第6章狭义相对论郭
- 格式:ppt
- 大小:3.25 MB
- 文档页数:93
第6章-狭义相对论第六章狭义相对论1、证明牛顿定律在伽利略交换下是协变的,麦克斯韦方程在伽利略变换下不是协变的。
证明:根据题意,不妨分别取固着于两参考系的直角坐标系,且令t =0时,两坐标系对应轴重合,计时开始后,'∑系沿∑系的x 轴以速度v 作直线运动,根据伽利略变换有:'x x vt =-,'y y =,'z z =,'t t =I 、牛顿定律在伽利略变换下是协变的,以牛顿第二定律22d d xF m t=r r 为例。
在Σ系下,22d d xF m t=r r 在Σ系下,'x x vt =-,'y y =,'z z =,'t t =于是,22222222d 'd [',',']d [,,]d 'd d 'd d x x vt y z x y z xF m m m m F t t t t+=====r r r r II 、麦克斯韦方程在伽利略变换下不是协变的,以真空中的麦氏方程BE t=-?rr 为例。
设有一正电荷q 位于O 点并随'∑系运动。
在'∑系中q 是静止的故: 20'4'r qE e r πε=r r ,'0B =r ;于是方程''0B E t '=-=?rr 成立在∑中有:3332222222222220{}4[()][()][()]x y z q x vt y zE e e e x vt y z x vt y z x vt y z πε-=++-++-++-++r r r r于是方程3222203[()()()]4[()]x y z q E y z e z x vt e x vt y e x vt y z πε??=--+-++---++rr r r不一定为02、设有两根互相平行的尺,在各自静止的参考系中的长度均为,它们以相同速率v 相对于某一参考系运动,但运动方向相反,且平行于尺子。