处理含镍铜的重金属废水
- 格式:pdf
- 大小:145.33 KB
- 文档页数:3
污水站重金属超标的几种处理方法重金属一般以天然浓度广泛存在于自然界中,但由于人类对重金属的开采、冶炼、加工及商业制造活动日益增多,造成不少重金属如铅、汞、镉、钴等进入大气、水、土壤中,引起严重的环境污染,危害人类健康!针对重金属废水的特性,目前常用的处理重金属污水方法有:化学沉淀法、氧化还原处理、溶剂萃取分别、吸附法、膜分别法、离子交换法。
1、化学沉淀法化学沉淀法是使重金属废水中呈溶解状态的重金属变化为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等。
2、氧化还原处理(化学还原法)化学还原法整治电镀废水在我国有着广泛的应用,其整治原理简单、操纵易于把握、能承受大水量和高浓度废水冲击。
电镀废水中的铬重要以六价铬离子形态存在,因此向废水中投加还原剂将其还原成微毒的三价铬离子后,投加石灰或氢氧化钠产生沉淀分别往除。
3、溶剂萃取分别溶剂萃取法是分别和净化物质常用的方法。
由于液一液接触,可连续操纵,分别效果较好。
使用这种方法时,要选择有较高选择性的萃取剂,废水中重金属一般以阳离子或阴离子形式存在,例如在酸性条件下,与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条件下被反萃取到水相,使溶剂再生以循环利用。
4、吸附法吸附法是利用吸附剂的独特结构往除重金属离子的一种有效方法。
利用吸附法处理电镀重金属废水的吸附剂有活性炭、腐植酸、海泡石、聚糖树脂等。
活性炭装备简单,但再生效率低,处理水质很难达到回用要求,一般用于电镀废水的预处理。
腐植酸类物质是比较廉价的吸附剂,把腐植酸做成腐植酸树脂用以处理含铬、含镍废水已有成功阅历。
5、膜分别法膜分别法是利用高分子所具有的选择性来进行物质分别的技术,包括电渗析、反渗透、膜萃取、超过滤等。
含铜、铬、镍、锌等金属离子废水都适合用电渗析处理,已有成套设备。
反渗透法已大规模用于镀锌、镍、铬漂洗水和混合重金属废水处理。
采纳反渗透法处理电镀废水,已处理水可以回用,实现闭路循环。
如何去除化学镍/化学镍解决办法简介:在电镀过程中,车间会使用络合剂,而产生的单独废水中的铜、镍等离子会与络合剂进行络合,形成络合分子。
络合小分子的存在导致,在废水中加入片碱或者石灰很难去除,尤其是其中的化学镍。
本文提出一种低成本化学镍解决办法,能够有效降低化学镍至国家表三标准一、产品说明高效除镍剂HMC-M2是湛清环保与清华大学联合研发的,第三代重金属捕集剂(简称重捕剂),是利用特大高分子网捕的原理,将工业废水中的铜、镍等重金属螯合沉淀除去。
HMC-M2特别针对重金属废水中的电镀镍、化学镍,螯合效果好,作用快,污泥少,成本低,目前在全国各大电镀厂、线路板厂、发电厂广泛使用。
二、产品特点1. 在pH值2-12范围之内均可使用,使用范围广2. 可以把铜、镍处理至国家表三标准,污泥少,作用快3. 相比于液体重捕剂,以及固体重捕剂,效果更好,成本更低三、适用范围工业废水中的重金属铜、镍等超标,尤其是化学镍、络合镍四、适用废水类型电镀厂废水;线路板厂废水;化学镍废水;锌镍合金废水;重金属土壤废水;发电厂脱硫废水;其他含有重金属的工业废水五、外观指标:HMC-M2固体 HMC-M2水溶液六、对比实验效果:种类:某电镀厂化镍原水 水量:30吨/天 络合剂:次磷酸指标:Ni=30ppm pH=5.4处理办法:加入液体重捕剂 处理效果:Ni=0.3ppm少许沉淀,但是絮凝效果不好,溶液浑浊处理办法:加入等量HMC-M2 处理效果:Ni=0.05ppm固液分离,絮凝沉淀效果好 上层溶液无色透明七、实验室小试步骤1.预估用量:M2用量一般为镍的7-10倍,如果是碱性锌镍合金废水,M2用量可能要增加至镍的10-30倍。
2.确定最佳pH值:分别在pH=3-4,11-12两个pH条件下加入等量的M2,均匀搅拌反应10min以上,过滤后测滤液浓度,以浓度最低的样品确定最适pH;3.确定最佳用量:在最适pH条件下,分别加入不同量的M2,均匀搅拌反应10min 以上,过滤后测滤液浓度,以用量最小且可达标的样品确定最佳用量;4.确定工艺流程:根据现场条件,确定投加M2反应后直接过滤或者加入助凝剂进行沉淀。
含镍废水处理操作规程含镍废水是指废水中含有镍元素的废水,通常来自于冶金、化工、电镀、电池制造、矿山等工业生产或废物处理和污水处理等环节。
由于镍是一种有害的重金属元素,过高的镍浓度会对环境和人体健康造成严重的危害。
因此,对含镍废水进行有效的处理至关重要。
下面是含镍废水处理操作规程。
一、废水处理前的准备工作1.1 废水质量监测:定期对含镍废水进行监测,测定其镍浓度、总悬浮物、COD、pH值等指标,以了解废水的性质和变化趋势。
1.2 化学试剂准备:按照处理工艺的要求,准备好所需的化学试剂,包括沉淀剂、中和剂、氧化剂、脱色剂等。
二、镍离子的去除2.1 调整废水的pH值:根据废水的pH值情况,选择合适的中和剂进行废水中镍离子的沉淀和pH值的调整。
2.2 沉淀剂的投加:将适量的沉淀剂投加到搅拌槽中,搅拌废水,促使镍离子与沉淀剂发生反应生成沉淀物。
2.3 沉淀物的分离:经过适当的沉淀时间后,将底部沉淀物通过沉淀池或离心机进行分离。
2.4 沉淀物的处理:经过分离的沉淀物可以进行再处理或处置,有效地回收或减少对环境的影响。
三、COD的降解3.1 氧化剂的投加:根据废水中COD的含量,选择合适的氧化剂进行投加,促使有机物的氧化反应发生。
3.2 搅拌反应:将氧化剂充分混合到废水中,并进行充分的搅拌反应,提高氧化剂与废水中有机物的接触反应速率。
3.3 沉淀分离:氧化反应后形成的氧化物通过沉淀池或离心机分离。
3.4 氧化物处理:经过分离的氧化物可以进行进一步处理或处置,达到无害化或资源化利用的目的。
四、脱色处理4.1 脱色剂的选择:根据废水的颜色及其原因,选择合适的脱色剂进行投加。
4.2 搅拌加药:将适量的脱色剂投加到废水中,并进行充分的搅拌反应,使脱色剂与废水中的色素反应。
4.3 沉淀物分离:经过适当的反应时间后,将形成的沉淀物通过沉淀池或离心机进行分离。
4.4 沉淀物处理:经过分离的脱色沉淀物可以进行进一步处理或处置。
芬顿法处理含重金属废水的效果及机理分析芬顿法是一种常用于处理含重金属废水的高效处理技术,其通过氢氧自由基的生成,使重金属离子以氢氧自由基废物沉淀的形式从废水中去除。
本文将对芬顿法处理含重金属废水的效果及机理分析进行详细介绍。
首先,芬顿法处理含重金属废水具有高效的去除效果。
芬顿法主要通过在酸性条件下,将过氧化氢与Fe2+两种试剂共同加入含重金属的废水中,生成大量的氢氧自由基。
这些氢氧自由基能够与重金属离子发生化学反应,生成氢氧化物、过氧化物等沉淀物,从而使重金属离子以固体废物的形式被去除。
芬顿法能够去除多种重金属离子,包括铅、铬、镍、铜等,其效果较为理想。
其次,芬顿法对含重金属废水的处理机理主要包括两个方面:氢氧自由基的生成和重金属离子的沉淀去除。
首先,芬顿法中的过氧化氢与Fe2+在酸性条件下反应,生成大量的氢氧自由基。
过氧化氢经过Fenton反应,被铁离子催化产生氢氧自由基,其主要反应方程为:H2O2+Fe2+→OH·+OH-+Fe3+其中生成的氢氧自由基具有较强的氧化还原能力,能够与重金属离子发生化学反应。
其次,氢氧自由基与重金属离子发生化学反应,生成氢氧化物、过氧化物等沉淀物。
例如,铅离子在芬顿法中会与氢氧自由基发生反应,生成氢氧化铅,从而被从废水中去除。
最后,芬顿法的优点主要包括处理效果显著、操作简便和成本较低等。
芬顿法具有较好的反应速率和反应效果,在较短的时间内能够高效去除大量含重金属的废水。
同时,芬顿法的操作相对简便,只需加入合适的量的过氧化氢和铁离子即可实施处理。
此外,芬顿法的成本相对较低,过氧化氢和铁盐的成本较低,对于处理大量含重金属废水的企业来说,是一种经济实用的技术。
尽管芬顿法有很多优点,但也存在一些问题,主要包括废水酸性增加、产生废泥等。
由于芬顿法需要在酸性条件下进行处理,会导致废水酸性增加,需要进行中和处理。
此外,芬顿法产生的废泥也需要合理处理,以避免对环境造成二次污染。
重金属废水的微生物处理张琳燕上海师范大学环境工程系2003级0313560摘要:重金属废水中主要含有铜、铬、锌、镉、镍等金属离子。
这些金属离子毒性较大,这里主要介绍一些比较常用的方法:微生物法治理电镀废水技术,利用微生物功能菌将废水中的重金属离子富集于功能菌的表面而达到去除废水中的重金属离子;化学分类法处理电镀生产废水的技术,统一收集废水,并将含铬废水和含铜镍废水分开处理,进行分类收集,分开治理。
活性污泥处理,分别从不同类型活性污泥,处理不同重金属论述了活性污泥处理重金属废水的效果。
关键词:重金属微生物废水引言:重金属,特别是汞、镉、铅、铬等具有显著和生物毒性。
它们在水体中不能被微生物降解,而只能发生各种形态相互转化和分散、富集过程(即迁移)。
重金属污染在其危害环境方面的特点是:微量浓度即可产生毒性(一般为1~10mg/L,汞、镉为0.01~0.001mg/L);在微生物作用会转化为毒性更强的有机金属化合物(如洋-甲基汞);可被生物富集,通过食物链进入人体,造成慢性路线。
亲硫重金属元素(汞、镉、铅、锌、硒、铜、砷等)与人体组织某些酶的巯基(-SH)有特别大的亲合力,能抑制酶的活性,亲铁元素(铁、镍)可在人体的肾、脾、肝内累积,抑制精氨酶的活性。
六价铬可能是蛋白质和核酸的沉淀剂,可抑制细胞内谷胱甘肽还原酶,导致高铁血红蛋白,可能致癌,过量的钒和锰(亲岩元素)则能损害神经系统的机能[1]。
所以要妥善处理这种废水。
1. 微生物法治理电镀废水技术1.1流程:微生物法治理电镀废水是利用微生物功能菌将电镀废水中的金属离子通过还原、吸附、絮凝、包藏、络合和螯合作用,将废水中的重金属离子富集于功能菌的表面而达到去除废水中的重金属离子。
功能菌在培菌池中通过加入专用生长剂使其不断生长繁殖,保障连续大规模用菌需求。
功能菌的菌液与电镀废水混合发生作用,高效还原六价铬为三价铬,三价铬、锌、铜、镍和镉等二价金属离子被菌体富集,将废水中的重金属离子被菌体吸咐沉淀去除,再经固液分离,废水被净化,固液分离的上清液可以回用。
化学镀含镍废水的来源及处理方法
一、含镍电镀废水简介
重金属废水主要来源于电镀行业、电子工业、有色金属冶炼等生产过程排放的水,这些工业生产过程中产生的大量含铬、铜、镍、铅、汞等重金属废水,给环境带来严重的污染。
电镀行业是目前发展较为迅速的产业,电镀工艺产生的重金属废水水质复杂,尤其含镍、铜、汞、铅等的废水具有很大的毒性。
其中镍是一种可致癌的重金属,化学镀镍因其具有优异的耐磨性、抗蚀性、可焊性而被广泛应用于电镀生产中,其加工量仅次于镀锌,在整个电镀行业中居第二位。
二、化学镀含镍废水的产生和危害
含镍化学镀废水主要来自于镀镍生产过程中镀槽废液和镀件漂洗水,废镀液量少但其中镍离子浓度含量非常高,在化学镀过程中,除油、酸洗等工序操作之后都需要用水洗,镀件清洗、废镀液、渗漏及地面冲洗镀件漂洗水是电镀废水的主要来源,占车间废水排放量的80%以上。
镀件漂洗水水量大,但其中镍离子浓度与废镀液相比要小很多。
根据《电镀污染物排放标准》(GB21900—2008),允许排入水体的电镀废水中总镍质量浓度最高为0.5mg/L。
三、化学沉淀法处理含镍废水
湛清环保研发HMC-M2化学沉淀法处理化学镀含镍废水,结合PAC、PAM絮凝剂处理镀镍废水,络合镍沉淀效果最好,镍离子的去除率最高,镍离子的去除率可达99%以上。
HMC-M2高效除镍剂具有螯合能力强、投资少、处理成本低等诸多优点。
传统化学沉淀法在反应过程中会产生大量污泥,甚至造成二次污染,HMC-M2重金属捕集剂有效避免传统沉淀法的缺点,使得综合成本大幅降低。
含镍废水处理工艺流程一、背景介绍随着工业化进程的加速发展,许多行业产生了大量的废水,其中含有各种有害物质,如重金属镍。
镍是一种高度有毒的金属,在环境中积累会对生态系统和人体健康产生严重危害。
因此,正确处理含镍废水是保护环境和人类健康的重要任务之一。
二、含镍废水特点含镍废水的特点主要包括以下几个方面: 1. 高浓度:工业废水中的镍浓度往往很高,通常在数十至上百毫克/升。
2. 难降解:镍离子是一种稳定的物质,很难通过传统的化学方法进行降解。
3. 有机物共存:含镍废水中通常还含有其他有机物和溶解物质,对处理工艺提出了一定要求。
三、含镍废水处理工艺流程针对含镍废水的特点,以下是一种常用的处理工艺流程:步骤一:预处理1.初步处理:首先进行初步处理,包括去除杂质、悬浮物和粗颗粒物等。
可以通过物理方法如过滤、沉淀等来实现。
2.酸碱调节:通过加酸或加碱的方式调节废水的pH值,使其适合后续处理工艺。
步骤二:镍离子去除1.活性炭吸附:将调节后的废水进一步通过活性炭吸附装置,通过物理吸附作用去除废水中的镍离子。
2.离子交换树脂:活性炭吸附后的废水进一步通过离子交换树脂装置,通过吸附和离子交换作用去除镍离子。
步骤三:后处理1.活性污泥处理:将经过离子交换树脂装置处理过的废水进行生化处理,利用活性污泥中的微生物对有机物进行降解。
2.混凝沉淀:活性污泥处理后的废水,通过加入混凝剂进行混凝反应,使得悬浮的微小颗粒物相互结合形成较大的颗粒物,最终通过沉淀达到去除的目的。
步骤四:再生利用经过上述处理工艺后,废水中的镍离子和其他有害物质已被有效去除,废水的水质满足排放标准。
1. 中和调节:根据实际情况,可能需要对废水进行中和处理,以进一步调节废水的pH值。
2. 再生利用:经过中和处理后的废水,可以进一步经过过滤、消毒等工艺,达到再生利用的标准,用于工业生产或农业灌溉等。
四、结论通过以上处理步骤,含镍废水可以得到有效处理,达到环保要求,并且可以实现再生利用。
含铜电镀废水的五种处理方法镀铜层常作为镀镍、镀锡、镀铬、镀银、镀金的底层,以提高基体金属与表面镀层的结合力和镀层的防腐蚀性能,因此,含铜电镀废水在电镀行业中十分普遍,而且该种工业废水通常含有多种重金属和络合剂。
目前,对于含铜电镀废水的处理主要采用化学法、离子交换法、膜分离法、吸附法、生物法等。
1 化学法处理含铜电镀废水1)中和沉淀法目前国内常采用化学中和法、混凝沉淀法处理含铜综合电镀废水,在对废水中的酸、碱进行中和的同时,铜离子形成氢氧化铜沉淀,然后再经固液分离装置去除沉淀物。
单一含铜废水在pH值为6.92时,就能使铜离子沉淀去除而达标,一般电镀废水中的铜与铁共存时,控制pH值在8~9,也能使其达到排放标准。
然而对既含铜又含其它重金属及络合物的混合电镀废水,铜的去除效果不好,往往达不到排放标准,主要是因为此方法的处理实质是调节废水pH值,而各种金属最佳沉淀的pH值不同,使得去除效果不好;再者如果废水中含有氰、铵等络合离子,与铜离子形成络合物,铜离子不易离解,使得铜离子不能达标排放。
特别是对含有氰的含铜混合废水经处理后,铜离子的浓度和CN-的浓度几乎成正比,只要废水中的CN-存在,出水中的铜离子浓度就不会达标。
这就使得利用中和沉淀法处理含铜混合废水的出水效果不好,特别是对于铜的去除效果不佳。
2)硫化物沉淀法硫化物沉淀法处理含铜废水具有很大的优势,可以解决一些弱络合态重金属不达标的问题,硫化铜的溶解度比氢氧化铜的溶解度低得多,而且反应的pH值范围较宽,硫化物还能沉淀部分铜离子络合物,所以不需要分流处理。
然而,由于硫化物沉淀细小,不易沉降,限制了它的应用,另外氰根离子的存在影响硫化物的沉淀,会溶解部分硫化物沉淀。
3)电化学法电化学方法处理含铜废水具有高效、可自动控制、污泥量少等优点,且处理含铜电镀废水能直接回收金属铜,处理时对废水含铜浓度的范围适应较广,尤其对浓度较高(铜的质量浓度大于1g/L时)的废水有一定的经济效益,但低浓度时电流效率较低。
含镍废水的处理近年来,随着我国环境持续恶化,不但给我国人民的生活带来了很大的困扰,也会对我国经济发展造成极大的阻碍,国家对环保要求越来越严格。
随着现代金属镀件业的快速发展,镀镍在金属镀件中得到了广泛的应用。
电镀过程中产生重金属废水是电镀行业潜在危害性极大的废水类别。
镍是一种可致癌的重金属,此外它还是一种较昂贵的金属资源(价格是铜的2~4倍)。
电镀镍因其具有优异的耐磨性、抗蚀性、可焊性而被广泛应用于电镀生产中,其加工量仅次于镀锌,在整个电镀行业中居第二位。
含镍废水对环境和人类的伤害含镍废水对环境的危害主要体现在水资源和土壤的污染。
含镍电镀废水主要来自于镀镍生产过程中镀槽废液和镀件漂洗水,含镍废水主要以硫酸镍为主,次磷酸钠为还原剂、柠檬酸钠为络合剂,醋酸钠为缓冲剂的酸性化学镀镍废液。
废镀液量少但其中镍离子浓度含量非常高,镀件漂洗水水量大,但其中镍离子浓度与废镀液相比要小很多。
根据《电镀污染物排放标准》(GB 21900—2008)表2,允许排入水体的电镀废水中总镍质量浓度最高为0.5 mg/L。
在镀镍漂洗废水中,含有大量的硫酸镍和氯化镍,镍的化合物能刺激人体的精氨酶、羧化酶,引起各种炎症,伤害心肌和肝脏。
《污水综合排放标准》(GB8978-1996)其中关于污水中总镍的要求是小于等于1mg/l。
2008年国家颁布了《电镀污染物排放标准》(21900-2008),因此污水含镍标准2018年规定小于等于0.5 mg/l,其中环境敏感地区则要求小于等于0. mg/l,《铜镍钴工业污染物排放标准》(GB25467-2010)其中总镍要求小于等于0.5 mg/l。
一、含镍废水性质含镍废水主要以硫酸镍为主,次磷酸钠为还原剂、柠檬酸钠为络合剂,醋酸钠为缓冲剂的酸性化学镀镍废液。
本实验含镍废水的主要成分酸度(游离酸):1.19(HCl计)、T-Ni:6.56g/l、T-Fe:741.92mg/l、Cu:3.51mg/l、T-Cr:2.47mg/l、NH4-N/:3.90g/l、P:14.58g/l、COD:55479.2mg/、PH:4.56实验方法及原理2.1实验方法取少量含镍废水,加入液碱调节PH值,反应一定时间,然后加入一定量的工业次氯酸钠进行氧化,反应一定时间进行沉淀分离。
含镍废水处理流程关于含镍废水处理流程参考如下:一、废水收集在含镍废水处理的第一步,需要对废水进行收集。
通过建立合理的收集系统,将废水集中收集在指定的处理设施中。
收集的废水应包括生产线上的排水、设备清洗水、地面冲洗水等可能含有镍的废水。
二、废水预处理在废水进入处理系统之前,需要进行预处理,以去除大颗粒的悬浮物、油脂和其他杂质,确保后续处理的顺利进行。
预处理通常包括过滤、沉淀、除油等步骤,可以使用物理方法或化学方法进行。
三、沉淀法处理沉淀法是处理含镍废水的一种常用方法。
通过向废水中投加化学药剂,使镍离子转化为氢氧化物沉淀,然后通过沉淀、过滤等方式去除。
常用的沉淀剂包括石灰、氢氧化钠、硫化物等。
沉淀法处理后,废水中的镍离子浓度可以降低到较低水平。
四、吸附法处理吸附法是一种利用吸附剂去除废水中的重金属离子的方法。
常用的吸附剂包括活性炭、树脂、矿物等。
吸附法具有处理效果好、操作简单等优点,但需要定期更换吸附剂,且吸附剂的再生和处置也是需要考虑的问题。
五、电解法处理电解法是通过电解的方式去除废水中的重金属离子。
在电解过程中,废水中的镍离子在阳极上析出,然后通过沉淀、过滤等方式去除。
电解法具有处理效率高、处理速度快等优点,但耗能较大,且阳极材料需要定期更换。
六、生物法处理生物法是利用微生物的吸附和代谢作用去除废水中的重金属离子。
常见的生物法包括活性污泥法、生物膜法等。
生物法具有处理效果好、处理成本低等优点,但需要选择合适的微生物品种和培养条件,且处理时间较长。
七、达标排放经过上述处理步骤后,废水中的镍离子浓度已经降低到国家或地方规定的排放标准以下,可以进行达标排放。
在排放前,应对废水进行监测,确保其满足排放标准。
八、记录与监测为了确保含镍废水处理流程的有效运行和管理,需要建立完善的记录和监测制度。
对废水处理过程中的各个步骤进行详细记录,包括废水来源、水质指标、处理方法、处理效果等。
同时,应定期对废水进行监测,确保其满足排放标准,并对处理效果进行评估和调整。
除铜镍_污水处理实际案例分析
主营业务:线路板制造
水样来源:一般清洗水
水量:250吨/天
原处理工艺:Ca(OH)2+NaOH=Na2S/重捕剂平均ph:1.65
主要重金属:镍、铜
主要重金属初始浓度:铜>300ppm,镍<4ppm 出水标准:铜<0.3ppm,镍<0.1ppm
水样信息:
指标数据
外观浅绿色,透明度不高
PH 1.65
镍含量 3.5ppm
铜含量308ppm
设计思路:
1、原水PH约为1.65,徐调节PH至9-10.除去大量的离子态铜和镍
2、去调PH后沉淀上清液,加入RS100,预计加入100-
200ppmRS100即可达标
实验数据:
药剂投加量(mg/L)RS100PAC PAM 出水镍浓度
(mg/L)
出水铜浓度
(mg/L)
第一组5010030.1330.824第二组10010050.0640.036
第三组200200100.038未检出
指导方案:
1、原水加NaOH调PH至9-10,可加PAC,PAM混凝沉淀
2、
去上述沉淀出水(上清液)加入100ppmRS100,搅拌反应10min
3、加入100ppmPAC,快速搅拌混匀
4、加入5ppmPAM,搅拌混匀后沉淀30min
5、出水即可达标排放(镍<0.1ppm,Cu<0.3ppm)
备注:本方案基于客户提供的水样指标,若实际铜镍含量增加,应
适当提高重金属捕集剂用量。