射频微波(知识点)
- 格式:doc
- 大小:1.23 MB
- 文档页数:38
高频信号就是频率高(VHF 或UHF、SHF),单位一般用MHz(兆赫)表示,射频信号(RF-Radio Frequency Signal)射频信号就是经过调制的,拥有一定发射频率的电波。
在电磁波频率低于100kHz时,电磁波会被地表吸收,不能形成有效的传输,一旦电磁波频率高于100kHz时,电磁波就可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力,我们把具有远距离传输能力的高频电磁波称为射频,英文缩写:RF。
为了能够在空中传播电视信号,必须把视频全电视信号调制成高频或射频(RF-Radio Frequency)信号,每个信号占用一个频道,这样才能在空中同时传播多路电视节目而不会导致混乱。
射频就是射频电流,它是一种高频交流变化电磁波的简称。
每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。
目前应用最广泛的自动识别技术大致可以分为两个方面:光学技术和无线电技术两个方面。
其中光学技术中普遍应用的产品有:条形码和摄像两大类。
这两类产品目前已广泛应用于人们的日常生活中,并已为人们所熟知。
比如:条形码用于商品管理,摄像用于抓拍违章车辆等。
微波信号微波的频率极高,波长又很短,其在空中的传播特性与光波相近,也就是直线前进,遇到阻挡就被反射或被阻断,因此微波通信的主要方式是视距通信,超过视距以后需要中继转发。
用于微波通信(Microwave Communication),是使用波长在0.1毫米至1米之间的电磁波——微波进行的通信。
微波通信不需要固体介质,当两点间直线距离内无障碍时就可以使用微波传送。
利用微波进行通信具有容量大、质量好并可传至很远的距离,因此是国家通信网的一种重要通信手段,也普遍适用于各种专用通信网。
我国微波通信广泛应用L、S、C、X诸频段,K频段的应用尚在开发之中。
射频微波基础知识射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。
每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。
有线电视系统就是采用射频传输方式的。
在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。
在电磁波频率低于100khz时,电磁波会被地表吸收,不能形成有效的传输,但电磁波频率高于100khz时,电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力,我们把具有远距离传输能力的高频电磁波成为射频,英文缩写:RF一、射频和微波技术基础知识1、什么是射频?射频(RF)是指无线通信系统中使用的电磁频率范围。
它涵盖了广泛的频率范围,通常从3kHz(千赫)到300GHz(千兆赫)。
射频信号的特点是能够长距离传播并穿过障碍物,这使其成为各种通信应用的理想选择。
2、微波频率微波是射频频率的一个子集,频率范围为300MHz(兆赫)到300GHz。
虽然微波仍然是像射频一样的电磁波,但它们具有更短的波长,这在特定应用中提供了某些优势,例如高数据传输速率和精确成像能力。
二、射频和微波技术的应用1、无线通信射频和微波技术最突出的应用之一是在无线通信系统中。
从简单的无线电传输到复杂的蜂窝网络,射频技术使移动设备上的语音通话、短信、互联网浏览和视频流成为可能。
此外,Wi-Fi网络、蓝牙连接和其他无线协议依赖RF信号进行无缝数据交换。
2、卫星通信卫星通信严重依赖微波频率。
地球静止轨道或近地轨道卫星利用微波远距离传输电视信号、互联网数据和电话,确保在传统通信基础设施有限,或无法使用的偏远地区实现全球连接。
3、雷达系统微波雷达系统对各种应用至关重要,包括空中交通管制、天气监测和军事防御。
雷达使用微波脉冲来探测物体的存在、距离和速度,从而进行精确的跟踪和分析。
4、医疗应用射频和微波技术在医学领域有着重要的应用,例如磁共振成像(MRI)和微波消融。
射频与微波知识点总结一、引言射频(Radio Frequency, RF)与微波(Microwave)技术在现代通信、雷达、无线电频谱、天线设计等领域发挥着重要作用。
射频与微波技术涉及到电磁波的传播、调制解调、射频功率放大、频率变换、天线设计等方面的知识。
本文将从射频与微波的基本原理、传输线理论、射频放大器、射频调制解调、天线设计等方面进行知识点总结。
二、射频与微波的基本原理1. 电磁波的基本概念电磁波是一种由电场和磁场相互作用而产生的波动现象。
根据波长的不同,电磁波可以分为射频、微波、红外线、可见光、紫外线、X射线和γ射线等不同频段的电磁波。
射频与微波技术主要涉及射频和微波频段的电磁波。
2. 电磁波的特性电磁波具有波长、频率、速度、传播特性等基本特性。
其中,波长和频率之间的关系由光速公式c=λf(c为光速,λ为波长,f为频率)决定。
在射频与微波领域,常用的频率单位有千兆赫兹(GHz)、兆赫兹(MHz)和千赫兹(kHz)等,波长单位常用的是米(m)。
根据电磁波在介质中传播的特性,常见的介质波速和传播常数也会影响射频微波在介质中的传播特性。
3. 电磁波在空间中的传播电磁波在自由空间中传播的特性是由麦克斯韦方程组决定的,其中包括麦克斯韦方程组的电场和磁场分布规律、电磁波的波动性等。
了解电磁波在不同介质中的传播特性有利于射频与微波技术在不同环境中的应用。
4. 电磁波的天线辐射和接收天线是电磁波的辐射和接收装置,根据天线的结构和工作原理,天线可以分为定向天线和非定向天线。
定向天线主要用于定向传输和接收电磁波;非定向天线主要用于对全向的电磁波进行辐射和接收。
天线的辐射和接收特性与天线的形状和尺寸、频率、方向性等因素有关。
三、传输线理论1. 传输线的基本概念传输线是用于传输电磁波的导线或介质,主要包括同轴电缆、微带线、矩形波导和圆柱波导等。
传输线具有阻抗匹配、功率传输和信号传输等功能。
根据传输线的不同特性和应用场景,可以选择不同类型的传输线。
一、射频/微波技术及其基础1、射频/微波技术的基础 ✓ 什么是微波技术研究微波的产生、放大、传输、辐射、接收和测量的科学。
射频/微波技术是研究射频/微波信号的产生、调制、混频、驱动放大、功率放大、发射、空间传输、接收、低噪声放大、中频放大、解调、检测、滤波、衰减、移相、开关等各个电路及器件模块的设计和生产的技术,利用不同的电路和器件可以组合成相应的射频/微波设备。
微波技术主要是指通信设备和系统的研究、设计、生产和应用。
✓ 微波技术的基本理论是以麦克斯韦方程为核心的场与波的理论2、射频/微波的基本特性✓ 频率高、穿透性、量子性、分析方法的独特性射频频段为30 ~ 300MHz ,微波频段为300MHz ~ 3000GHz ,相对应波长为1m ~0.1mm ,照射于介质物体时能深入到该物质的内部。
根据量子理论,电磁辐射能量不是连续的,而是由一个个的“光量子”组成,单个量子的能量与其频率的关系为e = h ·f式中,h = 4×10-15电子伏·秒 (eV ·S) 成为普朗克常数3、射频/微波技术在工程里的应用✓ 无线通信的工作方式1、单向通信方式通信双方中的一方只能接收信号,另一方只能发送信号,不能互逆,收信方不能对发信方直接进行信息反馈2、双向单工通信方式3、双向半双工通信方式通信双方中的一方使用双频双工方式,可同时收发;另一方则使用双频单工方式,发信时要按下“送话”开关。
4、双向全双工通信方式通信双方可以通信进行发信和收信,这时收信与发信一般采用不同的工作频率,通-讲 开关按-讲 按-讲 受话器受话器二、电磁波频谱12、射频/✓GSM900系统的频道配置GSM-900系统采用等间隔方式,频道间隔为200KHz,同一信道的收发频率间隔为45MHz, 频道序号和频道标称中心频率的关系为F上行(n)= 890.2 +(n-1)×0.2 MHzF下行(n)= F上行(n)+ 45 MHz式中:频道序号 n = 1 ~ 124在我国的GSM900网络中,1~94号载频分配给中国移动使用,96~124号载频分配给中国联通使用,95号载频作为保护隔离,不用于业务。
第一部分射频基本概念第一章常用概念一、特性阻抗特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之比。
对于TEM波传输线,特征阻抗又等于单位长度分布电抗与导纳之比。
无耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。
在做射频PCB板设计时,一定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。
当不相等时则会产生反射,造成失真和功率损失。
反射系数(此处指电压反射系数)可以由下式计算得出:z1二、驻波系数驻波系数式衡量负载匹配程度的一个指标,它在数值上等于:由反射系数的定义我们知道,反射系数的取值范围是0~1,而驻波系数的取值范围是1~正无穷大。
射频很多接口的驻波系数指标规定小于1.5。
三、信号的峰值功率解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示。
峰值功率即是指以某种概率出现的尖峰的瞬态功率。
通常概率取为0.1%。
四、功率的dB 表示射频信号的功率常用dBm 、dBW 表示,它与mW 、W 的换算关系如下:dBm=10logmWdBW=10logW例如信号功率为x W ,利用dBm 表示时其大小为五、噪声噪声是指在信号处理过程中遇到的无法确切预测的干扰信号(各类点频干扰不是算噪声)。
常见的噪声有来自外部的天电噪声,汽车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产生的散粒噪声,信号与噪声的互调产物。
六、相位噪声相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动。
理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下页所示。
一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声。
相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。
例如晶体的相位噪声可以这样描述:噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义:单元输入信噪比除输出信噪比,如下图:对于线性单元,不会产生信号与噪声的互调产物及信号的失真,这时噪声系数可以用下式表示:Pno 表示输出噪声功率,Pni 表示输入噪声功率,G 为单元增益。
射频与微波技术原理及应用培训教材华东师范大学微波研究所一、Maxwell(麦克斯韦)方程Maxwell 方程是经典电磁理论的基本方程,是解决所有电磁问题的基础,它用数学形式概括了宏观电磁场的基本性质。
其微分形式为 0B E t D H J t D B ρ∂∇⨯=-∂∂∇⨯=+∂∇=∇= (1.1) 对于各向同性介质,有D E B H J Eεμσ=== (1.2) 其中D 为电位移矢量、B 为磁感应强度、J 为电流密度矢量。
电磁场的问题就是通过边界条件求解Maxwell 方程,得到空间任何位置的电场、磁场分布。
对于规则边界条件,Maxwell 方程有严格的解析解。
但对于任意形状的边界条件,Maxwell 方程只有近似解,此时应采用数值分析方法求解,如矩量法、有限元法、时域有限差分法等等。
目前对应这些数值方法,有很多商业的电磁场仿真软件,如Ansoft 公司的Ensemble 和HFSS 、Agilent 公司的Momentum 和ADS 、CST 公司的Microwave Studio 以及Remcom 公司的XFDTD 等。
由矢量亥姆霍兹方程联立Maxwell 方程就得到矢量波动方程。
当0,0J ρ== 时,有222200E k E H k H ∇+=∇+= (1.3) 其中k 为传播波数,22k ωμε=。
二、传输线理论传输线理论又称一维分布参数电路理论,是射频、微波电路设计和计算的理论基础。
传输线理论在电路理论与场的理论之间起着桥梁作用,在微波网络分析中也相当重要。
1、微波等效电路法低频时是利用路的概念和方法,各点有确切的电压、电流概念,以及明确的电阻、电感、电容等,这是集总参数电路。
在集总参数电路中,基本电路参数为L、C、R。
由于频率低,波长长,电路尺寸与波长相比很小,电磁场随时间变化而不随长度变化,而且电感、电阻、线间电容和电导的作用都可忽略,因此整个电路的电能仅集中于电容中,磁能集中于电感线圈中,损耗集中于电阻中。
微波与射频的关系
微波与射频都是电磁波的一种,它们在频率范围上存在一定的重叠。
具体而言,微波是指频率在300兆赫兹(GHz)到300
吉赫兹(GHz)之间的电磁波,而射频是指频率在30千赫兹(kHz)到300吉赫兹(GHz)之间的电磁波。
可以说,射频是一个更广泛的概念,包括了微波在内。
微波是射频的一部分,射频还包括了更低频率范围内的信号,如无线电通信中的中波、短波等。
微波和射频在应用上有一些不同。
微波的频率较高,具有较高的传输速率和较小的传输距离。
它在雷达、微波炉、无线通信等方面有广泛应用。
射频的频率相对较低,传输距离较远,适用于广播电视、无线电通信等应用。
总的来说,微波和射频在频率范围和应用领域上存在一定的联系和区别,微波是射频的一部分,具有更高的频率和传输速率,适用于一些需要高速传输的应用。
一、射频/微波技术及其基础1、射频/微波技术的基础 ✓ 什么是微波技术研究微波的产生、放大、传输、辐射、接收和测量的科学。
射频/微波技术是研究射频/微波信号的产生、调制、混频、驱动放大、功率放大、发射、空间传输、接收、低噪声放大、中频放大、解调、检测、滤波、衰减、移相、开关等各个电路及器件模块的设计和生产的技术,利用不同的电路和器件可以组合成相应的射频/微波设备。
微波技术主要是指通信设备和系统的研究、设计、生产和应用。
✓ 微波技术的基本理论是以麦克斯韦方程为核心的场与波的理论2、射频/微波的基本特性✓ 频率高、穿透性、量子性、分析方法的独特性射频频段为30 ~ 300MHz ,微波频段为300MHz ~ 3000GHz ,相对应波长为1m ~0.1mm ,照射于介质物体时能深入到该物质的内部。
根据量子理论,电磁辐射能量不是连续的,而是由一个个的“光量子”组成,单个量子的能量与其频率的关系为e = h ·f式中,h = 4×10-15电子伏·秒 (eV ·S) 成为普朗克常数3、射频/微波技术在工程里的应用✓ 无线通信的工作方式1、单向通信方式通信双方中的一方只能接收信号,另一方只能发送信号,不能互逆,收信方不能对发信方直接进行信息反馈2、双向单工通信方式3、双向半双工通信方式通信双方中的一方使用双频双工方式,可同时收发;另一方则使用双频单工方式,发信时要按下“送话”开关。
4、双向全双工通信方式通信双方可以通信进行发信和收信,这时收信与发信一般采用不同的工作频率,通-讲 开关按-讲 按-讲 受话器受话器二、电磁波频谱12、射频/✓GSM900系统的频道配置GSM-900系统采用等间隔方式,频道间隔为200KHz,同一信道的收发频率间隔为45MHz, 频道序号和频道标称中心频率的关系为F上行(n)= 890.2 +(n-1)×0.2 MHzF下行(n)= F上行(n)+ 45 MHz式中:频道序号 n = 1 ~ 124在我国的GSM900网络中,1~94号载频分配给中国移动使用,96~124号载频分配给中国联通使用,95号载频作为保护隔离,不用于业务。
✓DCS1800系统的频道配置DCS1800系统采用等间隔方式,频道间隔为200KHz,同一行到的收发频率间隔为95MHz,频道序号和频道标称中心频率的关系为F上行(n)= 1710.2 +(n-512)×0.2 MHzF下行(n)= F上行(n)+ 45 MHz式中:频道序号 n = 512 ~ 885在我国的DCS1800网络中,512~561号载频分配给中国移动使用,686~736号载频分配给中国联通使用。
✓WCDMA的频道配置WCDMA的工作频道为20MHz,可在60MHz内任意选择,信道带宽为5MHz。
✓TD-SCDMA的频率配置工作频率●1800~1920 MHz(上/下行共用)2010~2025 MHz(上/下行共用)2300~2400 MHz(上/下行共用)●*1850~1910 MHz(上/下行共用)1930~1990 MHz(上/下行共用)●*1910~1930 MHz(上/下行共用)注:1、*用在ITU定义的区域2,此频段分配属研究频段2、其他频段有相关主管部门确定中国移动TD-SCDMA网的频率范围及信道2010~2025MHz;信道带宽:1.28MHz;信道间隔:1.6MHz载频有效工作带宽计算:(N-1)×1.6MHz + 1.28MHz + (M-1)×5MHz式中:N为频点数,M为组数三、射频/微波工程中的重要参数1、频率、阻抗和功率的表征✓频率1、频率的定义频率是单位时间内重复的次数。
频率和周期在数学上互为倒数,即f=1/T2、有关信号频率的基本电路在射频/微波电路里,直接与信号频率相关的电路及仪器有信号发生器、频率变换器、频率选择器。
✓功率1、功率的定义描述射频/微波信号的能量大小,单位是瓦特,用符号W表示。
2、有关射频/微波信号功率的基本电路在射频/微波电路里,直接与信号功率相关的电路及仪器有衰减器、功率分配/合路器、定向耦合器、放大器✓阻抗1、阻抗的定义在特定频率下,描述射频/微波电路对微波信号能量传输的影响的一个重要参数。
2、有关射频/微波阻抗的基本电路阻抗变换器、阻抗匹配器、阻抗标准器四、射频/微波工程测量技术1、测量的重要性✓测量是人类认识和改造世界的一种重要的手段。
在人们对客观事物的认识过程中,经常需要进行定性、定量的分析,这时就要进行测量。
测量是通过实验方法对客观事物取得定量数据的过程,通过大量的测量,人们可以逐步准确地认识各种客观事物,建立起各种定理和定律。
所以,杰出的科学家门捷列夫说:“没有测量,就没有科学”。
电子信息科学是现代科学技术的象征,它的三大支柱是:信息获取(测量技术)、信息传输(通信技术)、信息处理(计算机技术),三者中信息的获取是首要的,而电子测量是获取信息的重要手段。
✓ 微量技术包括哪些方面?微波信号特性的测量和微波网络特性的测量2、微波频率的测量✓ 直接影响信号的频率稳定度的因素为如下五方面。
1. 频率源的参数变化2. 外界干扰的影响3. 频率源噪声的影响 (1)附加噪声 (2)干扰噪声 (3)调频闪变噪声4. 信号的杂散(或寄生信号)引起频率不稳定性5. 交流干扰(或称哼扰调制) ✓ 射频/微波工程对频率特性的要求1、时域特性频率误差:指直放站在工作频带内输入频率与输入频率的偏差 调制准确度:可用相位误差来衡量,直放站相位误差是指直放站输出相位轨迹与其回归线之差。
2、频域特性移动通信系统里通信信号的频域特性是对通信设备的重要指标,该指标要求的表征形式较多,最主要的是用噪声、频谱等特性来表示。
✓ 频差倍增技术该技术是将频差通过倍增器,扩大后再进行测量,也可称为“频率倍增技术”被测频率(f x )、标称频率(f s )、频率偏差(Δf )有如下关系频差倍增有三种方式:直接倍增、一级倍增、多级倍增3、微波功率的测量✓ 基本概念:测量微波功率的最常用方法是“热”的方法,即把微 波能量转换成热能,然后用测热的方法进行测量。
常用的测热式功率测量仪器有量热式功率计、热偶式功率计和测辐射热器式功率计等。
✓ 对数单位1、 绝对功率电平(dBm )以基准量P0 = 1mW 作为零功率电平(0dBm ),则任意功率(被测功率)Px 的功率电平定义为:fs fx = fs ± Δff M = fs ± M Δf x s f f f =±∆0()()10lg 10lg 1X X mW P P mW P dBm P mW ==2、 相对功率(dB )相对功率即两个功率之比的对数:若P1 = 10×P2,则有 这个无量纲的数为1,称为1贝尔(Bel )。
在实际应用时,贝尔太大,通常采用分贝,写为dB (deci Bel ),1贝尔等于10dB 。
3、 功率的定义及其信号源反射系数的影响 信号源的资用功率。
信号源传输到无反射负载上的功率(也称为发生器功率)。
信号源入射到任意负载上的功率以及信号源传输到任意负载上的净功率等a1为信号源入射到负载的入射电压波波幅; b1为负载反射的反射电压波波幅;bG 为信号源传输到无反射负载的电压波波幅; ΓG 为信号源的反射系数; ΓL 为负载的反射系数。
当负载的反射系数与信号源的反射系数成复数共轭是,其反射系数满足ΓL = ΓG* 的条件。
此时信号源传输到负载上的功率最大。
4、微波阻抗的测量✓ 分布参数阻抗的基本概念传输线上的电压和电流式中:V 为电压复数; I 为电流复数;A ,B 为由终端负载特性决定的复常数;Z0为传输线的特性阻抗,该参数仅与传输线的结构、尺寸和频率有关;γ = α + j β为是传输线的另一个参数,其中α是衰减常数,j β是相位常数。
传输线上的阻抗关系在分布参数电路中,线上任一点的复数阻抗定义为该点的复数电压与复数电流之比。
,线上任一点P 的阻抗Zp ,式中:l 为由P 点至终端负载的距离在终端负载处,l = 0,可求得终端负载阻抗ZL 为12lg P P 122210lg lg 1P P P P ==z z V Ae Beγγ-=+01()z z I Ae Be Z γγ-=-0l l P llV Ae BeZ Z I Ae Be γγγγ--+==-0011L BA B A Z Z Z B A BA++==--可得:得到线上任一点P 的阻抗ZP 与终端负载阻抗ZL 的关系式对于无耗传输线,α = 0,γ = α + j β,则可以看出,因此分布参数阻抗在沿线的不同位置各不相同,是沿线位置的函数 电压反射系数与回波损耗 电压反射系数:线上任一点的电压反射系数定义为该点反射波电压与该点入射波电压之比值,反射系数Γ = | Γ |e j φ,是一个由模| Γ |和相角φ组成的复数量。
根据定义,线上任一点P 的反射系数Γp ,用数学式表示为: 式中:l 为由P 点至终端负载的距离。
在终端负载处,l = 0,负载的反射系数为 对于无耗线有:或表明,沿无耗线移动参考面位置时,反射系数模不变,都等于终端负载的反射系数模 |ΓL|,而沿线反射系数的相角则随l 成线性关系变化。
驻波比:电压驻波比的定义是电压最大值|V| max 与电压最小值|V| min 之比值(英文缩写为VSWR ),简称驻波比。
一般用符号K:1表示,用数学式表示为:驻波比是无量纲的标量,为了表征电压驻波的相位,通常取从测试参考面往源端移动到第一个电压最小点处的距离l min 作为驻波相位的标志。
取许多电压最小点中的第一个电压最小点,实际是规定了驻波相位的单值变化范围为0 ≤ l min ≤ λ/2。
必要时也可以取半波长任意整数倍的其它最小点位置代替。
驻波比与反射系数的关系:式中:K 为驻波比;|ΓL|为反射系数摸。
二端口网络的S 参数当端口2连接无反射负载时,从端口1看入网络的反射系数当端口2连接无反射负载时,从端口1到端口2的传输系数当端口1连接无反射负载时,从端口2到端口1的传输系数当端口1连接无反射负载时,从端口2看入网络的反射系数000()()LP L Z Z th l Z Z Z Z th l γγ+=+000()()L P L Z jZ tg l Z Z Z jZ tg l ββ+=+2l lr P li V Be B e V A Aeγγγ--Γ===L j L L Be AϕΓ==Γ(2)2L j l l P L L e e ϕββ--Γ=Γ=Γ,,(2)P L P L L l ϕϕβΓ=Γ=Γ-maxminK V V =max min 1K 1LLV V +Γ==-ΓK 1K 1L -Γ=+1211111222211222b S a S ab S a S a=+=+111210bS a a ==22121bS a a ==11212bS a a ==222120b S a a ==六、射频微波的测量仪器1、微波信号发生器✓信号发生器是产生不同频率、不同波形和不同幅度的电压和电流信号,并加载到被测器件或设备上,然后用其他的测量仪器测量其输出响应。