离散型随机变量的概念
- 格式:ppt
- 大小:1.73 MB
- 文档页数:13
概率统计中的离散型随机变量与连续型随机变量概率统计是数学的一个分支,用于研究随机现象的规律性和不确定性。
在概率统计中,随机变量是一个非常重要的概念。
随机变量可以分为离散型随机变量和连续型随机变量两种类型。
本文将介绍这两种类型的随机变量以及它们的特点和应用。
一、离散型随机变量离散型随机变量是指在一定范围内取有限个或可列个值的随机变量。
它的特点是在定义域内的每个值都有一定的概率与之对应。
离散型随机变量的概率可以通过概率分布函数来描述。
概率分布函数是一个将随机变量的取值映射到概率的函数。
离散型随机变量常见的例子有抛硬币的结果、掷骰子的点数、抽奖的中奖号码等。
这些随机变量的取值都是有限个或可列个,每个取值的概率可以通过实验或统计数据得到。
离散型随机变量的期望值和方差是衡量其分布特征的重要指标。
期望值表示随机变量的平均取值,方差表示随机变量取值的离散程度。
通过计算期望值和方差,可以更好地理解和描述离散型随机变量的分布特征。
离散型随机变量在实际应用中有着广泛的应用。
例如,在市场调研中,我们可以将消费者的购买行为看作是一个离散型随机变量,通过统计分析不同购买决策的概率分布,可以了解不同消费者的购买偏好和市场需求。
二、连续型随机变量连续型随机变量是指在一定范围内可以取任意实数值的随机变量。
与离散型随机变量不同,连续型随机变量的取值是连续的,无法一一列举出来。
连续型随机变量的概率可以通过概率密度函数来描述。
概率密度函数是一个描述随机变量概率分布的函数,它可以表示在某个取值范围内随机变量出现的概率密度。
与离散型随机变量的概率分布函数不同,连续型随机变量的概率密度函数在定义域内的每个点上的函数值并不表示该点的概率,而是表示该点附近的概率密度。
连续型随机变量常见的例子有身高、体重、温度等物理量。
这些随机变量的取值可以是任意的实数,通过概率密度函数可以描述它们的概率分布情况。
与离散型随机变量类似,连续型随机变量也有期望值和方差这两个重要指标。
离散性随机变量的概念知识归纳1.离散型随机变量随着试验结果的变化而变化的变量叫做随机变量.如果随机变量所有可能取的值,可以按一定次序一一列出,这样的随机变量叫做 随机变量.如果随机变量可以取某一区间内的一切值,这样的随机变量叫做 随机变量. 2.离散型随机变量的分布列(1)设离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每个值x i (i =1,2,…n )的概率P (X =x i )=p i ,则称表为随机变量X 的分布列.X 的分布列也可简记为:P (X =x i )=p i ,i =1、2、…、n .(2)离散型随机变量的两个性质: ①p i ≥0,i =1,2,…n ; ②p 1+p 2+p 3+…p n =1.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.3.两点分布如果随机变量X 的分布列为其中0<p <1,则称离散型随机变量X 服从参数为p 的两点分布,称p =P (X =1)为成功概率.任何事件的条件概率都在0和1之间,即0≤P (B |A )≤1,如果B 和C 是两个互斥事件,则P (B∪C |A )=5.事件的独立性设A 、B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与B 相互独立.4.条件概率 一般地,设A 、B 为两个事件,且P (A )>0,称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率,一般把P (B |A )读作A 发生的条件下B 发生的概率.(1)如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都相互独立.(2)如果A 与B 相互独立,则P (B |A )=P (B ),即事件A 的发生与否不影响事件B 的发生. (3)对于n 个事件A 1、A 2、…、A n ,如果其中任何一个事件发生的概率不受其它事件的影响,则这n 个事件A 1、A 2、…、A n 相互独立.如果A 1、A 2、…、A n 相互独立,那么P (A 1A 2…A n )=6.独立重复试验与二项分布(1)一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验.各次试验的结果不受其它试验的影响.(2)一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率都为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为则称随机变量X 服从参数为n 、P 的二项分布,记作X ~B (n ,p ),并称p 为成功概率.7.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为为超几何分布列,如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布.超几何分布给出了求解这类问题的方法,可以当公式直接运用.误区警示1.“互斥事件”与“相互独立事件”的区别它们是两个不同的概念,相同点都是对两个事件而言的,不同点是:“互斥事件”是说两个事件不能同时发生,“相互独立事件”是说一个事件发生与否对另一个事件发生的概率没有影响.2.对独立重复试验要准确理解 (1)独立重复试验的条件第一:每次试验是在同样条件下进行.第二:各次试验中的条件是相互独立的.第三,每次试验都只有两种结果,即事件要么发生,要么不发生3.(1)准确理解事件和随机变量取值的意义,对实际问题中事件之间的关系要清楚. (2)认真审题,找准关键字句,提高解题能力.如“至少有一个发生”,“至多有一个发生”,“恰有一个发生”等.P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n .P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,(其中m 是M ,n 中的最小值,n ≤N ,M ≤N ,n 、M 、N ∈N *).称分布列一、解决概率问题的步骤第一步,确定事件的性质:古典概型、互斥事件、独立事件、独立重复试验,把所给问题归结为某一种.第二步,判断事件的运算(和事件、积事件),确定事件至少有一个发生还是同时发生等等. 第三步,运用公式求概率1、 写出下列各随机变量可能的取值,并说明随机变量所表示的随机试验的结果.(1)小明要去北京旅游,可能乘火车、乘汽车,也可能乘飞机,旅费分别为100元、60元和600元,将他的旅费记为ξ;(2)正方体的骰子,各面分别刻着1、2、3、4、5、6,随意掷两次,所得的点数之和为ξ; (3)一个人要开房门,他共有10把钥匙,其中仅有一把是能开门的,他随机取钥匙去开门并且用后不放回,其中打开门所试的钥匙个数为ξ;(4)电台在每个整点都报时,某人随机打开收音机对表,他所等待的时间ξ(min). 2、 (09·广东)已知离散型随机变量X 的分布列如右表,若E (X )=0,D (X )=1,,则a =______,b =______.设随机变量ξ的分布列为P (ξ=k )=ck +1,k =0,1,2,3,则E (ξ)= ( )A.1225B.2325C.1350D.4625古典概型P (A )=mn ;互斥事件P (A ∪B )=P (A )+P (B ); 条件概率P (B |A )=P (AB )P (A ); 独立事件P (AB )=P (A )P (B );n 次独立重复试验:P (X =k )=C k n p k (1-p )n -k.3 一次数学摸底考试,某班60名同学成绩的频率分布直方图如图所示.若得分90分以上为及格.从该班任取一位同学,其分、数是否及格记为ξ,求ξ的分布列.4 从某批产品中,有放回地抽取产品两次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96.(1)求从该批产品中任取一件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.5某学习小组有6个同学,其中4个同学从来没有参加过数学研究性学习活动,2个同学曾经参加过数学研究性学习活动.(1)现从该小组中任选2个同学参加数学研究性学习活动,求恰好选到1个曾经参加过数学研究性学习活动的同学的概率;(2)若从该小组中任选2个同学参加数学研究性学习活动,活动结束后,该小组没有参加过数学研究性学习活动的同学个数ξ是一个随机变量,求随机变量ξ的分布列及数学期望E(ξ).6 在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取1件.试求:(1)第一次取到不合格品的概率;(2)在第一次取到不合格品后,第二次再次取到不合格品的概率.7设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx +c =0实根的个数(重根按一个计).(1)求方程x 2+bx +c =0有实根的概率; (2)求ξ的分布列和数学期望;(3)求在先后两次出现的点数中有5的条件下,方程x 2+bx +c =0有实根的概率.8(1)求该生至少有1门课程取得优秀成绩的概率; (2)求p ,q 的值; (3)求数学期望E (ξ).9.(2010·甘肃省质检)某机械零件加工由2道工序组成,第1道工序的废品率为a ,第2道工序的废品率为b ,假定这2道工序出废品的概率彼此无关,那么产品的合格率是( ) A .ab -a -b +1 B .1-a -b C .1-ab D .1-2ab10.(2010·上海市嘉定区调研)一只不透明的布袋中装有编号为1、2、3、4、5的五个大小形状完全一样的小球,现从袋中同时摸出3只小球,用随机变量X 表示摸出的3只球中的最大号码数,则随机变量X 的数学期望E (X )=( )A.445B.8310C.72D.9211.(2010·福建福州)在研究性学习的一次活动中,甲、乙、丙、丁、戊五位同学被随机地分配承担H,I,J,K四项不同的任务,每项任务至少安排一位同学承担.(1)求甲、乙两人同时承担H任务的概率;(2)求甲、乙两人不同时承担同一项任务的概率;(3)设这五位同学中承担H任务的人数为随机变量ξ,求ξ的分布列及数学期望E(ξ).12.(2010·云南统考)某单位组织职工参加了旨在调查职工健康状况的测试.该测试包括心理健康测试和身体健康测试两个项目,每个项目的测试结果为A、B、C、D、E五个等级.假设该单位50位职工全部参加了测试,测试结果如下:x表示心理健康测试结果,y表示身体健康测试结果.(1)求a+b的值;(2)如果在该单位随机找一位职工谈话,求找到的职工在这次测试中,心理健康为D等级且身体健康为C等级的概率;(3)若“职工的心理健康为D等级”与“职工的身体健康为B等级”是相互独立事件,求a、b的值.13.(2010·河北唐山)已知7件产品中有2件次品,现逐一不放回地进行检验,直到2件次品都能被确认为止.(1)求检验次数为4的概率;(2)设检验次数为ξ,求ξ的分布列和数学期望.14.(2010·浙江金华十校联考)质地均匀的正四面体玩具的4个面上分别刻着数字1,2,3,4,将4个这样的玩具同时抛掷于桌面上.(1)求与桌面接触的4个面上的4个数的乘积不能被4整除的概率;(2)设ξ为与桌面接触的4个面上数字中偶数的个数,求ξ的分布列及期望E(ξ).15.(2010·河南调研)甲、乙两人进行某项对抗性游戏,采用“七局四胜”制,即先赢四局者为胜,若甲、乙两人水平相当,且已知甲先赢了前两局,求:(1)乙取胜的概率;(2)比赛进行完七局的概率;(3)记比赛局数为ξ,求ξ的分布列及数学期望E(ξ).。
名词解释离散型随机变量
离散型随机变量是指具有有限个值或有限个可能结果中出现的一种变量,它们
具有离散取值,而不是连续变化。
离散型随机变量既可以是定义在连续变量上的变量,也可以是由其他连续随机变量(如随机变量)组成的变量。
离散型随机变量的应用可以追溯到19世纪的统计学家,他们把随机变量分为
连续型变量和离散型变量,以描述发生在概率范畴里的一些事件。
离散型随机变量是一个很强大的数学概念,已被广泛应用于各种科学领域,其中包括金融、经济学、生物统计学等。
离散型随机变量在统计学中可被描述为某一实验,其值依赖于可能观测到的值,本质上是一种概率分布。
它们利用概率论来表示实验结果的不确定性,可用于估计一种实验事件发生的概率。
更重要的是,它可以用来推断概率分布的特性,如正态分布、对数正态分布等,并估计其概率密度函数的参数值。
离散随机变量的另一个重要应用是描述实验结果的统计特性。
比如,使用它们
可以表示实验组与控制组之间的统计频数,识别两者之间的差异,也可以表示实验组间统计频数之间的相关性,同时绘制实验结果的直方图,使用者可清晰地观察不同状态的变化。
离散型随机变量在相关研究中的作用也受到了人们的广泛关注。
它可以用于识
别某一变量和另一个变量之间的相关性,以及可能的关系,这常常可简化研究者在实验中的观察结果,为深入的研究提供必要的信息。
总之,离散型随机变量具有深远的影响力,它们可以用来描述实验结果的统计
特性,估计概率分布的参数,识别不同变量之间的相关性等,因此离散型随机变量当今全球社会中受到的人们的广泛关注和广泛使用,在不断提升社会生活水平的过程中扮演着重要角色。
第6讲 离散型随机变量及其分布列1.随机变量的有关概念(1)随机变量:随着试验结果的变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量的分布列及其性质(1)概念:一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则下表X x 1 x 2 … x i … x n Pp 1p 2…p i…p n的概率分布列,简称为的分布列,有时为了表达简单,也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)离散型随机变量的分布列的性质 ①p i ≥0(i =1,2,…,n ); ②∑ni =1p i =1. 3.两点分布若随机变量X 服从两点分布,则其分布列为X 0 1 P1-pp=P (X =1)称为成功概率[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数.( ) (2)抛掷均匀硬币一次,出现正面的次数是随机变量.( ) (3)离散型随机变量的各个可能值表示的事件是彼此互斥的.( )(4)离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.( )(5)由下表给出的随机变量X 的分布列服从两点分布.( )X 2 5 P0.30.7[教材衍化]1.(选修2-3P77A 组T1改编)设随机变量X 的分布列如下:解析:由分布列的性质知,112+16+13+16+p =1, 所以p =1-34=14.答案:142.(选修2-3P49A 组T1改编)有一批产品共12件,其中次品3件,每次从中任取一件,在取到合格品之前取出的次品数X 的所有可能取值是________.解析:因为次品共有3件,所以在取到合格品之前取到次品数为0,1,2,3. 答案:0,1,2,33.(选修2-3P49A 组T5改编)设随机变量X 的分布列为解析:由13+m +14+16=1,解得m =14,P (|X -3|=1)=P (X =2)+P (X =4) =14+16=512. 答案:512[易错纠偏]随机变量的概念不清.袋中有3个白球、5个黑球,从中任取两个,可以作为随机变量的是( ) A .至少取到1个白球 B .至多取到1个白球 C .取到白球的个数D .取到的球的个数解析:选C.A ,B 两项表述的都是随机事件,D 项是确定的值2,并不随机;C 项是随机变量,可能取值为0,1,2.故选C.离散型随机变量的分布列的性质设离散型随机变量X的分布列为X 01234P 0.20.10.10.3m(2)|X-1|的分布列.【解】由分布列的性质知:0.2+0.1+0.1+0.3+m=1,解得m=0.3.(1)2X+1的分布列为2X+113579P 0.20.10.10.30.3(2)|X-1|的分布列为|X-1|012 3P 0.10.30.30.3(变问法)在本例条件下,求P(1<X≤4).解:由本例知,m=0.3,P(1<X≤4)=P(X=2)+(X=3)+P(X=4)=0.1+0.3+0.3=0.7.离散型随机变量分布列的性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负值;(2)若X为随机变量,则2X+1仍然为随机变量,求其分布列时可先求出相应的随机变量的值,再根据对应的概率写出分布列.1.设随机变量X等可能地取1,2,3,…,n,若P(X<4)=0.3,则n的值为() A.3B.4C .10D .不确定解析:选C.“X <4”的含义为X =1,2,3,所以P (X <4)=3n =0.3,所以n =10.2.随机变量X 的分布列如下:X -1 0 1 Pabc解析:因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d≤13. 答案:23 ⎣⎡⎦⎤-13,13离散型随机变量的分布列(高频考点)离散型随机变量的分布列是高考命题的热点,多以解答题的形式出现,试题难度不大,多为容易题或中档题.主要命题角度有:(1)用频率代替概率的离散型随机变量的分布列; (2)古典概型的离散型随机变量的分布列;(3)与独立事件(或独立重复试验)有关的分布列的求法.(下一讲内容) 角度一 用频率代替概率的离散型随机变量的分布列某商店试销某种商品20天,获得如下数据:日销售量(件)0 1 2 3 频数1595当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列. 【解】 (1)P (当天商店不进货)=P (当天商品销售量为0件)+P (当天商品销售量为1件)=120+520=310.(2)由题意知,X 的可能取值为2,3.P (X =2)=P (当天商品销售量为1件)=520=14;P (X =3)=P (当天商品销售量为0件)+P (当天商品销售量为2件)+P (当天商品销售量为3件)=120+920+520=34.所以X 的分布列为X 2 3 P1434角度二 古典概型的离散型随机变量的分布列(2020·浙江省名校协作体高三联考)一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何一个小球的可能性相同).(1)求取出的3个小球中,含有编号为4的小球的概率;(2)在取出的3个小球中,小球编号的最大值设为X ,求随机变量X 的分布列. 【解】 (1)“设取出的3个小球中,含有编号为4的小球”为事件A ,P (A )=C 12C 24+C 22C 14C 36=45,所以取出的3个小球中,含有编号为4的小球的概率为45.(2)X 的可能取值为3,4,5.P (X =3)=1C 36=120;P (X =4)=C 12C 23+C 22C 13C 36=920;P (X =5)=C 25C 36=12,所以随机变量X 的分布列为X 3 4 5 P12092012离散型随机变量分布列的求解步骤(1)明取值:明确随机变量的可能取值有哪些,且每一个取值所表示的意义. (2)求概率:要弄清楚随机变量的概率类型,利用相关公式求出变量所对应的概率. (3)画表格:按规范要求形式写出分布列.(4)做检验:利用分布列的性质检验分布列是否正确.[提醒] 求随机变量某一范围内取值的概率,要注意它在这个范围内的概率等于这个范围内各概率值的和.某校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为X ,求X 的分布列.解:(1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n =12(n -6)n (n -1),则12(n -6)n (n -1)≥12, 化简得n 2-25n +144≤0,解得9≤n ≤16, 故n 的最大值为16.(2)由题意得,X 的可能取值为0,1,2,则P (X =0)=C 26C 212=522,P (X =1)=C 16C 16C 212=611,P (X =2)=C 26C 212=522,X 的分布列为X 0 1 2 P522611522[基础题组练]1.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0 B.12 C.13D.23解析:选C.设X 的分布列为X1即“X =0”表示试验失败,“X =1”表示试验成功.由p +2p =1,得p =13,故应选C.2.设随机变量Y 的分布列为则“32≤Y ≤72”的概率为( )A.14B.12C.34D.23解析:选C.依题意知,14+m +14=1,则m =12.故P ⎝⎛⎭⎫32≤Y ≤72=P (Y =2)+P (Y =3)=12+14=34. 3.设随机变量X 的概率分布列如下表所示:若F (x )=P A.13 B.16 C.12D.56解析:选D.由分布列的性质,得a +13+16=1,所以a =12.而x ∈[1,2),所以F (x )=P (X ≤x )=12+13=56. 4.已知离散型随机变量X 的分布列为则P (X ∈Z )=( ) A .0.9 B .0.8 C .0.7D .0.6解析:选A.由分布列性质得0.5+1-2q +13q =1,解得q =0.3,所以P (X ∈Z )=P (X =0)+P (X =1)=0.5+1-2×0.3=0.9,故选A. 5.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)=________. 解析:抛掷2颗骰子有36个基本事件,其中X =2对应(1,1);X =3对应(1,2),(2,1);X =4对应(1,3),(2,2),(3,1).所以P (X ≤4)=P (X =2)+P (X =3)+P (X =4)=136+236+336=16.答案:166.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.解析:设ξ取x 1,x 2,x 3时的概率分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=1,所以a =13,由⎩⎨⎧13-d ≥0,13+d ≥0,得-13≤d ≤13.答案:⎣⎡⎦⎤-13,13 7.若离散型随机变量X 的分布列为则常数c =________,P (X 解析:由分布列的性质知,⎩⎪⎨⎪⎧9c 2-c ≥0,3-8c ≥0,9c 2-c +3-8c =1,解得c =13,故P (X =1)=3-8×13=13.答案:13 138.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数X 的分布列为________.解析:X 的所有可能值为0,1,2.P (X =0)=C 11C 11C 12C 12=14,P (X =1)=C 11C 11×2C 12C 12=12,P (X =2)=C 11C 11C 12C 12=14.所以X 的分布列为答案:9.(1)写出正面向上次数X 的分布列; (2)求至少出现两次正面向上的概率. 解:(1)X 的可能取值为0,1,2,3. P (X =0)=C 0323=18;P (X =1)=C 1323=38;P (X =2)=C 2323=38;P (X =3)=C 3323=18.所以X 的分布列为(2)至少出现两次正面向上的概率为 P (X ≥2)=P (X =2)+P (X =3)=38+18=12.10.(2020·台州高三质检)在一次购物活动中,假设每10张券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获得价值10元的奖品;其余6张没有奖.某顾客从这10张券中任取2张.(1)求该顾客中奖的概率;(2)求该顾客获得的奖品总价值X (元)的分布列.解:(1)该顾客中奖的概率P =1-C 04C 26C 210=1-1545=23.(2)X 的所有可能取值为0,10,20,50,60,且P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,P (X =60)=C 11C 13C 210=115.故X 的分布列为X 0 10 20 50 60 P1325115215 1151.(2020·浙江高中学科基础测试)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5;4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(1)求取出的3个球编号都不相同的概率;(2)记X 为取出的3个球中编号的最小值,求X 的分布列.解:(1)设“取出的3个球编号都不相同”为事件A ,“取出的3个球中恰有两个球编号相同”为事件B ,则P (B )=C 14C 17C 39=2884=13,所以P (A )=1-P (B )=23.(2)X 的取值为1,2,3,4,P (X =1)=C 12C 27+C 22C 17C 39=4984,P (X =2)=C 12C 25+C 22C 15C 39=2584,P (X =3)=C 12C 23+C 22C 13C 39=984,P (X =4)=1C 39=184.所以X 的分布列为X 1 2 3 4 P71225843281842.O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图),这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率;(2)求X 的分布列.解:(1)从8个点中任取两点为向量终点的不同取法共有C 28=28(种),当X =0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27. (2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为3.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球为止,每个球在每一次被取出的机会是相等的,用X 表示终止时所需要的取球次数.(1)求袋中原有白球的个数;(2)求随机变量X 的分布列;(3)求甲取到白球的概率.解:(1)设袋中原有n 个白球,由题意知17=C 2n C 27=n (n -1)27×62=n (n -1)7×6, 所以n (n -1)=6,解得n =3或n =-2(舍去).即袋中原有3个白球.(2)由题意知X 的可能取值为1,2,3,4,5.P (X =1)=37; P (X =2)=4×37×6=27; P (X =3)=4×3×37×6×5=635; P (X =4)=4×3×2×37×6×5×4=335;P (X =5)=4×3×2×1×37×6×5×4×3=135. 所以取球次数X 的分布列为(3)因为甲先取,所以甲只可能在第1次、第3次和第5次取球. 设“甲取到白球”的事件为A ,则P (A )=P (X =1或X =3或X =5).因为事件“X =1”“X =3”“X =5”两两互斥,所以P (A )=P (X =1)+P (X =3)+P (X =5)=37+635+135=2235.。
如何区分离散型和连续性随机变量
1、离散型
离散型随机变量即在一定区间内变量取值为有限个或可数个。
例如地
区2023年人口的出生数、死亡数,药治疗病病人的有效数、无效数等。
离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。
2、连续型
连续型随机变量即在一定区间内变量取值有无限个,或数值无法一个
一个列举出来。
例如地区男性健康成人的身长值、体重值,一批传染性肝
炎患者的血清转氨酶测定值等。
有几个重要的连续随机变量常常出现在概
率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。
扩展资料:
随机变量的启前空期望:
离散情形
如果X是离散随机变量,具有概率质量函数p(某),那么X的期望
值定义为E[X]=
换句话说,X的期望是X可能取的值的加权平均,每个值被X取此值
的概率所加权。
连续情形
我们也可以定义连续随机变量的期望值。
如果X是具有概率密度函数f(悄瞎某)的连续随机变量,那么X的期望就定义为E[X]=换句话说,在上均匀分布的随机变量的期望值正是区间的中点。
参考资料:。
离散型随机变量及其分布列1.随机变量的有关概念(1)随机变量:随着试验结果的变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量的分布列及其性质(1)概念:一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则下表称为离散型随机变量X 的概率分布列,简称为X 的分布列,有时为了表达简单,也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)离散型随机变量的分布列的性质 ①p i ≥0(i =1,2,…,n );②∑ni =1p i =1. 3.常见的离散型随机变量分布列 (1)两点分布若随机变量X 服从两点分布,则其分布列为其中p =P (X =1)称为成功概率. (2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,即:其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.判断正误(正确的打“√”,错误的打“×”)(1)随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数.( ) (2)抛掷均匀硬币一次,出现正面的次数是随机变量.( ) (3)离散型随机变量的各个可能值表示的事件是彼此互斥的.( )(4)离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.( )(5)从4名男演员和3名女演员中选出4人,其中女演员的人数X 服从超几何分布.( ) (6)由下表给出的随机变量X 的分布列服从两点分布.( )答案:(1)√ (2)√ (3)√ (4)√ (5)√ (6)×(教材习题改编)设随机变量X 的分布列如下表所示,则p 4的值是( )A.1 B .12 C .14D .18解析:选D.由分布列的性质,得12+14+18+p 4=1,所以p 4=18.设随机变量X 的分布列为P (X =k )=k 15,k =1,2,3,4,5,则P ⎝ ⎛⎭⎪⎫12<X <52=________.解析:P ⎝ ⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=115+215=15. 答案:15在含有3件次品的10件产品中任取4件,则取到次品数X 的分布列为________. 解析:由题意知,X 服从超几何分布,其中N =10,M =3,n =4,所以分布列为P (X =k )=C k3·C 4-k7C 410,k =0,1,2,3.答案:P(X =k )=C k 3·C 4-k7C 410,k =0,1,2,3离散型随机变量的分布列的性质设离散型随机变量X 的分布列为求:(1)2X +1的分布列; (2)|X -1|的分布列.【解】 由分布列的性质知:0.2+0.1+0.1+0.3+m =1, 解得m =0.3. (1)2X +1的分布列为(2)|X -1|的分布列为在本例条件下,求P (1<X ≤4). 解:由本例知,m =0.3,P (1<X ≤4)=P (X =2)+(X =3)+P (X =4)=0.1+0.3+0.3=0.7.离散型随机变量分布列的性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负值;(2)若X 为随机变量,则2X +1仍然为随机变量,求其分布列时可先求出相应的随机变量的值,再根据对应的概率写出分布列.1.设随机变量X 等可能地取1,2,3,…,n ,若P (X <4)=0.3,则n 的值为( ) A .3 B .4 C .10D .不确定解析:选C.“X <4”的含义为X =1,2,3,所以P (X <4)=3n=0.3,所以n =10.2.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________. 解析:因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d≤13. 答案:23 ⎣⎢⎡⎦⎥⎤-13,13离散型随机变量的分布列(高频考点)离散型随机变量的分布列是高考命题的热点,多以解答题的形式出现,试题难度不大,多为容易题或中档题.主要命题角度有:(1)用频率代替概率的离散型随机变量的分布列; (2)古典概型的离散型随机变量的分布列;(3)与独立事件(或独立重复试验)有关的分布列的求法.(下一讲内容)角度一 用频率代替概率的离散型随机变量的分布列某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列. 【解】 (1)P (当天商店不进货)=P (当天商品销售量为0件)+P (当天商品销售量为1件)=120+520=310.(2)由题意知,X 的可能取值为2,3.P (X =2)=P (当天商品销售量为1件)=520=14;P (X =3)=P (当天商品销售量为0件)+P (当天商品销售量为2件)+P (当天商品销售量为3件)=120+920+520=34.所以X 的分布列为角度二 古典概型的离散型随机变量的分布列(2019·浙江省名校协作体高三联考)一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何一个小球的可能性相同).(1)求取出的3个小球中,含有编号为4的小球的概率;(2)在取出的3个小球中,小球编号的最大值设为X ,求随机变量X 的分布列. 【解】 (1)“设取出的3个小球中,含有编号为4的小球”为事件A , P (A )=C 12C 24+C 22C 14C 36=45,所以取出的3个小球中,含有编号为4的小球的概率为45. (2)X 的可能取值为3,4,5.P (X =3)=1C 36=120;P (X =4)=C 12C 23+C 22C 13C 36=920; P (X =5)=C 35C 36=12,所以随机变量X 的分布列为离散型随机变量分布列的求解步骤(1)明取值:明确随机变量的可能取值有哪些,且每一个取值所表示的意义. (2)求概率:要弄清楚随机变量的概率类型,利用相关公式求出变量所对应的概率. (3)画表格:按规范要求形式写出分布列.(4)做检验:利用分布列的性质检验分布列是否正确.[提醒] 求随机变量某一范围内取值的概率,要注意它在这个范围内的概率等于这个范围内各概率值的和.某校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为X ,求X 的分布列. 解:(1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n =12(n -6)n (n -1),则12(n -6)n (n -1)≥12,化简得n 2-25n +144≤0,解得9≤n ≤16, 故n 的最大值为16.(2)由题意得,X 的可能取值为0,1,2,则P (X =0)=C 26C 212=522,P (X =1)=C 16C 16C 212=611,P (X =2)=C 26C 212=522,X 的分布列为超几何分布一个袋中有大小相同的黑球和白球共10个.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列. 【解】 (1)记“从袋中任意摸出2个球,至少得到1个白球”为事件A ,设袋中白球的个数为x ,则P (A )=1-C 210-x C 210=79,得到x =5.故白球有5个.(2)X 服从超几何分布,其中N =10,M =5,n =3, P (X =k )=C k 5C 3-k5C 310,k =0,1,2,3.于是可得其分布列为在本例条件下,若从袋中任意摸出4个球,记得到白球的个数为X ,求随机变量X 的分布列.解:X 服从超几何分布,其中N =10,M =5,n =4, P (X =k )=C k 5C 4-k5C 410,k =0,1,2,3,4,于是可得其分布列为超几何分布的特点(1)对于服从某些特殊分布的随机变量,其分布列可直接应用公式给出.(2)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数,随机变量取值的概率实质上是古典概型.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列. 解:(1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 所以,事件A 发生的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4. P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以,随机变量X 的分布列为对于随机变量X 的研究,需要了解随机变量取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X 的取值范围以及取这些值的概率.求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.易错防范(1)确定离散型随机变量的取值时,易忽视各个可能取值表示的事件是彼此互斥的. (2)对于分布列易忽视其性质p 1+p 2+…+p n =1及p i ≥0(i =1,2,…,n ),其作用可用于检验所求离散型随机变量的分布列是否正确.[基础达标]1.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0B .12C .13D .23解析:选C.设X 的分布列为即“X =0”表示试验失败,“X =1”表示试验成功.由p +2p =1,得p =13,故应选C.2.(2019·绍兴调研)在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,则下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)解析:选C.X 服从超几何分布,P (X =k )=C k 7C 10-k8C 1015,故k =4,故选C.3.设随机变量Y 的分布列为则“32≤Y ≤72”的概率为( )A .14B .12C .34D .23解析:选C.依题意知,14+m +14=1,则m =12.故P ⎝ ⎛⎭⎪⎫32≤Y ≤72=P (Y =2)+P (Y =3)=12+14=34.4.设随机变量X 的概率分布列如下表所示:若F (x )=P (X ≤x ),则当x 的取值范围是[1,2)时,F (x )等于( ) A .13 B .16 C .12D .56解析:选D.由分布列的性质,得a +13+16=1,所以a =12.而x ∈[1,2),所以F (x )=P (X ≤x )=12+13=56.5.已知离散型随机变量X 的分布列为则P (X ∈Z )=( ) A .0.9 B .0.8 C .0.7D .0.6解析:选A.由分布列性质得0.5+1-2q +13q =1,解得q =0.3,所以P (X ∈Z )=P (X =0)+P (X =1)=0.5+1-2×0.3=0.9,故选A.6.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)=________. 解析:抛掷2颗骰子有36个基本事件,其中X =2对应(1,1);X =3对应(1,2),(2,1);X =4对应(1,3),(2,2),(3,1).所以P (X ≤4)=P (X =2)+P (X =3)+P (X =4)=136+236+336=16.答案:167.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.解析:设ξ取x 1,x 2,x 3时的概率分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=1,所以a =13,由⎩⎪⎨⎪⎧13-d ≥0,13+d ≥0,得-13≤d ≤13.答案:⎣⎢⎡⎦⎥⎤-13,138.若离散型随机变量X 的分布列为则常数c =________,P (X =1)=________. 解析:依分布列的性质知,⎩⎪⎨⎪⎧9c 2-c ≥0,3-8c ≥0,9c 2-c +3-8c =1,解得c =13,故P (X =1)=3-8×13=13.答案:13 139.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数X 的分布列为________.解析:X 的所有可能值为0,1,2. P (X =0)=C 11C 11C 12C 12=14,P (X =1)=C 11C 11×2C 12C 12=12,P (X =2)=C 11C 11C 12C 12=14.所以X 的分布列为答案:10.(2019·温州市高考模拟)袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是________,设摸取的这三个球中所含的黑球数为X ,则P (X =k )取最大值时,k 的值为________.解析:袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是:n =C 26C 13=45.设摸取的这三个球中所含的黑球数为X ,则X 的可能取值为0,1,2,3, P (X =0)=C 33C 39=184,P (X =1)=C 16C 23C 39=1884,C 984P (X =3)=C 36C 39=2084,所以P (X =k )取最大值时,k 的值为2. 答案:45 211.抛掷一枚质地均匀的硬币3次. (1)写出正面向上次数X 的分布列; (2)求至少出现两次正面向上的概率. 解:(1)X 的可能取值为0,1,2,3. P (X =0)=C 0323=18;P (X =1)=C 1323=38;P (X =2)=C 2323=38;P (X =3)=C 3323=18.所以X 的分布列为(2)至少出现两次正面向上的概率为P (X ≥2)=P (X =2)+P (X =3)=38+18=12. 12.(2019·台州高三质检)在一次购物活动中,假设每10张券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获得价值10元的奖品;其余6张没有奖.某顾客从这10张券中任取2张.(1)求该顾客中奖的概率;(2)求该顾客获得的奖品总价值X (元)的分布列. 解:(1)该顾客中奖的概率P =1-C 04C 26C 210=1-1545=23.(2)X 的所有可能取值为0,10,20,50,60,且 P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,C 1015故X 的分布列为[能力提升]1.(2019·浙江高中学科基础测试)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5;4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(1)求取出的3个球编号都不相同的概率;(2)记X 为取出的3个球中编号的最小值,求X 的分布列.解:(1)设“取出的3个球编号都不相同”为事件A ,“取出的3个球中恰有两个球编号相同”为事件B ,则P (B )=C 14C 17C 39=2884=13,所以P (A )=1-P (B )=23.(2)X 的取值为1,2,3,4,P (X =1)=C 12C 27+C 22C 17C 39=4984,P (X =2)=C 12C 25+C 22C 15C 39=2584, P (X =3)=C 12C 23+C 22C 13C 39=984,P (X =4)=1C 39=184. 所以X 的分布列为2.(2019·惠州市第三次调研考试)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以选出的3名同学是来自互不相同学院的概率为4960.(2)随机变量X 的所有可能值为0,1,2,3. P (X =k )=C k4·C 3-k6C 310(k =0,1,2,3). 所以随机变量X 的分布列为3.小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图),这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列.解:(1)从8个点中任取两点为向量终点的不同取法共有C 28=28(种),当X =0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27. (2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为4.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球为止,每个球在每一次被取出的机会是相等的,用X 表示终止时所需要的取球次数.(1)求袋中原有白球的个数; (2)求随机变量X 的分布列; (3)求甲取到白球的概率. 解:(1)设袋中原有n 个白球,由题意知17=C 2nC 27=n (n -1)27×62=n (n -1)7×6,所以n (n -1)=6,解得n =3或n =-2(舍去). 即袋中原有3个白球.(2)由题意知X 的可能取值为1,2,3,4,5.P (X =1)=37; P (X =2)=4×37×6=27; P (X =3)=4×3×37×6×5=635;P (X =4)=4×3×2×37×6×5×4=335;P (X =5)=4×3×2×1×37×6×5×4×3=135.所以取球次数X 的分布列为(3)因为甲先取,所以甲只可能在第1次、第3次和第5次取球. 设“甲取到白球”的事件为A , 则P (A )=P (X =1或X =3或X =5).因为事件“X =1”“X =3”“X =5”两两互斥,所以P (A )=P (X =1)+P (X =3)+P (X =5)=37+635+135=2235.。
名词解释-离散随机变量
离散随机变量(discrete random variable, DC)是由概率论中
的统计分布理论导出的概念。
在统计学中,一个随机变量x的分布函数y(x)表示x在各种可能结果的概率密度函数为:
Y(x)=p(x|y(x)|x=a|b|c)下的取值集合。
1。
离散型随机变量在同一事件的各个不同时刻测得的统计量之
间的差别不大。
一般说来,这类随机变量称为离散型随机变量。
这样的随机变量我们也称为离散型随机变量。
离散型随机变量有两种形式:即离散型连续型随机变量。
它是指在同一事件的各个不同时刻测得的统计量的差别是连续的。
如二项分布、正态分布等都是离散型随机变量。
在随机变量中,连续型随机变量只是很少的情况。
2。
离散型随机变量与连续型随机变量的主要区别:(1)
3。
离散型随机变量的图形特征是:任意两个离散型随机变量均
可以有一条直线相切。
离散型随机变量的极限定义:随着n的增大,上式右边的面积趋近于零,即上述式子发展为: n≥dX(2)
4。
设x1, x2是一对离散型随机变量,且x1≤x2≤n,则: x1≥x2( 1)( 2)当x1≥ x2时, n是x1和x2的最大公约数, n=m+k 时, x1≥x2当x1≤x2时, n是x1和x2的最小公倍数,当x1≥x2时, n1、 n2均为正整数时, x1≥x2当n≥n2时, x1≥n2当n≥m 时, x1≥m( 3)( 4)在实际应用中,要求当n≥m时, x1≥n2, n1、n2应按分母不能为0的原则选择。
- 1 -。
离散型随机变量的均值与方差_教案第一章:离散型随机变量的概念1.1 离散型随机变量的定义介绍离散型随机变量的概念举例说明离散型随机变量1.2 离散型随机变量的概率分布概率分布的定义概率分布的性质概率分布的图形表示1.3 离散型随机变量的期望值期望值的定义期望值的计算方法期望值的意义第二章:离散型随机变量的均值2.1 离散型随机变量的均值的概念均值的定义均值的意义2.2 离散型随机变量的均值的计算方法均值的计算公式均值的计算步骤2.3 离散型随机变量的均值的性质均值的性质1:线性性质均值的性质3:单调性第三章:离散型随机变量的方差3.1 离散型随机变量的方差的概念方差的定义方差的意义3.2 离散型随机变量的方差的计算方法方差的计算公式方差的计算步骤3.3 离散型随机变量的方差的性质方差的性质1:非负性方差的性质2:对称性方差的性质3:单调性第四章:离散型随机变量的协方差4.1 离散型随机变量的协方差的概念协方差的定义协方差的意义4.2 离散型随机变量的协方差的计算方法协方差的计算公式协方差的计算步骤4.3 离散型随机变量的协方差的性质协方差的性质1:线性性质协方差的性质3:对称性第五章:离散型随机变量的相关系数5.1 离散型随机变量的相关系数的定义相关系数的定义相关系数的意义5.2 离散型随机变量的相关系数的计算方法相关系数的计算公式相关系数的计算步骤5.3 离散型随机变量的相关系数的性质相关系数的性质1:取值范围相关系数的性质2:单调性相关系数的性质3:对称性第六章:离散型随机变量的标准化6.1 离散型随机变量标准化的概念标准化的定义标准化的意义6.2 离散型随机变量的标准化方法标准化的计算公式标准化的计算步骤6.3 离散型随机变量标准化后的性质标准化后的分布标准化后的期望值和方差第七章:离散型随机变量的均值的估计7.1 离散型随机变量均值估计的概念均值估计的定义均值估计的意义7.2 离散型随机变量均值的点估计点估计的定义点估计的计算方法7.3 离散型随机变量均值的区间估计区间估计的定义区间估计的计算方法第八章:离散型随机变量的方差的估计8.1 离散型随机变量方差估计的概念方差估计的定义方差估计的意义8.2 离散型随机变量方差的点估计点估计的定义点估计的计算方法8.3 离散型随机变量方差的区间估计区间估计的定义区间估计的计算方法第九章:离散型随机变量的协方差的估计9.1 离散型随机变量协方差估计的概念协方差估计的定义协方差估计的意义9.2 离散型随机变量协方差的点估计点估计的定义点估计的计算方法9.3 离散型随机变量协方差的区间估计区间估计的定义区间估计的计算方法第十章:离散型随机变量的相关系数的估计10.1 离散型随机变量相关系数估计的概念相关系数估计的定义相关系数估计的意义10.2 离散型随机变量相关系数的点估计点估计的定义点估计的计算方法10.3 离散型随机变量相关系数的区间估计区间估计的定义区间估计的计算方法重点和难点解析重点环节1:离散型随机变量的期望值和方差的计算方法。
离散型随机变量离散型随机变量是概率论中的一个重要概念,它是指随机变量取值为有限个或可数个的情况。
对于离散型随机变量,我们可以通过概率质量函数(Probability Mass Function,简称PMF)来描述其取值与相应概率的关系。
下面将对离散型随机变量的定义、特点以及常见的离散型随机变量进行介绍。
一、离散型随机变量的定义离散型随机变量是指其取值为有限个或可数个的随机变量。
具体来说,对于一维离散型随机变量X,其取值集合可以表示为{X1, X2,X3, ... , Xn},而不是一个连续的区间。
离散型随机变量的特点是,它的每个取值都有一个概率与之相对应,即P(X = Xi)。
这意味着我们可以通过概率质量函数(PMF)来描述离散型随机变量的取值与相应概率的对应关系。
二、离散型随机变量的特点离散型随机变量有几个重要特点,包括有限性、不连续性、可数性和非负性。
1. 有限性:离散型随机变量的取值集合是有限个或可数个,即有限可数。
这与连续型随机变量不同,后者的取值集合是无限个且无法一一列举。
2. 不连续性:离散型随机变量的取值是离散的,即不存在取任意实数的情况。
相应地,其概率质量函数在取值点之间可以是零,而在取值点上为正。
3. 可数性:离散型随机变量的取值集合是可数的,即可以用自然数进行一一对应。
这也意味着我们可以将概率质量函数表示为一个概率分布列。
4. 非负性:离散型随机变量的概率质量函数的取值是非负的,即P(X = Xi) ≥ 0。
这是因为概率是一个非负实数。
三、常见的在概率论与数理统计中,有一些常见的离散型随机变量。
下面将介绍几个常见的离散型随机变量以及它们对应的概率分布。
1. 伯努利分布(Bernoulli Distribution):伯努利变量是最简单的离散型随机变量之一,其概率分布只有两个取值。
伯努利分布常用于表示一次试验只有两个可能结果的情况,如抛硬币、赛马比赛等。
2. 二项分布(Binomial Distribution):二项分布是一种重要的离散型随机变量,它描述了一系列相互独立的伯努利试验中成功次数的分布情况。
离散随机变量名词解释从概率论的角度看,离散型随机变量可分为两大类:第一类是连续型随机变量,即服从正态分布;另一类是离散型随机变量,即服从正态分布或t分布。
下面就是有关这些随机变量的名词解释:1。
离散型随机变量假设对于服从标准正态分布,且均值为1的离散型随机变量X,随机变量的样本均值,即样本均值P(x)通常称为均值或均值函数。
如果设定x(t)为自变量,记作X(t),则相应的随机变量称为X的函数,记作X。
在统计学中,用Y表示X的函数,是经常采用的简便写法,或者在数学上, Y= X,也能得到统一的结果。
在正态分布理论中,通常假定随机变量的形式服从正态分布,即相应的自变量和因变量均服从正态分布。
1。
离散型随机变量假定变量取值范围为[-1, 1],而统计上又希望在某一区间([0,1])X(t)的置信水平为1/2时,就说这个变量是离散型随机变量,以下列举了几个例子:(1)样本期望与总体期望;(2)样本方差与总体方差;(3)抽样分布。
从统计学观点出发,所谓离散型随机变量X是指:(1)取值介于[-1, 1];(2)其概率密度函数为f(x);(3)服从正态分布或t分布。
2。
离散型随机变量样本的方差与总体方差的比称之为“方差齐性”,若该比值超过100%,说明所考察的变量属于随机变量的离散型随机变量,反之则为连续型随机变量。
这个名词来源于经验,也就是对于总体方差的估计不必事先知道它的绝对值。
在对一个随机变量进行分析时,最好能预测未知参数的值,这就需要假定随机变量服从正态分布或t分布。
当然,也可以把数据分成若干组,每一组对应于某种特定的概率分布,例如按分组资料、非正态总体等等。
这样,就可以用样本方差估计总体方差,而这两个估计值是相等的。
1。
离散型随机变量假定随机变量x,它的总体分布为f(x)时,称之为已知分布,当存在未知分布时,可以先求出它的一个近似分布,将此近似分布代入公式求出。
这样所确定的分布称之为待定分布,可以用待定分布表示所研究的随机变量的数值。
离散型随机变量离散型随机变量(Discrete Random Variable)是概率论中的重要概念,指的是在一系列离散值中取值的随机变量。
与连续型随机变量不同,离散型随机变量的取值是有限或可数的。
离散型随机变量在很多实际问题中都有广泛的应用,比如掷骰子的点数、抛硬币的正反面等。
在这些问题中,变量的取值只能是确定的几个值,并且每个值的出现概率也可以通过统计得到。
离散型随机变量的特征可以用概率质量函数(Probability Mass Function,简称PMF)来描述。
PMF给出了随机变量取某个值的概率,通常表示为P(X=x),其中X代表随机变量,x代表其取值。
如果将所有可能的取值及其对应的概率列出来,就得到了离散型随机变量的概率分布表。
举个例子来说明离散型随机变量。
假设我们有一个骰子,骰子有六个面,上面分别标有1到6的数字。
我们掷骰子100次,记录每次掷骰子的点数。
这里的随机变量就是骰子的点数,取值范围为1到6。
通过统计,我们可以得到每个点数出现的次数及其概率。
对于离散型随机变量,我们还可以计算其期望值(Expectation)和方差(Variance)。
期望值表示随机变量的平均值,可以用来描述其集中趋势;方差表示随机变量取值的波动程度,可以用来描述其离散程度。
离散型随机变量在实际问题中的应用非常广泛。
比如在金融领域,股票价格的涨跌、汇率的波动等都可以视为离散型随机变量;在工程领域,电路中的信号传输、网络中的数据包传输等也可以视为离散型随机变量。
总结起来,离散型随机变量是概率论中的重要概念,用来描述在一系列离散值中取值的随机变量。
它可以通过概率质量函数来描述其概率分布,通过期望值和方差来描述其特征。
离散型随机变量在实际问题中有广泛的应用,是概率论和统计学的基础知识之一。
通过了解和掌握离散型随机变量的概念和特征,我们可以更好地理解和分析概率问题,并在实际应用中做出准确的决策和预测。
名词解释离散随机变量的概念名词解释离散随机变量的概念离散随机变量是指在同一个总体中,各观测值与某个特定分布或均值的差的平均数。
随机变量的离散性是指它可以取不同的值,这些值不会彼此重合,也就是说各个观察值与均值的差不是一个固定的数值,而是随着样本容量的增大,其分布渐趋于均匀的分布。
对每一个连续变量X,如果其值落在某个区间([0, 1])之内,就称为具有离散性,否则就没有离散性。
离散随机变量(Discretely Statistical Variable)亦称“随机变量”。
它是在相同总体内各单位随机事件的观测值的集合,简记为X。
离散随机变量不像连续随机变量那样取连续值,而是取一系列有限值。
根据分布的形状,离散随机变量又分为以下四类:(1)位置离散型,即X的值落在[-1, 1]之间的随机变量;(1)离散随机变量的均值,是设X取值a、 b时的值,记为C(x)或P(x),亦称为离散均值(discrete median); (2)分位数离散型,即X的值落在[-1, 1]上的某个分位数上,记为P_n,亦称为离散分位数(discrete numerator);(3)分布离散型,即X的值落在[-1, 1]上的任意一个分布区间(point),记为P(X)或P(x)亦称为离散分布(discrete distribution);(4)混合离散型,即X的值不是位置离散型和分位数离散型的任意组合,而是两者的组合,记为P(X)。
通常用分布来表示,且P(x)、 P(y)、 P(z)都是离散分布。
(2)离散随机变量的方差,是设X的值落在[-1, 1]之间的任意一个分布区间(x_k),记为D(x)或D(x),亦称为离散均方差(discretenumel Error); (3)离散型概率密度函数,是在正态总体上,离散随机变量的概率密度函数的统计特性,当它的分布符合已知的正态分布时,其密度函数可以用极限定理导出;对于未知的随机变量的概率密度函数,应采用计算机去拟合已知的正态分布。
离散型随机变量概念随机变量是概率论和数理统计中的重要概念。
简单来说,随机变量就是从随机试验中得到的结果,它可以是实数或者向量形式的。
而离散型随机变量就是一种特殊的随机变量,它只能取到有限或者可数个取值。
本文将详细介绍离散型随机变量的概念及其相关知识。
一、离散性离散型随机变量的一大特征就是离散性。
离散性指的是它所取的值是一些离散的点,而非连续的数轴上的任意一个值。
比如,掷骰子时,所得点数只能是1、2、3、4、5、6这六个离散的点,而不能取到任意其他的值。
再比如,学生的考试成绩只能是0、1、2、3、4、5、6、7、8、9、10这11个离散的取值,而不能取到小数或其他任何连续的值。
二、概率分布离散型随机变量的概率分布是指它取各个值的概率。
以掷骰子为例,每个点数的概率都是相等的,为1/6。
而考试成绩则需要根据具体情况来确定各个分数的概率。
概率分布可以由分布函数或者密度函数来表示。
对于离散型随机变量而言,它的概率分布由其概率质量函数(PMF)来描述。
概率质量函数表示的是随机变量取某个值的概率。
以掷骰子为例,设X为掷一次骰子得到的点数,则X的概率质量函数为:P(X=1)=1/6,P(X=2)=1/6,P(X=3)=1/6,P(X=4)=1/6,P(X=5)=1/6,P(X=6)=1/6三、期望和方差期望是一个重要的统计量,它表示了随机变量的平均值。
对于离散型随机变量X,它的期望可以由概率质量函数计算得到:E(X)=∑x·P(X=x)其中,x是X所能取到的各个值。
方差是用来描述随机变量离散程度的统计量。
离散型随机变量X的方差可以由以下公式计算得到:Var(X)=E((X-E(X))^2)=∑(x-E(X))^2·P(X=x)四、常见离散型随机变量1. 伯努利分布伯努利分布(Bernoulli distribution)是最简单的离散型随机变量之一。
它的概率质量函数为:P(X=1)=p,P(X=0)=1-p其中p为成功的概率,1-p为失败的概率。