可调控性使其成为生物医学材料的研究热点。
7.热管理:石墨烯具有优异的热导率和导热性能,可用于热界面材料、散热器、导热膏等热管理领域,提高热传递效率。
总的来说,石墨烯作为一种多功能的纳米材料,在电子学、光学、能源、生物医学和材料科学等领域都有着广泛的应用前景。
石墨烯材料的特点以及在各个领域中的应用
石墨烯是一种由碳原子构成的单层薄炭素材料,具有许多独特的特点和广泛的应用。
以下是石墨烯材料的特点以及在各个领域中的应用。
特点:
1. 高强度和高硬度:石墨烯的强度比钢高200倍,硬度比金刚石高五倍。
2. 轻量和薄:石墨烯仅有一个原子层厚度,非常轻便。
3. 电子迁移速度快:电子在石墨烯中移动的速度非常快,是现有材料的几百倍。
4. 热稳定性好:石墨烯可以承受高温,不易熔化或分解。
5. 非常透明:石墨烯能够使90%的光线穿透,是目前已知的最透明的材料之一。
应用:
1. 电子学:石墨烯非常适合用于电子学领域,因为它的电子迁移速度非常快,在电子器件中能够提供更快的信号传输速度。
例如,石墨烯可以用于制造晶体管、场效应晶体管和光电二极管等。
2. 医学:石墨烯可以用于制造医用传感器和医疗设备。
例如,石墨烯传感器可以检测人体内某些化学物质的浓度,对于监测病情和治疗非常有用。
3. 能源:石墨烯还可以用于制造太阳能电池和储能器。
例如,石墨烯太阳能电池可以将太阳能转换为电能,而石墨烯储能器可以在短时间内存储大量电能。
4. 环境保护:石墨烯可以用于净化和过滤水和空气。
例如,石墨烯纳米过滤膜可以去除水中的杂质和污染物,而石墨烯纳米过滤器可以去除空气中的有害物质和颗粒物。
总之,石墨烯具有许多独特的特点和广泛的应用,在未来的科技领域中具有重要的发展前景。
石墨烯应用前景石墨烯是一种新兴的二维材料,具有独特的性质和潜在的应用前景。
以下是石墨烯的几个重要应用领域和前景。
首先,石墨烯在电子学领域有着巨大的潜力。
由于石墨烯是单原子层的二维材料,具有很高的电导率和电子迁移率,可以用于制造高速、高性能的电子器件。
例如,石墨烯可以替代现有的硅材料,用于生产更小、更快的微处理器。
此外,石墨烯也可以用于制造柔性显示屏和柔性电子器件,为电子产品的发展提供更多可能性。
其次,石墨烯在能源领域有着广阔的应用前景。
石墨烯具有优异的导电特性和高比表面积,可以用于制造高效的电池和超级电容器。
石墨烯电池具有更高的储存能量和更快的充电速度,可以为电动汽车和移动设备提供更长的续航时间和更便捷的充电方式。
此外,石墨烯还可以用于制造高效的太阳能电池和燃料电池,进一步推动可再生能源的发展和利用。
此外,石墨烯还有广阔的应用前景在材料科学和化学工程领域。
石墨烯具有出色的机械强度和柔性,可以用于制造轻量、高强度的材料。
石墨烯复合材料可以应用于航空航天、汽车制造和建筑等领域,提供更安全、更耐用的产品。
同时,石墨烯还具有高热导率和高化学稳定性,可以用于制造高效的催化剂和吸附剂,有助于解决环境污染和能源转化等问题。
最后,石墨烯还有潜在的生物医学应用。
石墨烯具有高比表面积和生物相容性,可以用于制造生物传感器、药物递送系统和组织工程等领域。
石墨烯纳米材料可以用于检测和治疗癌症、感染和神经退行性疾病等重大疾病,为医学诊断和治疗提供新的手段和方法。
综上所述,石墨烯具有广泛的应用前景,在电子学、能源、材料科学和生物医学等领域都有着重要的应用价值。
随着相关技术的不断发展和成熟,相信石墨烯将会成为未来科技和工业发展的重要驱动力。
石墨烯材料的特点以及在各个领域中的应用石墨烯是一种独特的材料,具有许多独特的特点。
首先,它是一种非常薄的材料,只有一个原子厚度。
其次,它是一种非常强硬和耐用的材料,可以承受很高的应力。
石墨烯还具有出色的导电性和热导性,这使得它在电子学和热学应用中非常有用。
此外,石墨烯还具有出色的光学特性,可以用于太阳能电池和光电器件。
在材料科学领域,石墨烯已经被广泛研究和应用。
石墨烯可以用于制造超级电容器、柔性电子设备、传感器、纳米器件等。
此外,石墨烯还可以用于制造强化材料、防腐涂层等。
在医学领域,石墨烯也有着潜在的应用。
石墨烯可以用于制造药物递送平台、人工组织等。
此外,石墨烯还可以用于生物传感器、光学成像等。
总之,石墨烯是一种非常有前途的材料,在各个领域中都有着广泛的应用前景。
随着对石墨烯的研究不断深入,我们相信这种材料将会在未来发挥更加重要的作用。
- 1 -。
高纯度石墨烯用途
高纯度石墨烯具有许多潜在的应用领域。
以下是一些常见的用途:
1. 电子学和纳米电子学:高纯度石墨烯具有优异的电子传输性能,可用于制备高性能的半导体器件、电极材料和导电材料。
它可以应用于智能手机、平板电脑、显示器等电子产品中。
2. 能源储存:石墨烯具有高比表面积和优异的电导性能,可用于制备高性能的锂离子电池、超级电容器和燃料电池。
3. 材料强化剂:高纯度石墨烯可用作填充剂,增强材料的力学性能。
它可以应用于塑料、橡胶、复合材料等领域,提高材料的强度和硬度。
4. 光学应用:石墨烯具有优异的光学性能,如高透明度、宽波段吸收和强烈的拉曼散射。
它可以应用于光电子器件、传感器和光学涂料中。
5. 生物医学:高纯度石墨烯在生物医学领域具有广泛的应用前景,如药物传输、生物传感器、组织工程和癌症治疗等。
6. 水处理:石墨烯具有高效的吸附性能和氧化性,可用于水处理、废水处理和污水处理中的去除有害物质。
7. 润滑剂:石墨烯的层状结构使其在润滑领域具有优异的表现。
高纯度石墨烯可以用作高温润滑剂、固体润滑剂和润滑涂层。
这些仅是高纯度石墨烯的一些常见应用,随着研究和技术的发展,石墨烯的更多应用领域可能会被发现。
石墨烯在服装方面的应用石墨烯是一种具有特殊结构和卓越性能的二维材料,具有许多在服装领域有潜力的应用。
以下是一些石墨烯在服装方面的应用:1.导电性和热传导性:石墨烯具有出色的电导率和热导率,因此可以用于制作具有导电性和热传导性的纤维和面料。
这些面料可以用于电热服装,如智能加热外套、手套和鞋,以保持身体温暖。
2.防护服和装备:石墨烯的强度和耐磨性使其成为制作防弹服、防火服和其他保护性装备的理想材料。
它可以增加服装的耐用性和抗磨损性。
3.防辐射服装:石墨烯的屏蔽性能使其成为制作防辐射服装的选择,可以保护人体免受电磁辐射和射频辐射的影响。
4.智能服装:石墨烯可以与传感器和电子元件集成,制作智能服装。
这些服装可以用于监测生理参数、跟踪运动、记录数据等。
例如,可以制作具有健康监测功能的石墨烯衣物。
5.轻量化和强化:尽管石墨烯本身非常轻薄,但它具有出色的强度和耐用性。
因此,可以将石墨烯纳入服装设计中,以增加服装的强度,同时保持轻量化。
6.染料和颜色:石墨烯可以用于染色和制作颜色变化的面料,使得服装可以根据环境或用户的需求改变颜色。
7.防水和透气性:石墨烯可以用于制作既防水又透气的面料,使服装保持干燥,同时不会使身体感到不透气。
8.环保:石墨烯制造过程中使用的原材料相对丰富,制作出的服装可以是可持续和环保的选择。
需要指出的是,尽管石墨烯在服装方面有着广泛的潜力,但其商业化应用仍然在研究和开发阶段,一些技术和成本方面的挑战仍需克服。
然而,随着技术的不断进步,可以预期石墨烯在未来的服装领域会发挥越来越大的作用。
石墨烯的十大用途
一、电子学领域
石墨烯在电子领域的用途是最明显的,它几乎可以在任何一个电子装
置中发挥作用,其应用的范围从电路器件到高频器件都能发挥重要的作用,从而使得电子设备的性能更加优异。
具体来说,石墨烯可以用于制造低阻
抗电路,高频电路,低损耗电路,高信噪比电路,还可以实现快速传输,
工作电流小,功耗低,可以制造可折叠、轻便、薄芯的灵敏传感器等,可
以大大缩短产品的规模和尺寸,降低电路板的复杂度,使用寿命更长,提
升电子装置的效能。
二、电池领域
石墨烯在电池领域的应用也非常广泛,它可以用于普通的锂离子电池,也可以用于锂硫、锂空气电池中,石墨烯能吸收高能量的电荷,在电池负
极的形成新的结构,改进电池的放电稳定性和容量,还可以降低电池的耐
久性,有利于把电池保护在一定的稳定状态,使用寿命更长。
三、燃料电池领域
石墨烯也可以用于燃料电池,由于其优异的热稳定性和优越的电导性,石墨烯可以有效提升燃料电池的功率和效率,进一步提高燃料电池的可靠
性及安全性,燃料电池可以用于太阳能、热能、水能等可再生能源的转换
和储存,以及汽车、船舶等的应用。
石墨烯的应用领域第—章石墨烯应用领域石墨烯因其独特的电学性能、力学性能、热性能、光学性能和高比表面积,近年来受到化学、物理、材料、能源、环境等领域的极大重视,应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。
具体在五个应用领域:一是储能领域。
石墨烯可用于制造超级电容器、超级锂电池等。
二是光电器件领域。
石墨烯可用于制造太阳能电池、晶体管、电脑芯片、触摸屏、电子纸等。
三是材料领域。
石墨烯可作为新的添加剂,用于制造新型涂料以及制作防静电材料。
四是生物医药领域。
石墨烯良好的阻隔性能和生物相容性,可用于药物载体、生物诊断、荧光成像、生物监测等。
五是散热领域。
石墨烯散热薄膜可广泛应用于超薄大功耗电子产品,比如当前全球热销的智能手机、IPAD电脑、半导体照明和液晶电视等。
中国科学院预计,至V 2024年前后,石墨烯器件有望替代互补金属氧化物半导体(CMOS )器件,在纳米电子器件、光电化学电池、超轻型飞机材料等研究领域得到应用。
目前,全球范围内仅电子行业每年需消耗大约2500吨半导体晶硅,纯石墨烯的市场价格约为人民币1000元/g,其若能替代晶硅市场份额的10%,就可以获得5000亿元以上的经济利益;全球每年对负极材料的需求量在2.5万吨以上,并保持了20%以上的增长,石墨烯若能作为负极材料获得锂离子电池市场份额的10%,就可以获得2500吨的市场规模。
可见,石墨烯具有广阔的应用空间和巨大的经济效益。
上游制备下游应用碱鸡上it*ft4电学卅箱:导电油蚤、电塩电愛的电用屛啟高谴支蚩好、堰後抵腔如电地:4t林轧tMtf#啟搜歎片机.*戟蛊示啟<r^i L u^ 社于无器件:芯片特感苦轴曲金勒号義土瑕條地童金畐器隼治理祁浪直见弟證镇竽担向菊物榆送正是在这一背景下,目前国内外对石墨烯技术的应用研究如火如荼,具体应用如下:2.1石墨烯锂离子电池锂离子电池具有容量大、循环寿命长、无记忆性等优点,目前已成为全球消费类电子产品的首选电池以及新能源汽车的主流电池。
高能量密度、快速充电是锂电池产品发展的必然趋势,在正极材料中添加导电剂是一种有效改善锂电性能的途径,可大大增加正负极的导电性能、提高电池体积能量密度、降低电阻,增加锂离子脱嵌及嵌入速度,显著提升电池的倍率充放电等性能,提高电动车的快充性能所谓石墨烯电池并非整个电池都用石墨烯材料制作,而是在电池的电极使用石墨烯材料。
在理论上石墨烯电极可能有超过石墨两倍的比容量另外,如果将石墨烯和炭黑混合后作为导电添加剂加入锂电池可以有效降低电池内阻,提升电池倍率充放电性能和循环寿命,而且电池的弯折对充放电性能没有影响,因此电极采用石墨烯材料后,使电池具备高充放电速率是石墨烯电池具备快速充电的原因。
在锂电池中应用,石墨烯的主要功能包括两个:一是导电剂,二是电极嵌锂材料。
以上两点应用都是在和传统的导电碳/ 石墨竞争。
目前石墨烯在锂电池中的添加形式主要有三种:导电添加剂、电极复合材料、直接作为负极材料,目前石墨烯导电剂研发技术已经相对成熟。
2.1.1石墨烯作为锂离子电池正极导电添加剂锂电池正极材料导电添加剂,显著提高充放电及导电性能,正极材料导电添加剂是石墨烯锂电池应用中走在产业化最前端的一环。
石墨烯是高性能锂电池正极导电添加剂的新选择。
利用其二维高比表面积的特殊结构所带来的优异电子传输能力,可显著提高电极材料容量挥发、降低电池内阻,提高倍率性和循环寿命,改善电池的高低温和安全性厶匕冃能全球石墨烯导电剂用量狈测(吨)全球石墨烯导电剂用量预测就石墨烯导电剂而言,其凭借石墨烯优异的载流子迁移率(15000cm2/V-1? s-1)和超低电阻率(10-6Q • cm),可显著降低电池内阻、提高倍率性能和循环寿命,并改善电池的高低温和安全性能。
2.1.2石墨烯作为锂离子电池负极材料石墨烯负极材料能够提高负极锂电池理论比容量和倍率性能。
石墨烯的孔道结构使得锂离子在负极材料中的扩散路径比较短,有效提高电导率;石墨烯优异的机械性能和化学性能使得其复合电极材料具备结构稳定性,能够有效提高电极材料循环稳定性。
石墨烯包覆硅用于负极可提高储能密度,助推电池轻量化。
目前实验室石墨烯包覆硅的复合材料储能密度可达到800mAh/g 2.1.3石墨烯应用于锂离子电池功能涂层铝箔石墨烯功能涂层铝箔可有效降低电池内阻。
石墨烯涂覆于铝箔集流体上,形成石墨烯功能涂层铝箔可使电池内阻降低一半,而容量不受损失, 同时电池的循环寿命提高20%以上2.1.4石墨烯应用于锂离子电池导电浆料石墨烯导电添加剂显著提高充放电及导电性能。
导电添加剂是石墨烯锂电池应用中走在产业化最前端的一环,石墨烯导电浆料技术成熟,成本优势凸显,已批量供货。
目前已有多家公司进行石墨烯在锂电池的应用,石墨烯在导电添加剂方面已经量产。
2.1.5石墨烯基锂硫电池以单质硫为正极,金属锂为负极的锂硫电池具有高达2600 Wh • kg-1的理论能量密度,高导电石墨烯作为集流体,相比传统的金属集流体,其轻质的特点有助于提升电池整体的能量密度并,同时由于单质硫储量丰富、价格低廉等特点,锂硫电池被视为最具有发展前景的下一代高能量二次电池之一,受到了研究者的广泛关注。
2.2石墨烯燃料电池燃料电池(Fuel Cell)是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。
燃料电池是将燃料具有的化学能直接变为电能的发电装置。
石墨烯有益于解决燃料电池中技术难题及成本问题。
利用石墨烯类膜材料输运特性有望解决燃料电池核心部件“质子传导膜”的燃料渗透难题,同时用掺氮石墨烯催化剂显然可大大降低燃料电池成本。
石墨烯燃料电池2.3石墨烯纸蓄电池将氧化石墨烯制成石墨烯纸,石墨烯纸可起到质子导体作用,用石墨烯纸制成的蓄电池具有良好的初容量。
石墨烯的掺入可使蓄电池的比容量及活性物质利用率提升10 %以上。
蓄电池负极中分别加入石墨烯,提升了高倍率放电性能,大大延长了循环寿命,添加石墨烯的负极板都具有70 %以上的咼孔率。
石墨烯纸以极好的导电性,极大的比表面积等特殊性能,应用到蓄电池中可提升比容量和活性物质利用率;石墨烯可使铅膏保持高孔率,有利于提升电池的倍率放电能力和充电接受能力,延长循环寿命。
2.4石墨烯超级电容超级电容器是一种介于传统电容器和二次电池之间的电化学储能装置,具有高功率密度、快速充放电、高循环寿命、无污染、免维护等优点, 在各类需要能源转化的领域有着巨大的应用价值。
但是超级电容器目前受到电极材料的制约,能量密度普遍低于20wh/kg。
石墨烯本身具备超大的比表面积(2600 m2/g),应用于超级电容器电极能显著提高储能密度,其储能密度与铅酸电池接近,是超级电容器的理想电极材料。
石墨烯超级电容制成的汽车,一次充电时间只需8分钟,即可供电力新能源汽车行驶1000千米。
石墨烯超级电容能量密度超过600wh/kg,是目前动力锂电池的5倍,电池重量只是锂离子电池的一半,使用寿命是目前锂电池2倍,是传统氢化电池的4倍,成本将比目前锂电池降低77%。
2.5石墨烯太阳能电池石墨烯透过率咼(单层为97.3%),方块电阻低,使用石墨烯能够提咼光电转化效率,可以作为太阳能电池中的受体材料。
石墨烯可以和有机聚合物材料复合形成大的给受体界面,有利于电池中激子的扩散速率和载流子迁移率的提高,消除由于电荷传输路径被破坏产生的二次聚集。
另外石墨烯材料也被应用到各类太阳能电池的光阳极上。
将石墨烯薄膜沉积在硅表面,有利于硅电池的表面钝化、掺杂及异质结的形成,且有效提升电池的光电转换效率。
随着国家对新能源开发利用的重视程度,太阳能电池的产销具备持续增长能力,石墨烯的出现正好为光伏产业中一些亟需解决的技术难题提供了解决方案,未来石墨烯在光伏行业大有可为。
2.6石墨烯储存氢能源众所周知,材料吸附氢气量和其比表面积成正比,石墨烯拥有质量轻、高化学稳定性和高比表面积的优点,使其成为储氢材料的最佳候选者。
希腊大学设计了新型3D碳材料,孔径尺寸可调,这种新型碳材料掺杂了锂原子时,石墨烯柱的储氢量可达到611%。
2.7石墨烯功能涂料石墨烯自身的高比表面积、高导热导电性、稳定的化学性能以及优异的力学性能,使其成为新一代涂料、橡胶、塑料等产品的重要调味品”以全方位提升传统产品的特性,且对原有的生产工艺和成本影响不大,使石墨烯成为新一代涂料的焦点。
石墨烯用于涂料中可制备纯石墨烯涂料和石墨烯复合涂料,可显著提升聚合物的性能,因此石墨烯复合涂料成为石墨烯的重要应用研究领域。
2.8石墨烯散热涂料当前电子产品的轻薄化已经成为趋势,伴随着产品功能增强、性能提高,高功率的处理芯片带来了更多的热量,更快的处理速度和更低的电量消耗对智能终端提出了更高的散热需求。
以石墨烯散热膜为代表的碳材料凭借超高的导热率、低密度、低热膨胀系数、良好的高温力学性能顺势而起,已经成为最具有发展前景的导热材料。
石墨烯散热涂料具有巨大的应用前景,可以广泛应用在空调、具、LED灯大功率芯片等领域的散热中2.9石墨烯导电涂料导电涂料是伴随着现代科学技术而迅速发展起来的特种功能涂料,目前已在静电耗散、电磁屏蔽、电子封装等领域得到广泛应用。
石墨烯由于具有很高的电子迁移率和优异的电学性能,能够更好地实现导电涂料所要达成的目标;而且由于石墨烯具备优异的机械性能及热性能,使得这种新型导电涂料更加耐用,更能适应复杂的应用环境,是极佳的导电涂料添加剂。
2.10石墨烯导电粘胶以天然鳞片石墨为原料,采用水系乳化剂,在机械振动下获得可以石墨烯导电粘胶。
石墨烯在导电胶黏剂方面也有广泛的应用前景。
目前,商业化导电胶黏剂产品的主要填充料为碳黑、银粉、镍粉等,它们各有优缺点。
碳黑虽然便宜,但其导电能力不佳,需要大量填充;银镍粉导电性能好,但价格较高,产品的成本过高。
采用石墨烯作为填充料,不仅可以降低填充量,还可解决导电性能和成本之间的矛盾。
因此,石墨烯导电胶黏剂则可用LED封装、电子器件封装,降低封装成本。
2.11石墨烯抗静电涂料抗静电涂料广泛用于电子、电器、航空及化工等多种领域,随着现代科技的发展,对其抗静电性能的要求越来越高。
石墨烯所具有的高导电性、强力学性能等特点,有利于制备高性能、高强度的抗静电涂料。
将十六胺接枝到石墨烯表面以增加与环氧树脂的相容性,然后以溶液共混的方式将两者均匀混合,改变混合体系中石墨烯的用量,可得到具有不同表面电阻率的抗静电涂料,当改性石墨烯的添加量为0.5%时,抗静电涂膜的表面电阻可降至109Q/sq,达到抗静电涂料的标准要求2.12石墨烯防腐涂料石墨烯是已知最薄防腐蚀涂层,石墨烯做金属保护膜已经成功应用,并显著延缓了金属的腐蚀速度,未来发展前景广阔。
涂料中添加石墨烯后,石墨烯能够形成稳定的导电网格,有效提高锌粉的利用率,水性石墨烯涂料的防腐效果明显优于其他碳系材料填充的水性涂料,也比商业化的水性涂料具有更为突出的耐盐雾性。