16 4一维谐振子问题
- 格式:ppt
- 大小:837.00 KB
- 文档页数:33
曾量⼦⼒学题库(⽹⽤)(1)讲解⼀、简述题:1. (1)试述Wien 公式、Rayleigh-Jeans 公式和Planck 公式在解释⿊体辐射能量密度随频率分布的问题上的差别2. (1)试给出原⼦的特征长度的数量级(以m 为单位)及可见光的波长范围(以?为单位)3. (1)试⽤Einstein 光量⼦假说解释光电效应4. (1)试简述Bohr 的量⼦理论5. (1)简述波尔-索末菲的量⼦化条件6. (1)试述de Broglie 物质波假设7. (2)写出态的叠加原理8. (2)在给定的状态中测量某⼀⼒学量可得⼀测值概率分布。
问在此状态中能否测得其它⼒学量的概率分布?试举例说明。
9. (2)在给定状态下测量某⼀⼒学量,能测量到什么程度? 10.(2)按照波函数的统计解释,试给出波函数应满⾜的条件11.(2)假设⼀体系的基态波函数在全空间上都⼤于零,试解释是否存在某⼀激发态,该激发态在全空间范围内也都⼤于零。
12.(2)已知粒⼦波函数在球坐标中为),,(?θψr ,写出粒⼦在球壳),(dr r r +中被测到的⼏率以及在),(?θ⽅向的⽴体⾓元?θθΩd d d sin =中找到粒⼦的⼏率。
13.(2)什么是定态?它有哪些特征? 14.(2))()(x x δψ=是否定态?为什么? 15.(2)设ikre r1=ψ,试写成其⼏率密度和⼏率流密度 16.(2)试解释为何微观粒⼦的状态可以⽤归⼀化的波函数完全描述。
17.(3)简述和解释隧道效应18.(3)⼀维⽆限深势阱体系??><∞≤≤=a x x a x x V or 000)(??><∞≤≤=ax x a x x V or 000)(处于状态 )(21)(ikx ikxe e ax --=ψ,其中a k π2=,请问该状态是否是定态?为什么? 19.(3)说明⼀维⽅势阱体系中束缚态与共振态之间的联系与区别。
20.(3)某⼀维体系,粒⼦的势能为222x µγ,其中µ为粒⼦质量,说明该体系是什么体系,并写出体系能量的可能取值。
一维谐振子拉格朗日表达式(实用版)目录一、引言二、一维谐振子的定义和特点三、拉格朗日表达式的概念和作用四、一维谐振子的拉格朗日表达式五、结论正文一、引言在物理学中,一维谐振子是一个沿直线方向作简谐振动的物体。
它是研究简谐振动规律的基本模型,对于理解更复杂的振动系统具有重要意义。
拉格朗日表达式是分析一维谐振子运动的有效工具,可以帮助我们更好地描述和研究这种振动现象。
本文将从一维谐振子的定义和特点入手,介绍拉格朗日表达式的概念和作用,最后详细阐述一维谐振子的拉格朗日表达式。
二、一维谐振子的定义和特点一维谐振子是指在一个直线方向上作简谐振动的物体。
它的运动由一个势能函数 V(x) 描述,这个势能函数在一维空间上的图像是一个关于 x 的周期函数。
一维谐振子的运动特点是周期性的、振幅不变的、能量守恒的。
在运动过程中,物体的位移随时间作正弦或余弦函数变化,速度和加速度分别与位移成正比和反比关系。
三、拉格朗日表达式的概念和作用拉格朗日表达式是分析物体运动的一种数学表达式,它是基于拉格朗日力学原理推导得出的。
拉格朗日表达式包含了物体的运动方程和能量方程,可以描述物体在给定势能函数作用下的运动状态。
对于一维谐振子,拉格朗日表达式可以给出振动的周期、振幅、频率等物理量,为研究简谐振动提供理论依据。
四、一维谐振子的拉格朗日表达式对于一维谐振子,我们可以根据势能函数 V(x) 推导出拉格朗日表达式。
首先,根据拉格朗日力学原理,可以得到物体的运动方程:$$frac{dmathbf{}}{dt}frac{dmathbf{L}}{dq[1]}-frac{dmathbf{L }}{dq}=0$$其中,$mathbf{L}$表示拉格朗日量,$mathbf{q}$表示广义坐标,是时间 t 的函数,而$mathbf{q[1]}$表示广义速度。
在一维谐振子问题中,广义坐标和广义速度可以表示为:$$mathbf{q}=x,quad mathbf{q[1]}=dot{x}$$将上述广义坐标和广义速度代入运动方程,得到:$$frac{d}{dt}frac{d}{d{x}}mathbf{L}-frac{d}{d{x}}mathbf{L}= 0$$由于拉格朗日量$mathbf{L}$是物体的动能加上势能,对于一维谐振子,可以表示为:$$mathbf{L}=frac{1}{2}m{v}^{2}+V(x)$$其中,m 表示物体的质量,v 表示物体的速度。
标题:深度探讨一维谐振子基态和激发态的波函数一、引言一维谐振子是量子力学中的经典问题之一,它的波函数描述了粒子在谐振势场中的运动状态。
在本文中,我们将深入探讨一维谐振子的基态和激发态的波函数,分析其数学形式和物理意义,以帮助读者更好地理解这一重要概念。
二、基态的波函数让我们来分析一维谐振子的基态波函数。
基态对应能量最低的状态,其波函数通常用Ψ₁(x)来表示。
在一维谐振子中,基态波函数可以用简单的数学形式进行描述:Ψ₁(x) = (mω/πħ)^(1/4) * e^(-mωx²/2ħ)其中,m是粒子的质量,ω是振子的角频率,ħ是约化普朗克常数。
这个波函数描述了基态下粒子在空间中的分布情况,通过对波函数的形式和特性进行分析,我们可以了解到粒子在基态下的基本运动状态和概率分布规律。
在基态下,粒子处于能量最低的状态,波函数的峰值对应着粒子最有可能出现的位置。
基态波函数的特性还可以通过数学手段进行分析,例如计算平均位置、动量期望值等,这些都能帮助我们更好地理解基态下粒子的运动规律和物理性质。
三、激发态的波函数接下来,我们将讨论一维谐振子的激发态波函数。
激发态对应能量高于基态的状态,其波函数通常用Ψ₂(x)来表示。
在一维谐振子中,激发态波函数的数学形式相对复杂一些,但通过分析和理解其特性,我们同样可以获得丰富的物理信息。
激发态波函数通常包含更多的波峰和波谷,描述了粒子在激发状态下的空间分布情况。
通过比较基态和激发态波函数的形式和特性,我们可以发现它们之间的微妙差别,并据此推断粒子在不同能级状态下的运动规律和行为。
激发态波函数的数学性质也具有重要意义,例如其振幅、波长、频率等特征参数都可以提供宝贵的信息。
通过对激发态波函数进行分析,我们可以更全面地理解粒子在谐振势场中的非基态运动状态,为进一步研究和应用提供重要的参考依据。
四、总结与展望通过本文的深度探讨,我们对一维谐振子的基态和激发态波函数有了全面的理解。
在坐标表象中处理一维线性谐振子问题初中物理题目:在坐标表象中处理一维线性谐振子问题作者单位:响水滩乡中心学校作者姓名:宁国强2019年9月28日在坐标表象中处理一维线性谐振子问题响水滩中心学校宁国强摘要:本文阐述了在坐标表象中处理一维线性谐振子问题的方法和思路,阐述了一般表象的概念。
关键词:一维线性谐振子;坐标表象;一、能量本征值、本征函数的求解取自然平衡位置为坐标原点, 并选原点为势能零点, 则一维线性谐振子的势能为V (x ) =12μωx (1)22其中μ是谐振子的质量,ω是经典谐振子的自然频率。
一维谐振子的哈密顿函数为H =p22μ12μωx (2)22体系的能量本征方程(亦即不含时Schr ödinger 方程)为⎛ 2d 2122ˆ-+μωx 22⎛2μdx⎛⎛ψ⎛(x )=E ψ(x ) (3)严格的谐振子势是一个无限深势阱(如图1所示),粒子只存在束缚态,即起波函数应满足以下条件:ψ(x )−−→0 (4)x →∞将方程(3)无量纲化,为此,令2ξ==αx ,α=λ=2E ω(5)(3)式可改写为d ψd ξ+λ-ξ(2)ψ=0 (6)这是一个变系数二阶常微分方程。
为了求解它,我们先看ψ在ξ→±∞时的渐进行为。
当⎛⎛ξ⎛⎛很大时, λ与ξ2相比可以略去,因而在ξ→±∞ 时,方程(6)可近似表示为d ψd ξ22-ξψ=02 (7)±ξ/22它的渐近解为ψ~e ξ→±∞时,所以ψ e ξ2。
因为波函数的标准条件要求当ξ→±∞时ψ应为有限,2/2不满足边界条件(4)式,应弃之。
波函数指数上只能取负号,即ψ e -ξ/2。
方程(6)在ξ为有限处的根据以上讨论,可令方程(6)在ξ为有限处的解有如下形式:ψ(ξ)=A eξ22H (ξ) (8)式中A 为归一化系数,(8)代入(6)式,得d2H2d ξ-2ξd H(9)+(λ-1)H =0d ξ用级数解法,即把H 展开成ξ的幂级数来求这个方程的解。