3、介质的体积电导和表面电导
三电极法测量介质的体积电阻率ρV为 单位Ω.cm
S v Rv d
式中S 为测量电极的面积,d 为介质厚度 RV 由测量的漏导电流ig及电压值u决定,RV=U/ig
介质的体积电导率γv 为
v
1
v
������
介质的表面电阻率和电导率
b s Rs l
电介质电气性能的划分
极化特性:介电常数ε 损耗特性:介损tgδ 电气传导特性:载流子移动、高场强下的电气传
导机理等,电导G 或电阻R 电气击穿特性:包括击穿机理、劣化、电压--时 间特性曲线(V–t )等,击穿电压UC 或击穿场强EC
第1 节电介质的极化及介电常数
������ ������ ������ ������ ������
2、电介质中传导电流的测量
三电极法
测量介质中电流的电路图
介质中的电流与时间的关系
ic:快速极化造成的充电电流 ia:空间电荷极化等缓慢极化 形成的,又称吸收电流
ig:趋向稳定值的漏导电流,
又称泄漏电流
例:聚乙烯的电流-时间特性
在温度高于室温附近, 要达到稳定的泄漏电 流需要几个小时的时 间,在更低的温度下 (20℃),电流很难趋向 稳定的漏导电流 通常的1min绝缘电阻 测量仅仅是为了工程 上的方便,实际上并 没有物理意义,关于 这一点必须注意。
用极化强度P来表征极化的强度,定义为单位
体积的电极矩,与外加电场强度有关 极化强度P与介电常数 ε 的关系:
3、电介质极化基本类型
电介质的极化有五种基本形式: 电子位移极化 离子位移极化 转向极化 空间电荷极化
夹层介质界面极化(归到空间电荷极化)