课堂设计2015_2016学年高中数学模块综合测评北师大版选修2_1
- 格式:doc
- 大小:301.00 KB
- 文档页数:7
模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设命题p :∃n ∈N ,n 2>2n,则綈p 为( )A .∀n ∈N ,n 2>2nB .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n【解析】 依据含有一个量词的命题的否定判定即可.因为“∃x ∈M ,p (x )”的否定是“∀x ∈M ,綈p (x )”,所以命题“∃n ∈N ,n 2>2n”的否定是“∀n ∈N ,n 2≤2n”.故选C.【答案】 C2.设双曲线的焦点在x 轴上,两条渐近线为y =±12x ,则该双曲线的离心率e 的值为( )A .5B . 5C .52D .54【解析】 由焦点在x 轴上的渐近线方程为y =±12x ,可得b a =12,所以e =c a =a 2+b 2a=a 2+⎝ ⎛⎭⎪⎫a 22a=52. 【答案】 C3.设α,β是两个不同的平面,m 是直线且m ⊂α,“m ∥β ”是“α∥β ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【解析】 结合平面与平面平行的判定与性质进行判断.当m ∥β时,过m 的平面α与β可能平行也可能相交,因而m ∥βα∥β;当α∥β时,α内任一直线与β平行,因为m ⊂α,所以m ∥β.综上知,“m ∥β ”是“α∥β ”的必要而不充分条件.【答案】 B4.已知a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值为( ) A.55B .555C.355 D .115【解析】∵b -a =(1+t,2t -1,0), ∴|b -a |=1+t2+2t -12=5t 2-2t +2 =5⎝ ⎛⎭⎪⎫t -152+95, 当t =15时,|b -a |min =355.【答案】 C5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34 B .1 C.54D .74【解析】∵|AF |+|BF |=x A +x B +12=3,∴x A +x B =52.线段AB 的中点到y 轴的距离为x A +x B 2=54.【答案】 C6.下列四个条件中,使a >b 成立的充分不必要条件是( )【导学号:32550103】A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3【解析】 要求a >b 成立的充分不必要条件,必须满足由选项能推出a >b ,而由a >b 不能推出选项.在选项A 中,a >b +1能使a >b 成立,而a >b 时,a >b +1不一定成立,故正确;在选项B 中,a >b -1时,a >b 不一定成立,故B 错误;在选项C 中,a 2>b 2时,a >b 也不一定成立,因为a ,b 不一定同为正数,故C 错误;在选项D 中,“a 3>b 3”是“a>b ”成立的充要条件,故D 错误.【答案】 A7.与两圆x 2+y 2=1和x 2+y 2-8x +12=0都外切的圆的圆心在( ) A .一个椭圆上 B .双曲线的一支上 C .一条抛物线上D .一个圆上【解析】 将x 2+y 2-8x +12=0配方,得(x -4)2+y 2=4,设所求圆心为P ,设两圆的圆心分别为O 1,O 2,则由题意知||PO 2|-|PO 1||=|R -r |=1,根据双曲线的定义可知其轨迹是双曲线的一支.【答案】 B8.点M 在z 轴上,它与经过坐标原点且方向向量为s =(1,-1,1)的直线l 的距离为6,则点M 的坐标是( )A .(0,0,±2)B .(0,0,±3)C .(0,0,±3)D .(0,0,±1)【解析】 设M (0,0,z ),直线的一个单位方向向量s 0=⎝ ⎛⎭⎪⎫33,-33,33,故点M 到直线l 的距离d =|OM →|2-|OM →·s 0|2=z 2-13z 2=6,解得z =±3.【答案】 B9.如图1,已知过抛物线y 2=2px (p >0)的焦点F 的直线x -my +m =0与抛物线交于A 、B 两点,且△OAB (O 为坐标原点)的面积为22,则m 6+m 4的值是( )图1A .1B . 2C .2D .4【解析】 设A (x 1,y 1),B (x 2,y 2),由题意可知,p2=-m ,将x =my -m 代入抛物线方程y 2=2px (p >0)中,整理得y 2-2pmy +2pm =0,由根与系数的关系,得y 1+y 2=2pm ,y 1y 2=2pm ,∴(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=(2pm )2-8pm =16m 4+16m 2,又△OAB 的面积S =12×p 2|y 1-y 2|=12(-m )×4m 4+m 2=22,两边平方即可得m 6+m 4=2.【答案】 C10.在三棱锥P ABC 中,PA ⊥平面ABC ,∠BAC =90°,D 、E 、F 分别是棱AB 、BC 、CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角正弦值为( )A.15 B .255C.55D .25【解析】 以A 为原点,AB 、AC 、AP 所在直线分别为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,由AB =AC =1,PA =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝⎛⎭⎪⎫12,12,0,F ⎝⎛⎭⎪⎫0,12,1, ∴AP →=(0,0,2),DE →=⎝ ⎛⎭⎪⎫0,12,0, DF →=⎝ ⎛⎭⎪⎫-12,12,1,设平面DEF 的法向量为n =(x ,y ,z ),则由⎩⎨⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0,取z =1,则n =(2,0,1),设PA 与平面DEF 所成角为θ,则sin θ=|PA →·n ||PA →|·|n |=55,∴PA 与平面DEF 所成角的正弦值为55,故选C.【答案】 C11.设O 为坐标原点,F 1、F 2是x 2a 2-y 2b2=1(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠F 1PF 2=60°,|OP |=7a ,则该双曲线的渐近线方程为( )A .x ±3y =0B .3x ±y =0C .x ±2y =0D .2x ±y =0【解析】 如图所示,∵O 是F 1F 2的中点,∴PF 1→+PF 2→=2PO →,∴(PF 1→+PF 2→)2=(2PO →)2.即|PF 1→|2+|PF 2→|2+2|PF 1→|·|PF 2→|·cos 60°=4|PO →|2.又∵|PO |=7a ,∴|PF 1→|2+|PF 2→|2+|PF 1→|·|PF 2→|=28a 2.① 又由双曲线定义得|PF 1|-|PF 2|=2a , ∴(|PF 1|-|PF 2|)2=4a 2.即|PF 1|2+|PF 2|2-2|PF 1||PF 2|=4a 2.② 由①-②得|PF 1|·|PF 2|=8a 2, ∴|PF 1|2+|PF 2|2=20a 2. 在△F 1PF 2中,由余弦定理得 cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|,∴8a 2=20a 2-4c 2.即c 2=3a 2. 又∵c 2=a 2+b 2,∴b 2=2a 2.即b 2a 2=2,ba= 2. ∴双曲线的渐近线方程为2x ±y =0. 【答案】 D12.正△ABC 与正△BCD 所在平面垂直,则二面角A BD C 的正弦值为( )A.55 B .33 C.255D .63【解析】取BC 中点O ,连结AO ,DO .建立如图所示坐标系,设BC =1, 则A ⎝ ⎛⎭⎪⎫0,0,32,B ⎝ ⎛⎭⎪⎫0,-12,0,D ⎝ ⎛⎭⎪⎫32,0,0.∴OA →=⎝ ⎛⎭⎪⎫0,0,32,BA →=⎝ ⎛⎭⎪⎫0,12,32,BD →=⎝ ⎛⎭⎪⎫32,12,0.由于OA →=⎝ ⎛⎭⎪⎫0,0,32为平面BCD 的一个法向量,可进一步求出平面ABD 的一个法向量n=(1,-3,1),∴cos 〈n ,OA →〉=55,∴sin 〈n ,OA →〉=255.【答案】 C二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上) 13.命题“若A ∪B =B ,则A ⊆B ”的逆否命题是________.【解析】 根据逆否命题的定义知“若p 则q ”与“綈q 则綈p ”互为逆否命题. 【答案】 若AB ,则A ∪B ≠B14.已知a =(2,-1,3),b =(-4,2,x ),c =(1,-x,2),若(a +b )⊥c ,则x =________. 【解析】a +b =(-2,1,x +3), ∵(a +b )⊥c ,∴(a +b )·c =0, 即-2×1+1×(-x )+(x +3)×2=0. 解得x =-4. 【答案】 -415.如图2,已知空间四边形OABC ,其对角线为OB ,AC ,点M ,N 分别是边OA ,CB 的中点,点G 在线段MN 上,且使MG =2GN ,则用向量OA →,OB →,OC →表示向量OG →为________.图2【解析】OG →=OM →+MG →=12OA →+23MN →=12OA →+23⎝ ⎛⎭⎪⎫-12OA →+OB →+12OC →-12OB → =16OA →+13OB →+13OC →.【答案】16OA →+13OB →+13OC →16.已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.【导学号:32550104】【解析】 根据双曲线的定义等价转化|PF |,分析何时△APF 的周长最小,然后用间接法计算S △APF .由双曲线方程x 2-y 28=1可知,a =1,c =3,故F (3,0),F 1(-3,0).当点P在双曲线左支上运动时,由双曲线定义知|PF |-|PF 1|=2,所以|PF |=|PF 1|+2,从而△APF 的周长=|AP |+|PF |+|AF |=|AP |+|PF 1|+2+|AF |.因为|AF |=32+662=15为定值,所以当(|AP |+|PF 1|)最小时,△APF 的周长最小,由图像可知,此时点P 在线段AF 1与双曲线的交点处(如图所示).由题意可知直线AF 1的方程为y =26x +66,由⎩⎪⎨⎪⎧y =26x +66,x 2-y 28=1,得y 2+66y -96=0,解得y =26或y =-86(舍去), 所以S △APF =S △AF 1F -S △PF 1F =12×6×66-12×6×26=12 6. 【答案】 12 6三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知p :x 2-8x -20>0,q :x 2-2x +1-a 2>0.若p 是q 的充分不必要条件,求正实数a 的取值X 围.【解】 解不等式x 2-8x -20>0得p :A ={x |x >10或x <-2}.解不等式x 2-2x +1-a 2>0得q :B ={x |x >1+a 或x <1-a ,a >0}. 依题意,p ⇒q 但qp ,说明A B .于是,有⎩⎪⎨⎪⎧a >0,1+a ≤10,1-a >-2,或⎩⎪⎨⎪⎧a >0,1+a <10,1-a ≥-2.解得0<a ≤3.∴正实数a 的取值X 围是0<a ≤3.18.(本小题满分12分)已知p :-2<m <0,0<n <1;q :关于x 的方程x 2+mx +n =0有两个小于1的正根.试分析p 是q 的什么条件.【解】 若关于x 的方程x 2+mx +n =0有两个小于1的正根,设为x 1,x 2,则0<x 1<1,0<x 2<1,有0<x 1+x 2<2且0<x 1x 2<1.根据根与系数的关系⎩⎪⎨⎪⎧x 1+x 2=-m ,x 1x 2=n ,得⎩⎪⎨⎪⎧0<-m <2,0<n <1,即-2<m <0,0<n <1,故有q ⇒p .反之,取m =-13,n =12,x 2-13x +12=0,Δ=19-4×12<0,方程x 2+mx +n =0无实根,所以pq .综上所述,p 是q 的必要不充分条件.19.(本小题满分12分)在如图3所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,AC =BC =BD =2AE ,M 是AB 的中点,建立适当的空间直角坐标系,解决下列问题:图3(1)求证:CM ⊥EM ;(2)求CM 与平面CDE 所成角的大小.【解】 (1)证明:分别以CB ,CA 所在直线为x ,y 轴,过点C 且与平面ABC 垂直的直线为z 轴,建立如图所示的空间直角坐标系.设AE =a ,则M (a ,-a ,0),E (0,-2a ,a ),所以CM →=(a ,-a,0),EM →=(a ,a ,-a ), 所以CM →·EM →=a ×a +(-a )×a +0×(-a )=0, 所以CM ⊥EM .(2)CE →=(0,-2a ,a ),CD =(2a,0,2a ),设平面CDE 的法向量n =(x ,y ,z ),则有⎩⎪⎨⎪⎧-2ay +az =0,2ax +2az =0,即⎩⎪⎨⎪⎧z =2y ,x =-z ,令y =1, 则n =(-2,1,2), cos 〈CM →,n 〉=CM →·n |CM →||n |=a ×-2+-a ×1+0×22a ×3=-22,所以直线CM 与平面CDE 所成的角为45°.20.(本小题满分12分)学校科技小组在计算机上模拟航天器变轨返回试验.设计方案如图4,航天器运行(按顺时针方向)的轨迹方程为x 2100+y 225=1,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y 轴为对称轴、图4M ⎝⎛⎭⎪⎫0,647为顶点的抛物线的实线部分,降落点为D (8,0).观测点A (4,0)、B (6,0)同时跟踪航天器.(1)求航天器变轨后的运行轨迹所在的曲线方程;(2)试问:当航天器在x 轴上方时,观测点A 、B 测得离航天器的距离分别为多少时,应向航天器发出变轨指令?【解】 (1)设所求曲线方程为y =ax 2+647,由题意可知,0=a ·64+647,解得a =-17.所以曲线方程为y =-17x 2+647.(2)设变轨点为C (x ,y ),根据题意可知⎩⎪⎨⎪⎧x 2100+y 225=1,y =-17x 2+647,得4y 2-7y -36=0,解得y =4或y =-94(不合题意,舍去).所以x =6或x =-6(不合题意,舍去). 所以C (6,4),|AC |=25,|BC |=4.故当观测点A ,B 测得AC ,BC 距离分别为25,4时应向航天器发出变轨指令. 21.(本小题满分12分)如图5所示,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =30°,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E .图5(1)证明:CF ⊥平面ADF ; (2)求二面角D AF E 的余弦值.【解析】 (1)由题意可知DA ⊥DC ,DA ⊥DP ,DC ⊥DP ,则以D 为原点,DP 所在直线为x 轴,DC 所在直线为y 轴,DA 所在直线为z 轴建立空间直角坐标系.设正方形ABCD 的边长为a , 则C (0,a,0),且A (0,0,a ), 由平面几何知识可求得F ⎝⎛⎭⎪⎫34a ,34a ,0, 所以CF →=⎝ ⎛⎭⎪⎫34a ,-14a ,0,DF →=⎝ ⎛⎭⎪⎫34a ,34a ,0,DA →=(0,0,a ),所以CF →·DF →=⎝ ⎛⎭⎪⎫34a ,-14a ,0·⎝ ⎛⎭⎪⎫34a ,34a ,0=0,CF →·DA →=⎝ ⎛⎭⎪⎫34a ,-14a ,0·(0,0,a )=0,故CF ⊥DF ,CF ⊥DA ;又DF ∩DA =D ,所以CF ⊥平面ADF . (2)易得E ⎝ ⎛⎭⎪⎫34a ,0,0,则AE →=⎝ ⎛⎭⎪⎫34a ,0,-a , 又AF →=⎝ ⎛⎭⎪⎫34a ,34a ,-a , 设平面AEF 的一个法向量为n =(x ,y ,z ),则n ·AE →=(x ,y ,z )·⎝ ⎛⎭⎪⎫34a ,0,-a =34ax -az =0,n ·AF →=(x ,y ,z )·⎝ ⎛⎭⎪⎫34a ,34a ,-a =34ax +34ay -az =0, 取x =1,得n =⎝ ⎛⎭⎪⎫1,0,34. 由(1)知平面ADF 的一个法向量为CF →=⎝ ⎛⎭⎪⎫34a ,-14a ,0, 故cos 〈n ,CF →〉=⎝ ⎛⎭⎪⎫1,0,34·⎝ ⎛⎭⎪⎫34a ,-14a ,0194×12a =25719,由题图可知二面角D AF E 为锐二面角,所以其余弦值为25719. 22.(本小题满分12分)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c,0),(0,b )的直线的距离为12c .图6(1)求椭圆E 的离心率;(2)如图6,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.【导学号:32550105】【解】 (1)过点(c,0),(0,b )的直线方程为bx +cy -bc =0,则原点O 到该直线的距离d =bc b 2+c 2=bc a , 由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32. (2)法一:由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10.易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1,代入①得 (1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k 2k +11+4k 2,x 1x 2=42k +12-4b 21+4k2. 由x 1+x 2=-4,得-8k 2k +11+4k 2=-4,解得k =12. 从而x 1x 2=8-2b 2.于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2| =52x 1+x 22-4x 1x 2=10b 2-2. 由|AB |=10,得10b 2-2=10,解得b 2=3.故椭圆E 的方程为x 212+y 23=1. 法二:由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.②依题意,得点A ,B 关于圆心M (-2,1)对称,且|AB |=10. 设A (x 1,y 1),B (x 2,y 2),则x 21+4y 21=4b 2,x 22+4y 22=4b 2, 两式相减并结合x 1+x 2=-4,y 1+y 2=2,得-4(x 1-x 2)+8(y 1-y 2)=0.易知AB 与x 轴不垂直,则x 1≠x 2,所以AB 的斜率k AB =y 1-y 2x 1-x 2=12. 因此直线AB 的方程为y =12(x +2)+1,代入②得 x 2+4x +8-2b 2=0.所以x 1+x 2=-4,x 1x 2=8-2b 2.于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2|=52x1+x22-4x1x2=10b2-2.由|AB|=10,得10b2-2=10,解得b2=3.故椭圆E的方程为x212+y23=1.。
模块质量检测(二)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是( )A .(¬p )或qB .p 且qC .(¬p )且(¬q )D .(¬p )或(¬q )解析: 由题知,p 真q 假,则¬p 假,¬q 真. ∴只有D 中(¬p )或(¬q )为真,故选D. 答案: D2.(2011·天津卷)设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析: A ={x |x -2>0}={x |x >2}=(2,+∞),B ={x |x <0}=(-∞,0),∴A ∪B =(-∞,0)∪(2,+∞),C ={x |x (x -2)>0}={x |x <0或x >2}=(-∞,0)∪(2,+∞), A ∪B =C .∴“x ∈A ∪B ”是“x ∈C ”的充要条件. 答案: C3.已知A (2,-5,1),B (2,-2,4),C (1,-4,1),则向量A B →与A C →的夹角为( ) A .30° B .45° C .60° D .90°解析: A B →=(0,3,3),A C →=(-1,1,0),cos 〈A B →,A C →〉=A B →·A C →|A B →||A C →|=332×2=12,所以〈A B →,A C →〉=60°,故应选C.答案: C4.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝ ⎛⎭⎪⎫22,0B.⎝ ⎛⎭⎪⎫52,0 C.⎝⎛⎭⎪⎫62,0D .(3,0) 解析: ∵原方程可化为x21-y212=1,a 2=1,b 2=12,c 2=a 2+b 2=32,∴右焦点为⎝⎛⎭⎪⎫62,0. 答案: C5.在下列各结论中,正确的是( )①“p ∧q ”为真是“p ∨q ”为真的充分条件但不是必要条件; ②“p ∧q ”为假是“p ∨q ”为假的充分条件但不是必要条件; ③“p ∨q ”为真是“¬p ”为假的必要条件但不充分条件; ④“¬p ”为真是“p ∧q ”为假的必要条件但不是充分条件. A .①②B .①③ C .②④D .③④解析: “p ∧q ”为真则“p ∨q ”为真,反之不一定,①真;如p 真,q 假时,p ∧q 假,但p ∨q 真,故②假;¬p 为假时,p 真,所以p ∨q 真,反之不一定对,故③真;若¬p 为真,则p 假,所以p ∧q 假,因此④错误.答案: B6.已知A ,B ,C ,D 是空间四点,A B →=(1,5,-2),B C →=(3,1,z ),B P →=(x -1,y ,-3),若AB ⊥BC ,且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4B.407,-157,4C.407,-2,4 D .4,407,-15 解析: 因为AB ⊥BC ,所以A B →·B C →=0, 即3+5-2z =0,得z =4,又BP ⊥平面ABC ,所以B P →⊥A B →,B P →⊥B C →, 又B C →=(3,1,4),所以⎩⎪⎨⎪⎧-+5y +6=0,-+y -12=0,解得⎩⎪⎨⎪⎧x =407.y =-157.答案: B7.正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为( )A.23B.33C.23D.63解析: ∵BB 1∥DD 1,∴DD 1与平面ACD 1所成的角即为BB 1与平面ACD 1所成的角,设其大小为θ,设正方体的棱长为1,则点D 到面ACD 1的距离为33,所以sin θ=33,得cos θ=63.答案: D8.设椭圆x2m2+y2n2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为( )A.x212+y216=1B.x216+y212=1C.x248+y264=1D.x264+y248=1 解析: y 2=8x ,焦点F (2,0),可知椭圆焦点落在x 轴上,排除A 、C ;且椭圆中c =2,由⎩⎪⎨⎪⎧a2=b2+c2,e =c a⇒⎩⎪⎨⎪⎧a2=b2+4,2a =12⇒⎩⎪⎨⎪⎧a2=16,b2=12.故选B.答案: B9.椭圆x26+y22=1和双曲线x23-y 2=1的公共焦点为F 1、F 2,P 是两曲线的一个交点,那么cos ∠F 1PF 2的值是( )A.13B.23C.73D.14解析: 不妨设P 在第一象限,F 1,F 2分别为左、右焦点,由双曲线和椭圆定义可知:|PF 1|+|PF 2|=26,|PF 1|-|PF 2|=23,∴|PF 1|=6+3,|PF 2|=6-3,所以cos ∠F 1PF 2=|PF1|2+|PF2|2-|F1F2|22|PF1||PF2|=+-2|PF1||PF2|-|F1F2|22|PF1||PF2|=24-2×3-162×3=13.故选A.答案: A10.已知命题p :m ∈R ,m +1≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立,若p ∧q 为假命题,则实数m 的取值范围为( )A .m ≥2B .m ≤-2或m >-1C .m ≤-2或m ≥2D .-2≤m ≤2解析: 若p ∧q 为假命题则p 与q 至少有一个为假命题①若p 假q 真,则⎩⎪⎨⎪⎧ m +1>0m2-4<0⇒-1<m <2;②若q 假p 真,则⎩⎪⎨⎪⎧ m +1≤0m2-4≥0⇒m ≤-2; ③若p 假q 假,则⎩⎪⎨⎪⎧m +1>0m2-4≥0⇒m ≥2综上可知m ≤-2或m >-1,故选B. 答案: B11.(2011·泸州高二检测)如图,在正三棱柱ABC -A 1B 1C 1中,AB =1.若二面角C -AB -C 1的大小为60°,则点C 到平面C 1AB 的距离为( )A.34B.12C.32D .1 解析: 由题意知:取AB 中点E ,连结C 1E ,CE .易知∠C 1EC =60°,过点C 作CO ⊥C 1E .解Rt△COE ,即证CO =34.也可建立坐标系求解.答案: A12.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A.2B. 3C.3+12 D.5+12解析: 设双曲线方程为x2a2-y2b2=1,设F (c,0),B (0,b ),k BF =-bc,双曲线渐近线的斜率k =±b a.∵BF 与一条渐近线垂直,∴-b c ·ba =-1,∴b 2=ac ,又a 2+b 2=c 2,∴c 2-ac -a 2=0, ∴e 2-e -1=0,∴e =1±52(舍负值)∴e =5+12,故选D.答案: D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知p :α是第二象限的角,q :sin α·tan α<0,则p 是q 的________条件. 解析: 由α是第二象限的角,知sin α>0,tan α<0, 故sin α·tan α<0,即p ⇒q ;反之,不一定成立. 例如,当α是第三象限的角时,sin α<0,tan α>0, 所以sin α·tan α<0也成立. 答案: 充分不必要14.若{e 1,e 2,e 3}是空间的一个基底,a =e 1+e 2+e 3,b =e 1+e 2-e 3,c =e 1-e 2+e 3,d =e 1+2e 2+3e 3,且d =αa +βb +γc ,则α,β,γ的值分别为________.解析: 因为d =αa +βb +γc ,即e 1+2e 2+3e 3=(α+β+γ)e 1+(α+β-γ)e 2+(α-β+γ)e 3, 所以α+β+γ=1,α+β-γ=2,α-β+γ=3,解得α=52,β=-1,γ=-12.答案: 52,-1,-1215.F 1,F 2是椭圆x29+y27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为________.解析: |F 1F 2|=22,|AF 1|+|AF 2|=6,|AF 2|=6-|AF 1|.|AF 2|=|AF 21|+|F 1F 2|-2|AF 1|·|F 1F 2|cos 45°=|AF 21|-4|AF 1|+8(6-|AF 1|)2=|AF 1|2-4|AF 1|+8,|AF 1|=72.S =12×72×22×22=72. 答案: 7216.如图所示,已知点P 为菱形ABCD 外一点,且PA ⊥面ABCD ,PA =AD =AC ,点F 为PC 中点,则二面角C -BF -D 的正切值为________.解析: 如右图,连接AC ,AC ∩BD =O ,连接OF ,以O 为原点,OB ,OC ,OF 所在直线分别为x ,y ,z轴建立空间直角坐标系Oxyz ,设PA =AD =AC =1,则BD =3,∴B ⎝ ⎛⎭⎪⎫32,0,0,F ⎝ ⎛⎭⎪⎫0,0,12,C ⎝ ⎛⎭⎪⎫0,12,0,D ⎝ ⎛⎭⎪⎫-32,0,0,结合图形可知,OC →=⎝ ⎛⎭⎪⎫0,12,0且OC →为面BOF 的一个法向量,由BC →=⎝ ⎛⎭⎪⎫-32,12,0,FB →=⎝ ⎛⎭⎪⎫32,0,-12,可求得面BCF 的一个法向量n =(1,3,3),∴cos 〈n ,OC →〉=217,sin 〈n ,OC →〉=277,∴tan 〈n ,OC →〉=233.答案:233三、解答题(本大题共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)17.(10分)已知p :“直线x +y -m =0与圆(x -1)2+y 2=1相交.”q :“mx 2-x +m -4=0有一正根和一负根.”若p 或q 为真,¬p 为真,求m 的取值范围. 解析: ∵p 或q 为真,¬p 为真,∴p 假q 真. 由⎩⎪⎨⎪⎧x +y -m =0-+y2=1,得2x 2-2(1+m )x +m 2=0 若p 假,则Δ=4(1+m )2-4×2×m 2≤0. ∴m ≥1+2或m ≤1- 2. 若q 真,则⎩⎪⎨⎪⎧m≠0m -4m<0∴0<m <4.∴p 假q 真时,1+2≤m <4.∴m 的取值范围是[1+2,4)18.(12分)(2011·盐城高二检测)已知拋物线C 1的顶点在坐标原点,它的焦点即双曲线C 2:x2a2-y2b2=1(a ,b >0)的一个焦点F ,若拋物线C 1与双曲线C 2的一个交点是M ⎝ ⎛⎭⎪⎫23,263. (1)求拋物线C 1的方程及其焦点F 的坐标; (2)求双曲线C 2的方程及其离心率e .解析: (1)设y 2=2px (p >0),图像过M ⎝ ⎛⎭⎪⎫23,263,则有⎝ ⎛⎭⎪⎫2632=2p ×23,p =2,拋物线C 1的方程y 2=4x ,焦点F (1,0).(2)由C 2过点M ⎝ ⎛⎭⎪⎫23,263以及焦点F (1,0)可得:49a2-249b2=1. a 2+b 2=1.得a =13,b =223, C 2方程为9x 2-98y 2=1,e =3.19.(12分)已知椭圆x2a2+y2b2=1(a >b >0)的离心率为33,以原点为圆心、椭圆短半轴长为半径的圆与直线y =x +2相切.(1)求a 与b ; (2)设该椭圆的左、右焦点分别为F 1和F 2,直线l 1过F 2且与x 轴垂直,动直线l 2与y 轴垂直,l 2交l 1于点P .求线段PF 1的垂直平分线与l 2的交点M 的轨迹方程,并指明曲线类型.解析: (1)由于e =33,∴e 2=c2a2=a2-b2a2=13,∴b2a2=23.又b =21+1=2,∴b 2=2,a 2=3.因此,a =3,b = 2. (2)由(1)知F 1、F 2分别为(-1,0),(1,0). 由题意可设P (1,t )(t ≠0),那么线段PF 1的中点为N ⎝ ⎛⎭⎪⎫0,t 2. 设M (x ,y )是所求轨迹上的任意一点,由于M N →=⎝ ⎛⎭⎪⎫-x ,t 2-y ,PF1→=(-2,-t ),则⎩⎪⎨⎪⎧M N →·PF1→=2x +-t2=0y =t,消去参数t 得y 2=-4x (x ≠0).因此,所求点M 的轨迹方程为y 2=-4x (x ≠0), 其轨迹为抛物线. 20.(12分)如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,AP =AB =2,BC =22,E ,F 分别是AD ,PC 的中点.(1)证明:PC ⊥平面BEF ;(2)求平面BEF 与平面BAP 夹角的大小.解析: 方法一:(1)证明:如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴建立空间直角坐标系.∵AP =AB =2,BC =AD =22,四边形ABCD 是矩形,∴A ,B ,C ,D ,P 的坐标为A (0,0,0),B (2,0,0),C (2,22,0),D (0,22,0),P (0,0,2), 又E ,F 分别是AD ,PC 的中点, ∴E (0,2,0),F (1,2,1).∴P C →=(2,22,-2),B F →=(-1,2,1),E F →=(1,0,1), ∴P C →·B F →=-2+4-2=0,P C →·E F →=2+0-2=0, ∴PC ⊥BF ,PC ⊥EF ,又BF ∩EF =F , ∴PC ⊥平面BEF .(2)由(1)知平面BEF 的法向量n 1=P C →=(2,22,-2), 平面BAP 的法向量n 2=A D →=(0,22,0), ∴n 1·n 2=8.设平面BEF 与平面BAP 的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|n1·n2||n1||n2|=84×22=22,∴θ=45°,∴平面BEF 与平面BAP 的夹角为45°.方法二:(1)证明:连接PE ,EC ,在Rt △PAE 和Rt △CDE 中. PA =AB =CD ,AE =DE , ∴PE =CE ,即△PEC 是等腰三角形,又F 是PC 的中点,∴EF ⊥PC ,又BP =AP2+AB2=22=BC ,F 是PC 的中点, ∴BF ⊥PC .又BF ∩EF =F ,∴PC ⊥平面BEF . (2)∵PA ⊥平面ABCD ,∴PA ⊥BC , 又ABCD 是矩形,∴AB ⊥BC , ∴BC ⊥平面BAP ,BC ⊥PB , 又由(1)知PC ⊥平面BEF ,∴直线PC 与BC 的夹角即为平面BEF 与平面PAB 的夹角, 在△PBC 中,PB =BC ,∠PBC =90°, ∴∠PCB =45°.所以平面BEF 与平面BAP 的夹角为45°.21.(12分)已知m >1,直线l :x -my -m22=0,椭圆C :x2m2+y 2=1,F 1,F 2分别为椭圆C 的左、右焦点.(1)当直线l 过右焦点F 2时,求直线l 的方程;(2)设直线l 与椭圆C 交于A ,B 两点,△AF 1F 2,△BF 1F 2的重心分别为G ,H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.解析: (1)因为直线l :x -my -m22=0经过F 2(m2-1,0),所以m2-1=m22,得m 2=2,又因为m >1,所以m = 2.故直线l 的方程为x -2y -1=0. (2)设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧x =my +m22,x2m2+y2=1,消去x 得2y 2+my +m24-1=0,则由Δ=m 2-8⎝ ⎛⎭⎪⎫m24-1=-m 2+8>0,知m 2<8,且有y 1+y 2=-m 2,y 1y 2=m28-12.由于F 1(-c,0),F 2(c,0), 故O 为F 1F 2的中点, 由AG →=2GO →,BH →=2HO →,可知G ⎝ ⎛⎭⎪⎫x13,y13,H ⎝ ⎛⎭⎪⎫x23,y23.|GH |2=-9+-9.设M 是GH 的中点,则M ⎝ ⎛⎭⎪⎫x1+x26,y1+y26,由题意可知,2|MO |<|GH |,即4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x1+x262+⎝ ⎛⎭⎪⎫y1+y262<-9+-9, 即x 1x 2+y 1y 2<0,而x 1x 2+y 1y 2=⎝ ⎛⎭⎪⎫my1+m22⎝ ⎛⎭⎪⎫my2+m22+y 1y 2=(m 2+1)⎝ ⎛⎭⎪⎫m28-12,所以m28-12<0,即m 2<4.又因为m >1且Δ>0,所以1<m <2. 所以m 的取值范围是(1,2). 22.(12分)如右图所示,在直三棱柱ABC -A 1B 1C 1中,C 1C =CB =CA =2,AC ⊥CB ,D ,E 分别为棱C 1C 、B 1C 1的中点.(1)求点B 到平面A 1C 1CA 的距离; (2)求二面角B -A 1D -A 的余弦值;(3)在线段AC 上是否存在一点F ,使得EF ⊥平面A 1BD ,若存在,确定其位置并证明结论;若不存在,说明理由.解析: (1)因为三棱柱ABC -A 1B 1C 1为直三棱柱,所以CC 1⊥底面ABC ,CC 1⊥BC ,因为AC ⊥CB ,所以BC ⊥平面A 1C 1CA ,BC 的长即为点到平面A 1C 1CA 的距离,因为BC =2,所以点B 到平面A 1C 1CA的距离为2;(2)因为三棱柱ABC -A 1B 1C 1为直三棱柱,C 1C =CB =CA =2,AC ⊥CB ,D ,E 分别为C 1C ,B 1C 1的中点,建立如下图所示的空间直角坐标系,得C (0,0,0),B (2,0,0),A (0,2,0),C 1(0,0,2),B 1(2,0,2),A 1(0,2,2),D (0,0,1),E (1,0,2),所以BD →=(-2,0,1),BA1→=(-2,2,2),设平面A 1BD 的法向量为n =(1,λ,μ),有⎩⎪⎨⎪⎧n·BD →=0,n·BA1→=0,即⎩⎪⎨⎪⎧-2+μ=0,-2+2λ+2μ=0,得⎩⎪⎨⎪⎧λ=-1,μ=2,所以n =(1,-1,2),同理平面ACC 1A 1的法向量为m =(1,0,0),cos 〈m ,n 〉=16=66,即二面角B -A 1D -A 的余弦值为66; (3)设在线段AC 上存在一点F (0,y,0),使得EF ⊥平面A 1BD ,欲使EF ⊥平面A 1BD ,由(2)知当且仅当n ∥FE →,因为FE →=(1,-y,2),所以y =1,故存在惟一一点F (0,1,0)满足条件,F 为AC 的中点.。
高二数学选修1-2模块综合检测题(北师大版附答案)模块学习评价(时间120分钟,满分150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z=3-i,则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解析】z=3-i在复平面内对应的点为(3,-1),故选D.【答案】D2.对a,b∈R+,a+b≥2ab,大前提x+1x≥2x•1x,小前提所以x+1x≥2.结论以上推理过程中错误的为()A.大前提B.小前提C.结论D.无错误【解析】小前提错误,应满足x>0.【答案】B3.复数z=-1+2i,则z的虚部为()A.1B.-1C.2D.-2【解析】由z=-1+2i,得z=-1-2i,故z的虚部是-2.【答案】D4.用火柴棒摆“金鱼”,如图1所示:图1按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()A.6n-2B.8n-2C.6n+2D.8n+2【解析】第n个“金鱼”图需要火柴棒的根数为8+6(n-1)=6n+2. 【答案】C5.(2013•山东高考)执行两次如图2所示的程序框图,若第一次输入的a的值为-1.2,第二次输入的a的值为1.2,则第一次,第二次输出的a的值分别为()图2A.0.2,0.2B.0.2,0.8C.0.8,0.2D.0.8,0.8【解析】由程序框图可知:当a=-1.2时,∵a<0,∴a=-1.2+1=-0.2,a<0,a=-0.2+1=0.8,a>0.∵0.8<1,输出a=0.8.当a=1.2时,∵a≥1,∴a=1.2-1=0.2.∵0.2<1,输出a=0.2.【答案】C6.计算函数y=-1,x>0,0,x=0,1,x图3A.①y=0②x=0?③y=1B.①y=0②xC.①y=-1②xD.①y=-1②x=0?③y=0【解析】∵当x>0时,y=-1,故①为y=-1,∵当x当x=0时,y=0,故③为y=0.【答案】C7.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为()A.89B.0.8C.0.72D.98【解析】设A={种子发芽},AB={种子发芽,又成活为幼苗},出芽后的幼苗成活率为P(B|A)=0.8,P(A)=0.9.根据条件概率公式P(AB)=P(B|A)•P(A)=0.9×0.8=0.72.【答案】C8.(2013•湖北高考)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且y^=2.347x-6.423;②y与x负相关且y^=-3.476x +5.648;③y与x正相关且y^=5.437x+8.493;④y与x正相关且y^=-4.326x-4.578.其中一定不正确的结论的序号是()A.①②B.②③C.③④D.①④【解析】由正负相关性的定义知①④一定不正确.【答案】D9.把平面内两条直线的位置关系填入结构图中的M,N,E,F中,顺序较为恰当的是()图4①平行②垂直③相交④斜交A.①②③④B.①④②③C.①③②④D.②①④③【解析】由平面内两条直线位置关系的分类填写.【答案】C10.甲、乙两人分别对一目标射击一次,记“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,则在A与B、A与B、A 与B、A与B中,满足相互独立的有()A.1对B.2对C.3对D.4对【解析】事件A,B为相互独立事件,同时A与B,A与B,A与B都是相互独立的.【答案】D二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11.(2013•湖北高考)i为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i,则z2=________.【解析】(2,-3)关于原点的对称点是(-2,3),∴z2=-2+3i.【答案】-2+3i12.在平面直角坐标系中,以点(x0,y0)为圆心,r为半径的圆的方程为(x-x0)2+(y-y0)2=r2,类比圆的方程,请写出在空间直角坐标系中以点(x0,y0,z0)为球心,半径为r的球面的方程为________.【答案】(x-x0)2+(y-y0)2+(z-z0)2=r213.(2013•商洛高二检测)已知1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),则第5个等式为______________,…,推广到第n个等式为__________________.(注意:按规律写出等式的形式,不要求计算结果)【解析】根据前几个等式的规律可知,等式左边的各数是自然数的平方,且正负相间,等式的右边是自然数之和且隔项符号相同,由此可推得结果.【答案】1-4+9-16+25=1+2+3+4+51-22+32-42+…+(-1)n+1•n2=(-1)n+1•(1+2+3+…+n) 14.已知等式□3×6528=3□×8256中“□”表示的是同一个一位数字.算法框图(如图5所示)表示的就是求等式中“□”表示的数字的算法,请将算法框图补充完整.其中①处应填______,②处应填______.图5【解析】①处应填“y=x?”,因为y=x成立时,则输出i,否则指向②,并转入循环,因此②应具有计数功能,故应填“i=i+1”.【答案】y=x?i=i+115.给出下面的数表序列:图6其中表n(n=1,2,3)有n行,表中每一个数“两脚”的两数都是此数的2倍,记表n中所有的数之和为an,例如a2=5,a3=17,a4=49.则(1)a5=________;(2)数列{an}的通项an=________.【解析】(1)a5=129,(2)依题意,an=1×1+2×2+3×22+4×23+…+n×2n -1,利用错位相减法可得an=(n-1)×2n+1.【答案】(1)129(2)(n-1)×2n+1三、解答题(本大题共6小题,共75分.解答时应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)(2013•临汾检测)调查某桑场采桑员和辅助工关于桑毛虫皮炎发病情况结果如表:采桑不采桑合计患者人数181230健康人数57883合计2390113利用2×2列联表的独立性检验估计患桑毛虫皮炎病与采桑是否有关?认为两者有关系会犯错误的概率是多少?【解】a=18,b=12,c=5,d=78,∴a+b=30,c+d=83,a+c=23,b+d=90,n=113.∴χ2=n ad-bc 2 a+b c+d a+c b+d=113× 18×78-5×12 230×83×23×90≈39.6>6.635.∴有99%的把握认为患桑毛虫皮炎病与采桑有关系,认为两者有关系会犯错误的概率是1%.17.(本小题满分12分)某市居民2009~2013年货币收入x与购买商品支出Y的统计资料如下表所示:年份20092010201120122013货币收入x4042444750购买商品支出Y3334363941图7(1)画出散点图,试判断x与Y是否具有相关关系;(2)已知b=0.842,a=-0.943,请写出Y对x的回归直线方程,并估计货币收入为52(亿元)时,购买商品支出大致为多少亿元?【解】(1)由某市居民货币收入预报支出,因此选取收入为自变量x,支出为因变量Y.作散点图,从图中可看出x与Y具有相关关系.(2)Y对x的回归直线方程为y=0.842x-0.943,货币收入为52(亿元)时,即x=52时,y=42.841,所以购买商品支出大致为43亿元.18.(本小题满分12分)已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1,求证:a,b,c,d中至少有一个是负数.【证明】假设a,b,c,d都是非负数,因为a+b=c+d=1,所以(a+b)(c+d)=1,又(a+b)(c+d)=ac+bd+ad+bc≥ac+bd,所以ac+bd≤1,这与已知ac+bd≥1矛盾.所以a,b,c,d中至少有一个是负数.19.(本小题满分13分)已知方程x2-(2i-1)x+3m-i=0有实数根,求实数m的值.【解】设方程的实根为x0,则x20-(2i-1)x0+3m-i=0,因为x0,m∈R,所以方程变形为(x20+x0+3m)-(2x0+1)i=0,由复数相等得x20+x0+3m=0,2x0+1=0,解得x0=-12,m=112,故m=112.20.(本小题满分13分)(2013•南昌检测)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在每一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求再赛2局结束这次比赛的概率;(2)求甲获得这次比赛胜利的概率.【解】记“第i局甲获胜”为事件Ai(i=3,4,5),“第j局乙获胜”为事件Bj(j=3,4,5).(1)设“再赛2局结束这次比赛”为事件A,则A=A3A4+B3B4.由于各局比赛结果相互独立,故P(A)=P(A3A4+B3B4)=P(A3A4)+P(B3B4)=P(A3)P(A4)+P(B3)P(B4)=0.6×0.6+0.4×0.4=0.52.(2)设“甲获得这次比赛胜利”为事件B,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而B=A3A4+B3A4A5+A3B4A5,由于各局比赛结果相互独立,故P(B)=P(A3A4+B3A4A5+A3B4A5)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648.21.(本小题满分13分)先解答(1),再通过结构类比解答(2).(1)求证:tan(x+π4)=1+tanx1-tanx;(2)设x∈R,a≠0,f(x)是非零函数,且函数f(x+a)=1+f x 1-f x ,试问f(x)是周期函数吗?证明你的结论.【解】(1)证明tan(x+π4)=tanπ4+tanx1-tanπ4tanx=1+tanx1-tanx.(2)猜想:f(x)是以T=4a为周期的周期函数.∵f(x+2a)=f(x+a+a)=1+f x+a 1-f x+a =1+1+f x 1-f x 1-1+f x 1-f x =-1f x ,∴f(x+4a)=-1f x+2a =-1-1f x =f(x),∴f(x)是以T=4a为周期的周期函数.。
高中数学学习材料金戈铁骑整理制作模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若p则q”的逆命题是()A.若q则p B.若綈p则綈qC.若綈q则綈p D.若p则綈q【解析】根据原命题与逆命题之间的关系可得:逆命题为“若q则p”,选A.【答案】 A2.已知命题p:在直角坐标平面内,点M(sin α,cos α)与N(1,2)在直线x+y -2=0的异侧;命题q:若向量a,b满足a·b>0,则向量a,b的夹角为锐角.以下命题中为真命题的是()A.p或q真,p且q真B.p或q真,p且q假C.p或q假,p且q真D.p或q假,p且q假【解析】∵sin α+cos α-2≤2-2<0,∴点M(sin α,cos α)在直线x+y -2=0的左下侧.又∵1+2-2>0,∴N(1,2)在直线x+y-2=0的右上侧,故命题p为真.若向量a,b满足a·b>0,则向量a,b的夹角为锐角,显然为假.因为当a,b同向时,设a·b=1>0,但是a,b夹角为0,所以命题q为假.【答案】 B3.设p:x<-1或x>1,q:x<-2或x>1,则綈p是綈q的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 綈p :-1≤x ≤1;綈q :-2≤x ≤1,显然{x |-1≤x ≤1}{x |-2≤x ≤1},所以綈p 是綈q 的充分不必要条件.【答案】 A4.已知抛物线顶点在坐标原点,焦点在y 轴上,抛物线上的点M (m ,-2)到焦点的距离为4,则m 等于( )A .4B .2C .4或-4D .2或-2【解析】 由已知可设抛物线方程为x 2=-2py (p >0),由抛物线的定义知2+p2=4,∴p =4.∴x 2=-8y .将(m ,-2)代入上式得m 2=16,∴m =±4.【答案】 C5.已知E 、F 分别是正方体ABCD -A 1B 1C 1D 1中BB 1、DC 的中点,则异面直线AE 与D 1F 所成的角为( )A .30°B .60°C .45°D .90°【解析】 以A 1为原点,A 1B 1→、A 1D 1→、A 1A →为x 轴、y 轴、z 轴建立空间直角坐标系.不妨设正方体的棱长为2,则A (0,0,2),E (2,0,1),D 1(0,2,0),F (1,2,2),AE →=(2,0,-1),D 1F →=(1,0,2),所以AE →·D 1F →=0,所以AE ⊥D 1F ,即AE 与D 1F 所成的角为90°.【答案】 D6.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )【导学号:32550101】A.12 B .32 C .1D . 3【解析】 由题意可得,抛物线的焦点为(1,0),双曲线的渐近线方程为y =±3x ,即±3x -y =0,由点到直线的距离公式可得抛物线的焦点到双曲线的渐近线的距离d =|±3-0|2=32.【答案】 B7.如图1所示,空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,点N 为BC 的中点,则MN →等于( )图1A.12a -23b +12c B .-23a +12b +12c C.12a +12b -12c D .-23a +23b -12c【解析】 连接ON ,由向量加法法则,可知MN →=MO →+ON →=-23OA →+12(OB →+OC →)=-23a +12(b +c )=-23a +12b +12c .故选B.【答案】 B8.已知椭圆x 2a 2+y 2b 2=1(a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .椭圆B .圆C .双曲线的一支D .线段【解析】 ∵P 为MF 1中点,O 为F 1F 2的中点,∴|OP |=12|MF 2|,又|MF 1|+|MF 2|=2a , ∴|PF 1|+|PO |=12|MF 1|+12|MF 2|=a . ∴P 的轨迹是以F 1,O 为焦点的椭圆. 【答案】 A9.若双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1 B .y 24-x 24=1 C.y 24-x 28=1D .x 28-y 24=1【解析】 由于双曲线的顶点坐标为(0,2),可知a =2, ∴双曲线的标准方程为y 24-x 2b 2=1.根据题意,得2a +2b =2×2c ,即a +b =2c . 又∵a 2+b 2=c 2,且a =2,⎩⎨⎧a +b =2c ,a 2+b 2=c 2,a =2,解得b 2=4,∴适合题意的双曲线方程为y 24-x 24=1,故选B. 【答案】 B10.正三棱柱ABC -A 1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则直线AD 与平面B 1DC 所成角的正弦值为( )A.35 B .45 C.34D .55【解析】 如图,取AC 的中点为坐标原点,建立空间直角坐标系. 设各棱长为2,则有A (0,-1,0),D (0,0,2),C (0,1,0),B 1(3,0,2), 设n =(x ,y ,z )为平面B 1CD 的法向量, 则有⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0⇒⎩⎨⎧-y +2z =0,3x -y +2z =0⇒n =(0,2,1). ∴sin 〈AD →,n 〉=AD →·n |AD →||n |=45.【答案】 B11.如图2,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )图2A. 2 B . 3 C.32D .62【解析】 由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3. 因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4,所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|=12-4=8,所以|AF 2|-|AF 1|=22,因此对于双曲线有a =2,c =3, 所以C 2的离心率e =c a =62. 【答案】 D12.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则双曲线E 的方程为( )A.x 23-y 26=1 B .x 24-y 25=1 C.x 26-y 23=1D .x 25-y 24=1【解析】 由已知得k AB =-15-0-12-3=1.设E :x 2a 2-y 2b 2=1,A (x 1,y 1),B (x 2,y 2), ∴x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1,则(x 1-x 2)(x 1+x 2)a 2-(y 1-y 2)(y 1+y 2)b 2=0,而⎩⎨⎧x 1+x 2=-24,y 1+y 2=-30,所以y 1-y 2x 1-x 2=4b 25a 2=1,b 2=54a 2.①又c 2=a 2+b 2=9,②联立①②解得a 2=4,b 2=5,∴E 的方程为x 24-y25=1.【答案】 B二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.命题“任意x ∈R ,都有x 2+x -4>0”的否定________. 【解析】 全称命题的否定为特称命题.【答案】 存在x 0∈R ,使得x 20+x 0-4≤0.14.已知命题p :函数y =(c -1)x +1在R 上单调递增;命题q :不等式x 2-x +c ≤0的解集是∅.若p 且q 为真命题,则实数c 的取值范围是________.【解析】 p 且q 为真命题⇒p 是真命题,q 是真命题.①p 是真命题⇒c -1>0⇒c >1,②q 是真命题⇒Δ=(-1)2-4c <0⇒c >14,故p 且q 为真命题⇒c >1⇒c ∈(1,+∞).【答案】 (1,+∞)15.如图3所示,正方形ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1的中点,则点E 到平面ABC 1D 1的距离是________.图3【解析】 建立如图所示的空间直角坐标系,∵正方体的棱长为1,∴A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),C 1(0,1,1),D 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,12,1.设平面ABC 1D 1的法向量为n =(x ,y ,z ).∴n ·AB →=0,且n ·BC 1→=0,即(x ,y ,z )·(0,1,0)=0,且(x ,y ,z )·(-1,0,1)=0.∴y =0,且-x +z =0,令x =1,则z =1,∴n =(1,0,1).∴n 0=⎝ ⎛⎭⎪⎫22,0,22,又EC 1→=⎝ ⎛⎭⎪⎫-1,12,0,∴点E 到平面ABC 1D 1的距离为|EC 1→·n 0|=⎪⎪⎪⎪⎪⎪⎝⎛⎭⎪⎫-1,12,0·⎝ ⎛⎭⎪⎫22,0,22=22. 【答案】 2216.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于两点A ,B ,点Q 为线段AB 的中点,若|FQ |=2,则直线的斜率等于________.【解析】 设直线l 的方程为y =k (x +1),联立⎩⎨⎧y =k (x +1),y 2=4x ,消去y 得k 2x 2+(2k 2-4)x +k 2=0,由根与系数的关系知,x A +x B =-2k 2-4k 2, 于是x Q =x A +x B 2=2k 2-1,把x Q 带入y =k (x +1),得到y Q =2k , 根据|FQ |=⎝ ⎛⎭⎪⎫2k 2-22+⎝ ⎛⎭⎪⎫2k 2=2,解出k =±1. 【答案】 ±1三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.【导学号:32550102】【解】 由于不等式|x -1|>m -1的解集为R , 所以m -1<0,m <1;又由于f (x )=-(5-2m )x 是减函数, 所以5-2m >1,m <2.即命题p :m <1,命题q :m <2.又由于p 或q 为真,p 且q 为假,所以p 和q 中一真一假. 当p 真q 假时应有⎩⎨⎧ m <1,m ≥2,m 无解.当p 假q 真时应有⎩⎨⎧m ≥1,m <2,1≤m <2.故实数m 的取值范围是1≤m <2.18.(本小题满分12分)已知p :{x |x +2≥0且x -10≤0},q :{x |1-m ≤x ≤1+m ,m >0},若綈p 是綈q 的必要不充分条件,求实数m 的取值范围.【解】 p :{x |-2≤x ≤10},綈p :A ={x |x <-2或x >10}, 綈q :B ={x |x <1-m 或x >1+m ,m >0}.因为綈p 是綈q 的必要不充分条件, 所以綈q ⇒綈p ,綈p綈q .所以B A .分析知,B A 的充要条件是⎩⎨⎧m >0,1-m ≤-2,1+m >10或⎩⎨⎧m >0,1-m <-2,1+m ≥10,解得m ≥9,即m 的取值范围是[9,+∞).19.(本小题满分12分)如图4所示,已知P A ⊥平面ABCD ,ABCD 为矩形,P A =AD ,M ,N 分别为AB ,PC 的中点.求证:图4(1)MN ∥平面P AD ; (2)平面PMC ⊥平面PDC . 【证明】如图所示,以A 为坐标原点,AB ,AD ,AP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系Axyz .设P A =AD =a ,AB =b .(1)P (0,0,a ),A (0,0,0),D (0,a,0),C (b ,a,0),B (b,0,0). 因为M 、N 分别为AB ,PC 的中点, 所以M ⎝ ⎛⎭⎪⎫b 2,0,0,N ⎝ ⎛⎭⎪⎫b 2,a 2,a 2.所以MN →=⎝ ⎛⎭⎪⎫0,a 2,a 2,AP →=(0,0,a ),AD →=(0,a,0), 所以MN →=12AD →+12AP →.又因为MN ⊄平面P AD ,所以MN ∥平面P AD .(2)由(1)可知:P (0,0,a ),C (b ,a,0), M ⎝ ⎛⎭⎪⎫b 2,0,0,D (0,a,0). 所以PC →=(b ,a ,-a ),PM →=⎝ ⎛⎭⎪⎫b 2,0,-a ,PD →=(0,a ,-a ).设平面PMC 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·PC →=0n 1·PM →=0⇒⎩⎪⎨⎪⎧bx 1+ay 1-az 1=0,b 2x 1-az 1=0,所以⎩⎪⎨⎪⎧x 1=2a b z 1,y 1=-z 1.令z 1=b ,则n 1=(2a ,-b ,b ).设平面PDC 的一个法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·PC →=0,n 2·PD →=0,⇒⎩⎨⎧bx 2+ay 2-az 2=0,ay 2-az 2=0, 所以⎩⎨⎧x 2=0,y 2=z 2.令z 2=1,则n 2=(0,1,1).因为n 1·n 2=0-b +b =0,所以n 1⊥n 2.所以平面PMC ⊥平面PDC . 20.(本小题满分12分)已知点A (0,4),B (0,-2),动点P (x ,y )满足P A →·PB →-y 2+8=0.(1)求动点P 的轨迹方程;(2)设(1)中所求轨迹与直线y =x +2交于C ,D 两点,求证:OC ⊥OD (O 为原点).【解】 (1)由题意可知,P A →=(-x,4-y ),PB →=(-x ,-2-y ), ∴x 2+(4-y )(-2-y )-y 2+8=0,∴x 2=2y 为所求动点P 的轨迹方程. (2)证明:设C (x 1,y 1),D (x 2,y 2).由⎩⎨⎧y =x +2,x 2=2y ,整理得x 2-2x -4=0,∴x 1+x 2=2,x 1x 2=-4,∵k OC ·k OD =y 1x 1·y 2x 2=(x 1+2)(x 2+2)x 1x 2=x 1x 2+2(x 1+x 2)+4x 1x 2=-4+4+4-4=-1, ∴OC ⊥OD .21.(本小题满分12分)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,过F 的直线l 与椭圆C 相交于A 、B 两点,直线l 的倾斜角为60°,AF →=2FB →.(1)求椭圆C 的离心率;(2)如果|AB |=154,求椭圆C 的方程.【解】 设A (x 1,y 1),B (x 2,y 2),由题意知y 1<0,y 2>0.(1)直线l 的方程为y =3(x -c ),其中c =a 2-b 2.联立⎩⎪⎨⎪⎧ y =3(x -c ),x 2a 2+y 2b 2=1,得(3a 2+b 2)y 2+23b 2cy -3b 4=0.解得y 1=-3b 2(c +2a )3a 2+b 2,y 2=-3b 2(c -2a )3a 2+b 2. 因为AF →=2FB →,所以-y 1=2y 2.即3b 2(c +2a )3a 2+b 2=2·-3b 2(c -2a )3a 2+b 2. 得离心率e =c a =23.(2)因为|AB |=1+13|y 2-y 1|,所以23·43ab 23a 2+b2=154. 由c a =23得b =53a ,所以54a =154,得a =3,b = 5.椭圆C 的方程为x 29+y 25=1.22.(本小题满分12分)如图5①,正三角形ABC 的边长为2a ,CD 是AB 边上的高,E ,F 分别为AC 和BC 边上的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B ,如图5②.① ②图5(1)试判断翻折后的直线AB 与平面DEF 的位置关系,并说明理由;(2)求二面角B -AC -D 的余弦值;(3)求点C 到平面DEF 的距离.【解】 建立如图所示的空间直角坐标系,则D (0,0,0),B (a,0,0),A (0,0,a ),C (0,3a,0),F ⎝ ⎛⎭⎪⎫a 2,32a ,0,E ⎝⎛⎭⎪⎫0,32a ,a 2.(1)AB →=(a,0,-a ),EF →=⎝ ⎛⎭⎪⎫a 2,0,-a 2=12(a,0,-a ), ∴EF →=12AB →.∴EF →∥AB →.∴EF ∥AB .又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .(2)易知DB →=(a,0,0)是平面ADC 的一个法向量.设平面ACB 的一个法向量为n =(x ,y ,z ).而AB →=(a,0,-a ),BC →=(-a ,3a,0),则⎩⎪⎨⎪⎧ n ·AB →=xa -az =0,n ·BC →=-ax +3ay =0.令x =1,得z =1,y =33,∴平面ACB 的一个法向量为n =⎝ ⎛⎭⎪⎫1,33,1. ∴n ·DB →=a .∴cos 〈n ,DB →〉=a a ·1+13+1=217. ∴二面角B -AC -D 的余弦值为217.(3)平面DEF 内的向量DE →=⎝ ⎛⎭⎪⎫0,32a ,a 2,DF →=⎝ ⎛⎭⎪⎫a 2,32a ,0. 设平面DEF 的一个法向量为m =()x ,y ,z ,则 ⎩⎨⎧ m ·DE →=32ay +a 2z =0,m ·DF →=a 2x +32ay =0.令y =3,则z =-3,x =-3.∴平面DEF 的一个法向量m =(-3,3,-3). 又DC →=(0,3a,0),∴DC →·m =3a .∴点C 到平面DEF 的距离d =|DC →·m ||m | =3a 9+3+9=217a .。
高中数学学习材料 (灿若寒星 精心整理制作)模块综合检测(A)(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题5分,共50分)1.命题“若A ⊆B ,则A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .0B .2C .3D .42.已知命题p :若x 2+y 2=0 (x ,y ∈R ),则x ,y 全为0;命题q :若a >b ,则1a <1b.给出下列四个复合命题:①p 且q ;②p 或q ;③綈p ;④綈q .其中真命题的个数是( ) A .1 B .2 C .3 D .43.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 4.已知椭圆x 2a 2+y2b2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .椭圆B .圆C .双曲线的一支D .线段5.在三棱柱ABC —A 1B 1C 1中,底面是棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD =1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是( )A.32B.22C.104D.646.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .47.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B. 5C.62D.528.若A ,B 两点的坐标分别是A (3cos α,3sin α,1),B (2cos θ,2sin θ,1),则|AB →|的取值范围是( )A .[0,5]B .[1,5]C .(1,5)D .[1,25]9.设O 为坐标原点,F 1、F 2是x 2a 2-y 2b2=1(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠F 1PF 2=60°,|OP |=7a ,则该双曲线的渐近线方程为( ) A .x ±3y =0 B.3x ±y =0 C .x ±2y =0 D.2x ±y =0 10.在长方体ABCD —A 1B 1C 1D 1中,M 、N 分别是棱BB 1、B 1C 1的中点,若∠CMN =90°,则异面直线AD 1与DM 所成的角为( ) A .30° B .45° C .60° D .90°题 号 1 2 3 4 5 6 7 8 9 10答 案二、填空题(本大题共5小题,每小题5分,共25分)11.若向量a =(1,0,z )与向量b =(2,1,2)的夹角的余弦值为23,则z =________.12.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,那么实数m 的取值范围是_______________________________________________________________.13.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为____________________ ____________________________________________________.14.若AB 是过椭圆x 2a 2+y 2b2=1 (a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与坐标轴不平行,k AM 、k BM 分别表示直线AM 、BM 的斜率,则k AM ·k BM =________. 15.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为________. 三、解答题(本大题共6小题,共75分)16.(12分)已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,且綈q 是綈p 的必要条件,求实数a 的取值范围.17.(12分)设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积.18.(12分)已知直线y =ax +1与双曲线3x 2-y 2=1交于A ,B 两点. (1)求a 的取值范围;(2)若以AB 为直径的圆过坐标原点,求实数a 的值.19.(12分)如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F . 证明:(1)P A ∥平面EDB ; (2)PB ⊥平面EFD .20.(13分)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →||MP →|+MN →·NP →=0,求动点P (x ,y )的轨迹方程.21.(14分)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点. (1)求直线BE 和平面ABB 1A 1所成的角的正弦值.(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.模块综合检测(A)1.B [原命题为假,故其逆否命题为假;其逆命题为真,故其否命题为真;故共有2个真命题.]2.B [命题p 为真,命题q 为假,故p 或q 真,綈q 真.]3.D [双曲线x 24-y 212=-1,即y 212-x 24=1的焦点为(0,±4),顶点为(0,±23).所以对椭圆y 2a 2+x 2b 2=1而言,a 2=16,c 2=12.∴b 2=4,因此方程为y 216+x 24=1.]4.A [∵P 为MF 1中点,O 为F 1F 2的中点,∴|OP|=12|MF 2|,又|MF 1|+|MF 2|=2a ,∴|PF 1|+|PO|=12|MF 1|+12|MF 2|=a.∴P 的轨迹是以F 1,O 为焦点的椭圆.] 5.D [如图所示,建立坐标系,易求点D ⎝⎛⎭⎫32,12,1,平面AA 1C 1C 的一个法向量是n =(1,0,0),所以cos 〈n ,AD →〉=322=64,即sin α=64.]6.B [由抛物线的定义, 得|AB |=x 1+x 2+p =6+2=8.]7.D [由题意知,过点(4,-2)的渐近线方程为y =-b a x ,∴-2=-ba×4,∴a =2b ,设b =k ,则a =2k ,c =5k ,∴e =c a =5k 2k =52.]8.B [|AB →|=(2cos θ-3cos α)2+(2sin θ-3sin α)2 =9+4-12cos αcos θ-12sin αsin θ =13-12cos (α-θ).因为-1≤cos(α-θ)≤1,所以1≤13-12cos(α-θ)≤25,所以|AB →|∈[1,5].] 9.D[如图所示,∵O 是F 1F 2的中点,∴PF 1→+PF 2→=2PO →,∴(PF 1→+PF 2→)2=(2PO →)2. 即|PF 1→|2+|PF 2→|2+ 2|PF 1→|·|PF 2→|·cos 60°=4|PO →|2. 又∵|PO |=7a , ∴|PF 1→|2+|PF 2→|2+|PF 1→||PF 2→|=28a 2.① 又由双曲线定义得|PF 1|-|PF 2|=2a , ∴(|PF 1|-|PF 2|)2=4a 2.即|PF 1|2+|PF 2|2-2|PF 1||PF 2|=4a 2.② 由①-②得|PF 1|·|PF 2|=8a 2, ∴|PF 1|2+|PF 2|2=20a 2.在△F 1PF 2中,由余弦定理得cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|,∴8a 2=20a 2-4c 2.即c 2=3a 2. 又∵c 2=a 2+b 2,∴b 2=2a 2. 即b 2a 2=2,ba= 2. ∴双曲线的渐近线方程为2x ±y =0.] 10.D [建立如图所示坐标系.设AB =a ,AD =b ,AA 1=c ,则A 1(b,0,0),A (b,0,c ),C 1(0,a,0), C (0,a ,c ),B 1(b ,a,0),D (0,0,c ),N ⎝⎛⎭⎫b 2,a ,0,M ⎝⎛⎭⎫b ,a ,c 2. ∵∠CMN =90°,∴CM →⊥MN →,∴CM →·MN →=⎝⎛⎭⎫b ,0,-c 2·⎝⎛⎭⎫-b 2,0,-c 2 =-12b 2+14c 2=0,∴c =2b .∴AD 1→·DM →=(-b,0,-2b )·⎝⎛⎭⎫b ,a ,-22b =-b 2+b 2=0,∴AD 1⊥DM ,即异面直线AD 1与DM 所成的角为90°.] 11.0解析 设两个向量的夹角为θ,则cos θ=1×2+0×1+2z1+z 2·22+12+22=2+2z 1+z 2·3=23,解得z =0. 12.[3,8)解析 因为p (1)是假命题,所以1+2-m ≤0, 即m ≥3.又因为p (2)是真命题,所以4+4-m >0, 即m <8.故实数m 的取值范围是3≤m <8. 13.x 24-y 212=1 解析 由双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程为y =3x 得ba=3,∴b =3a .∵抛物线y 2=16x 的焦点为F (4,0),∴c =4. 又∵c 2=a 2+b 2,∴16=a 2+(3a )2, ∴a 2=4,b 2=12.∴所求双曲线的方程为x 24-y 212=1.14.-b 2a2解析 设A (x 1,y 1),M (x 0,y 0), 则B (-x 1,-y 1),则k AM ·k BM =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21=⎝⎛⎭⎫-b 2a 2x 20+b 2-⎝⎛⎭⎫-b 2a 2x 21+b 2x 20-x 21=-b 2a 2. 15.25 解析建系如图,则M ⎝⎛⎭⎫1,12,1,N ⎝⎛⎭⎫1,1,12, A (1,0,0),C (0,1,0)∴AM →=⎝⎛⎭⎫0,12,1, CN →=⎝⎛⎭⎫1,0,12. ∴cos 〈AM →,CN →〉=AM →·CN →|AM →||CN →|=1254=25.即直线AM 与CN 所成角的余弦值为25.16.解 由⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,得⎩⎨⎧1<x <32<x <4,即2<x <3.∴q :2<x <3.设A ={x |2x 2-9x +a <0},B ={x |2<x <3}, ∵綈p ⇒綈q ,∴q ⇒p ,∴B ⊆A . 即2<x <3满足不等式2x 2-9x +a <0. 设f (x )=2x 2-9x +a ,要使2<x <3满足不等式2x 2-9x +a <0, 需⎩⎪⎨⎪⎧ f (2)≤0f (3)≤0,即⎩⎪⎨⎪⎧8-18+a ≤018-27+a ≤0. ∴a ≤9.故所求实数a 的取值范围是{a |a ≤9}. 17.解 如图所示,设|PF 1|=m ,|PF 2|=n ,则S △F 1PF 2=12mn sin π3=34mn .由椭圆的定义知 |PF 1|+|PF 2|=20, 即m +n =20.① 又由余弦定理,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos π3=|F 1F 2|2,即m 2+n 2-mn =122.②由①2-②,得mn =2563.∴S △F 1PF 2=6433.18.解 (1)由⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1消去y ,得(3-a 2)x 2-2ax -2=0.依题意得⎩⎪⎨⎪⎧3-a 2≠0,Δ>0,即-6<a <6且a ≠±3.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2a 3-a 2,x 1x 2=-23-a 2.∵以AB 为直径的圆过原点,∴OA ⊥OB , ∴x 1x 2+y 1y 2=0,即x 1x 2+(ax 1+1)(ax 2+1)=0, 即(a 2+1)x 1x 2+a (x 1+x 2)+1=0.∴(a 2+1)·-23-a 2+a ·2a3-a 2+1=0, ∴a =±1,满足(1)所求的取值范围. 故a =±1. 19.证明 (1)以D 为坐标原点,以DA 、DC 、DP 所在的直线分别为x 、y 、z 轴建立空间直角坐标系.连结AC ,AC 交BD 于G . 连结EG .设DC =a ,依题意得A (a,0,0),P (0,0,a ),E ⎝⎛⎭⎫0,a 2,a 2, ∵底面ABCD 是正方形, ∴G 是此正方形的中心,故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,且P A →=(a,0,-a ),EG →=⎝⎛⎭⎫a 2,0,-a 2. ∴P A →=2EG →,即P A ∥EG .而EG ⊂平面EDB 且P A ⊄平面EDB , ∴P A ∥平面EDB .(2)依题意得B (a ,a,0),PB →=(a ,a ,-a ).又DE →=⎝⎛⎭⎫0,a 2,a 2,故PB →·DE →=0+a 22-a 22=0,∴PB ⊥DE ,由已知EF ⊥PB ,且EF ∩DE =E , 所以PB ⊥平面EFD .20.解 设P (x ,y ),则MN →=(4,0),MP →=(x +2,y ), NP →=(x -2,y ). ∴|MN →|=4,|MP →|=(x +2)2+y 2, MN →·NP →=4(x -2),代入|MN →|·|MP →|+MN →·NP →=0, 得4(x +2)2+y 2+4(x -2)=0, 即(x +2)2+y 2=2-x , 化简整理,得y 2=-8x .故动点P (x ,y )的轨迹方程为y 2=-8x .21.解 设正方体的棱长为1,如图所示,以AB →,AD →,AA 1→分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz .(1)依题意,得B (1,0,0),E (0,1,12),A (0,0,0),D (0,1,0),所以BE →=(-1,1,12),AD →=(0,1,0).在正方体ABCD -A 1B 1C 1D 1中,因为AD ⊥平面ABB 1A 1,所以AD →是平面ABB 1A 1的一个法向量.设直线BE 和平面ABB 1A 1所成的角为θ,则sin θ=|BE →·AD →||BE →|·|AD →|=132×1=23.故直线BE 和平面ABB 1A 1所成的角的正弦值为23.(2)在棱C 1D 1上存在点F ,使B 1F ∥平面A 1BE . 证明如下:依题意,得A 1(0,0,1),BA 1→=(-1,0,1),BE →=(-1,1,12).设n =(x ,y ,z )是平面A 1BE 的一个法向量,则由n ·BA 1→=0,n ·BE →=0,得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0. 所以x =z ,y =12z ,取z =2,得n =(2,1,2).设F 是棱C 1D 1上的点,则F (t,1,1)(0≤t ≤1).又B 1(1,0,1),所以B 1F →=(t -1,1,0).而B 1F ⊆平面A 1BE ,于是B 1F ∥平面A 1BE ⇔B 1F →·n =0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1 =0⇔t =12⇔F 为棱C 1D 1的中点.这说明在棱C 1D 1上存在点F (C 1D 1的中点),使B 1F∥平面A 1BE .。
模块综合测试(一)(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若命题p :∀x ∈R,2x 2+1>0,则¬p 是( ) A .∀x ∈R,2x 2+1≤0 B .∃x ∈R,2x 2+1>0 C .∃x ∈R,2x 2+1<0D .∃x ∈R,2x 2+1≤0解析:¬p :∃x ∈R,2x 2+1≤0. 答案:D2.不等式x -1x >0成立的一个充分不必要条件是( )A .-1<x <0或x >1B .x <-1或0<x <1C .x >-1D .x >1解析:本题主要考查充要条件的概念、简单的不等式的解法.画出直线y =x 与双曲线y =1x 的图像,两图像的交点为(1,1)、(-1,-1),依图知x -1x >0⇔-1<x <0或x >1 (*),显然x >1⇒(*);但(*)x >1,故选D.答案:D3.[2014·西安模拟]命题“若a >b ,则a +1>b ”的逆否命题是( ) A .若a +1≤b ,则a >b B .若a +1<b ,则a >b C .若a +1≤b ,则a ≤bD .若a +1<b ,则a <b解析:“若a >b ,则a +1>b ”的逆否命题为“若a +1≤b ,则a ≤b ”,故选C. 答案:C4.[2014·山东省日照一中模考]下列命题中,为真命题的是( ) A .∀x ∈R ,x 2-x -1>0B .∀α,β∈R ,sin(α+β)<sin α+sin βC .函数y =2sin(x +π5)的图像的一条对称轴是x =45πD .若“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,则a 的取值范围为(-2,2)解析:本题主要考查命题的判定及其相关知识的理解.因为x 2-x -1=(x -12)2-54,所以A 错误;当α=β=0时,有sin(α+β)=sin α+sin β,所以B 错误;当x =4π5时,y =0,故C 错误;因为“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,所以“∀x ∈R ,x 2-ax +1>0”为真命题,即Δ<0,即a 2-4<0,解得-2<a <2,即a 的取值范围为(-2,2).故选D.答案:D5.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .23B .6C .4 3D .12解析:设椭圆的另一焦点为F ,由椭圆的定义知|BA |+|BF |=23,且|CF |+|AC |=23, 所以△ABC 的周长=|BA |+|BC |+|AC | =|BA |+|BF |+|CF |+|AC |=4 3. 答案:C6.过点(2,-2)与双曲线x 2-2y 2=2有公共渐近线的双曲线方程为( ) A .x 22-y 24=1B .x 24-y 22=1C .y 24-x 22=1D .y 22-x 24=1解析:与双曲线x 22-y 2=1有公共渐近线方程的双曲线方程可设为x 22-y 2=λ(λ≠0),由过点(2,-2),可解得λ=-2. 所以所求的双曲线方程为y 22-x 24=1.答案:D7.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支上到原点和右焦点距离相等的点有两个,则双曲线离心率的取值范围是( )A .e > 2B .1<e < 2C .e >2D .1<e <2解析:由题意,以原点及右焦点为端点的线段的垂直平分线必与右支交于两个点,故c 2>a ,∴c a>2. 答案:C8.[2013·课标全国卷Ⅱ]一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )解析:本题主要考查空间直角坐标以及三视图的有关知识.利用正方体模型,建立空间直角坐标系,根据点的坐标确定几何体形状,注意画三视图中的正视图时,是以zOx 平面为投影面,故选A.答案:A9.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A . 3B .2C . 5D . 6解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x ,因为y =x 2+1与渐近线相切,故x 2+1±b a x =0只有一个实根,∴b 2a 2-4=0,∴c 2-a 2a2=4,∴c 2a 2=5,∴e = 5. 答案:C10.已知正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( )A .1010B .15C .31010D .35解析:以DA 、DC 、DD 1所在直线为x 轴、y 轴和z 轴,建立如右图所示的空间直角坐标系,设AB =1,则AA 1=2,依题设有B (1,1,0),C (0,1,0),D 1(0,0,2),E (1,0,1),∴BE →=(0,-1,1),CD 1→=(0,-1,2). ∴cos 〈BE →·CD 1→〉=0+1+22·5=31010.答案:C11.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32解析:∵抛物线C :y 2=8x 的焦点为F (2,0),准线为x =-2,∴K (-2,0).设A (x 0,y 0),如图所示,过点A 向准线作垂线,垂足为B ,则B (-2,y 0). ∵|AK |=2|AF |,又|AF |=|AB |=x 0-(-2)=x 0+2,∴由|BK |2=|AK |2-|AB |2,得y 20=(x 0+2)2,即8x 0=(x 0+2)2,解得x 0=2,y 0=±4.∴△AFK 的面积为12|KF |·|y 0|=12×4×4=8,故选B.答案:B12.[2013·浙江高考]如图,F 1、F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A . 2B . 3C .32D .62解析:本题考查椭圆、双曲线的定义和简单的几何性质.设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0) ①,点A 的坐标为(x 0,y 0).由题意a 2+b 2=3=c 2 ②,|OA |=|OF 1|=3,∴⎩⎪⎨⎪⎧x 20+y 20=3x 20+4y 20=4,解得x 20=83,y 20=13,又点A 在双曲线C 2上,代入①得,83b 2-13a 2=a 2b 2 ③,联立②③解得a =2,所以e =c a =62,故选D.答案:D二、填空题(本大题共4小题,每小题5分,共20分)13.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于__________.解析:∵a ,b ,c 三向量共面,∴a =x b +y c (x ,y ∈R ), ∴(2,-1,3)=x (-1,4,-2)+y (7,5,λ),∴λ=657.答案:65714.已知命题p :∃x ∈R ,x 2+2ax +a ≤0,若命题p 是假命题,则实数a 的取值范围是__________.解析:p 是假命题,则¬p 为真命题,¬p 为:∀x ∈R ,x 2+2ax +a >0,所以有Δ=4a 2-4a <0,即0<a <1.答案:(0,1)15.[2014·湖南省长沙一中月考]已知正三棱柱ABC -DEF 的侧棱长为2,底面边长为1,M 是BC 的中点,若直线CF 上有一点N ,使MN ⊥AE ,则CNCF=__________________.解析:本题主要考查空间向量基本定理和数量积.设CN CF=m ,由于AE →=AB →+BE →,又CF →=AD →MN →=12BC →+mAD →,又AE →·MN →=0,得12×1×1×(-12)+4m =0,解得m =116. 答案:11616.[2014·河北省邢台一中月考]F 1、F 2分别是双曲线x 216-y 29=1的左、右焦点,P 为双曲线右支上一点,I 是△PF 1F 2的内心,且S △IPF 2=S △IPF 1-λS △IF 1F 2,则λ=________.解析:本题主要考查双曲线定义及标准方程的应用.设△PF 1F 2内切圆的半径为r ,则S △IPF 2=S △IPF 1-λS △IF 1F 2⇒12×|PF 2|×r =12×|PF 1|×r -12λ×|F 1F 2|×r ⇒|PF 1|-|PF 2|=λ|F 1F 2|,根据双曲线的标准方程知2a =λ·2c ,∴λ=a c =45.答案:45三、解答题(本大题共6小题,共70分)17.(10分)已知全集U =R ,非空集合A ={x |x -2x -3<0},B ={x |(x -a )(x -a 2-2)<0}.命题p :x ∈A ,命题q :x ∈B .(1)当a =12时,p 是q 的什么条件?(2)若q 是p 的必要条件,求实数a 的取值范围.解:(1)A ={x |x -2x -3<0}={x |2<x <3},当a =12时,B ={x |12<x <94},故p 是q 的既不充分也不必要条件.(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B , 由a 2+2>a ,故B ={a |a <x <a 2+2},∴⎩⎪⎨⎪⎧a ≤2a 2+2≥3,解得a ≤-1或1≤a ≤2. 18.(12分)已知c >0,设p :y =c x 为减函数;q :函数f (x )=x +1x >1c 在x ∈[12,2]上恒成立,若“p ∨q ”为真命题,“p ∧q ”为假命题,求c 的取值范围.解:由y =c x 为减函数,得0<c <1.当x ∈[12,2]时,由不等式x +1x ≥2(x =1时取等号)知:f (x )=x +1x 在[12,2]上的最小值为2,若q 真,则1c <2,即c >12.若p 真q 假,则0<c <1且c ≤12,所以0<c ≤12.若p 假q 真,则c ≥1且c >12,所以c ≥1.综上:c ∈(0,12]∪[1,+∞).19.(12分)[2014·天津高考]如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值. 解:法一:依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)证明:向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0. 所以BE ⊥DC .(2)向量BD →=(-1,2,0),PB →=(1,0,-2).设n =(x ,y ,z )为平面PBD 的法向量,则⎩⎪⎨⎪⎧n ·BD →=0,n ·PB →=0,即⎩⎪⎨⎪⎧-x +2y =0,x -2z =0. 不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量.于是有cos 〈n ,BE →〉=n ·BE →|n |·|BE →|=26×2=33.所以直线BE 与平面PBD 所成角的正弦值为33. (3)向量BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0).由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1.故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ).由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=34.即BF →=⎝⎛⎭⎫-12,12,32.设n 1=(x ,y ,z )为平面F AB 的法向量,则⎩⎪⎨⎪⎧ n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0.不妨令z =1,可得n 1=(0,-3,1)为平面F AB 的一个法向量.取平面ABP 的法向量n 2=(0,1,0),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010.易知,二面角F -AB -P 是锐角,所以其余弦值为31010.法二:(1)证明:如图,取PD 的中点M ,连接EM ,AM .由于E ,M 分别为PC ,PD 的中点,故EM ∥DC ,且EM =12DC ,又由已知,可得EM∥AB 且EM =AB ,故四边形ABEM 为平行四边形,所以BE ∥AM .因为P A ⊥底面ABCD ,故P A ⊥CD ,而CD ⊥DA ,从而CD ⊥平面P AD ,因为AM ⊂平面P AD ,于是CD ⊥AM ,又BE ∥AM ,所以BE ⊥CD .(2)连接BM ,由(1)有CD ⊥平面P AD ,得CD ⊥PD ,而EM ∥CD ,故PD ⊥EM .又因为AD =AP ,M 为PD 的中点,故PD ⊥AM ,可得PD ⊥BE ,所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD .所以直线BE 在平面PBD 内的射影为直线BM ,而BE ⊥EM ,可得∠EBM 为锐角,故∠EBM 为直线BE 与平面PBD 所成的角.依题意,有PD =22,而M 为PD 的中点,可得AM =2,进而BE = 2.故在直角三角形BEM 中,tan ∠EBM =EM BE =AB BE =12,因此sin ∠EBM =33. 所以直线BE 与平面PBD 所成角的正弦值为33. (3)如图,在△P AC 中,过点F 作FH ∥P A 交AC 于点H .因为P A ⊥底面ABCD ,故FH ⊥底面ABCD ,从而FH ⊥AC .又BF ⊥AC ,得AC ⊥平面FHB ,因此AC ⊥BH .在底面ABCD 内,可得CH =3HA ,从而CF =3FP .在平面PDC 内,作FG ∥DC 交PD 于点G ,于是DG =3GP .由于DC ∥AB ,故GF ∥AB ,所以A ,B ,F ,G 四点共面.由AB ⊥P A ,AB ⊥AD ,得AB ⊥平面P AD ,故AB ⊥AG .所以∠P AG 为二面角F -AB -P 的平面角.在△P AG 中,P A =2,PG =14PD =22,∠APG =45°,由余弦定理可得AG =102,cos∠P AG =31010.所以二面角F -AB -P 的余弦值为31010.20.(12分)已知椭圆x 29+y 25=1,F 1、F 2分别是椭圆的左、右焦点,点A (1,1)为椭圆内一点,点P 为椭圆上一点.求|P A |+|PF 1|的最大值.解:由椭圆的定义知|PF 1|+|PF 2|=2a =6, 所以|PF 1|=6-|PF 2|,这样|P A |+|PF 1|=6+|P A |-|PF 2|.求|P A |+|PF 1|的最大值问题转化为6+|P A |-|PF 2|的最大值问题, 即求|P A |-|PF 2|的最大值问题,如图在△P AF 2中,两边之差小于第三边, 即|P A |-|PF 2|<|AF 2|,连接AF 2并延长交椭圆于P ′点时, 此时|P ′A |-|P ′F 2|=|AF 2|达到最大值, 易求|AF 2|=2,这样|P A |-|PF 2|的最大值为2, 故|P A |+|PF 1|的最大值为6+ 2.21.(12分)[2014·湖北高考]在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1).求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.解:(1)设点M (x ,y ),依题意得|MF |=|x |+1,即(x -1)2+y 2=|x |+1, 化简整理得y 2=2(|x |+x ).故点M 的轨迹C 的方程为y 2=⎩⎪⎨⎪⎧4x , x ≥0,0, x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x ,C 2:y =0(x <0), 依题意,可设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2),y 2=4x ,可得ky 2-4y +4(2k +1)=0.①(ⅰ)当k =0时,此时y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝⎛⎭⎫14,1. (ⅱ)当k ≠0时,方程①的判别式为Δ=-16(2k 2+k -1).② 设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③1°若⎩⎪⎨⎪⎧Δ<0,x 0<0,由②③解得k <-1或k >12.即当k ∈(-∞,-1)∪⎝⎛⎭⎫12,+∞时,直线l 与C 1没有公共点,与C 2有一个公共点, 故此时直线l 与轨迹C 恰好有一个公共点.2°若⎩⎪⎨⎪⎧ Δ=0,x 0<0或⎩⎪⎨⎪⎧Δ>0,x 0≥0,则由②③解得k ∈⎩⎨⎧⎭⎬⎫-1,12或-12≤k <0.即当k ∈⎩⎨⎧⎭⎬⎫-1,12时,直线l 与C 1只有一个公共点,与C 2有一个公共点.当k ∈⎣⎡⎭⎫-12,0时,直线l 与C 1有两个公共点,与C 2没有公共点. 故当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点.3°若⎩⎪⎨⎪⎧Δ>0,x 0<0,则由②③解得-1<k <-12或0<k <12.即当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与C 1有两个公共点,与C 2有一个公共点, 故此时直线l 与轨迹C 恰好有三个公共点.综合(ⅰ)(ⅱ)可知,当k ∈(-∞,-1)∪⎝⎛⎭⎫12,+∞∪{0}时,直线l 与轨迹C 恰好有一个公共点;当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点;当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与轨迹C 恰好有三个公共点. 22.(12分)[2014·广东省广州六中期末考试]如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,且AD ∥BC ,∠ABC =∠P AD =90°,侧面P AD ⊥底面ABCD .若P A =AB =BC =12AD .(1)求证:CD ⊥平面P AC ;(2)侧棱P A 上是否存在点E ,使得BE ∥平面PCD ?若存在,指出点E 的位置并证明,若不存在,请说明理由;(3)求二面角A -PD -C 的余弦值.解:因为∠P AD =90°,所以P A ⊥AD .又因为侧面P AD ⊥底面ABCD ,且侧面P AD ∩底面ABCD =AD ,所以P A ⊥底面ABCD .又因为∠BAD =90°,所以AB ,AD ,AP 两两垂直.分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.设AD =2,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,1). (1)AP →=(0,0,1),AC →=(1,1,0),CD →=(-1,1,0),可得AP →·CD →=0,AC →·CD →=0,所以AP ⊥CD ,AC ⊥CD .又因为AP ∩AC =A ,所以CD ⊥平面P AC .(2)设侧棱P A 的中点是E ,则E (0,0,12),BE →=(-1,0,12).设平面PCD 的法向量是n=(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·CD →=0n ·PD →=0,因为CD →=(-1,1,0),PD →=(0,2,-1),所以⎩⎪⎨⎪⎧-x +y =02y -z =0,取x =1,则y =1,z =2,所以平面PCD 的一个法向量为n =(1,1,2).所以n ·BE →=(1,1,2)·(-1,0,12)=0,所以n ⊥BE →. 因为BE ⊄平面PCD ,所以BE ∥平面PCD .(3)由已知,AB ⊥平面P AD ,所以AB →=(1,0,0)为平面P AD 的一个法向量.由(2)知,n =(1,1,2)为平面PCD 的一个法向量.设二面角A -PD -C 的大小为θ,由图可知,θ为锐角,所以cos θ=|n ·AB →||n ||AB →|=|(1,1,2)·(1,0,0)|6×1=66. 即二面角A -PD -C 的余弦值为66.。
模块综合检测(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若x 2<1,则-1<x <1”的逆否命题是( ) A .若x 2≥1,则x ≥1或x ≤-1 B .若-1<x <1,则x 2<1 C .若x >1或x <-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥1解析:选D 命题“若p 则q ”的逆否命题为“若綈q 则綈p ”.故应选D.2.命题p :若a·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p 或q ”是真命题B .“p 或q ”是假命题C .綈p 为假命题D .綈q 为假命题解析:选B ∵当a ·b >0时,a 与b 的夹角为锐角或零度角,∴命题p 是假命题;命题q是假命题,例如f (x )=⎩⎪⎨⎪⎧-x +1,x ≤0,-x +2,x >0,综上可知,“p 或q ”是假命题,选B.3.(2019·全国卷Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( )A .2B .3C .4D .8解析:选D 抛物线y 2=2px (p >0)的焦点坐标为⎝⎛⎭⎫p 2,0,椭圆x 23p +y 2p=1的焦点坐标为(±2p ,0).由题意得p2=2p ,解得p =0(舍去)或p =8.4.设a ,b 为向量,则“|a ·b |=|a ||b |”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件解析:选C a ,b 为向量,设a 与b 的夹角为θ.由|a ·b |=||a |·|b |cos θ |=|a ||b |从而得|cos θ|=1,cos θ=±1,所以θ=0或π,能够推得a ∥b ,反之也能够成立,为充分必要条件.5.x 212+y 23=1的一个焦点为F 1,点P 在椭圆上,如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标为( )A .±34B.33C.32D.34解析:选A 设F 1为椭圆x 212+y 23=1的左焦点,F 2为右焦点,PF 1与y 轴的交点为M .∵M 是PF 1的中点,∴MO ∥PF 2,∴PF 2⊥x 轴. 又半焦距c =12-3=3,∴设P (x ,y ),则x =3,代入椭圆方程得912+y 23=1,解得y =±32.∴M 点纵坐标为±34.6.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 解析:选D 双曲线x 24-y 212=-1,即y 212-x 24=1的焦点为(0,±4),顶点为(0,±23).所以对椭圆y 2a 2+x 2b 2=1而言,a 2=16,c 2=12.∴b 2=4,因此方程为y 216+x 24=1.7.已知正四面体A -BCD 中,AE =14AB ,CF =14CD ,则直线DE和BF 夹角的余弦值为( )A.413 B.313 C .-413D .-313解析:选A 设正四面体的棱长为4.∵正四面体A -BCD 中,相邻两棱夹角为60°,对棱互相垂直.又ED ―→=EA ―→+AD ―→=14BA―→+AD ―→,BF ―→=BC ―→+CF ―→=BC ―→+14CD ―→,∴ED ―→·BF ―→=14BA ―→·BC ―→+14AD ―→·CD ―→=4,|ED ―→|2=116BA 2―→+12BA ―→·AD ―→+AD 2―→=1-4+16=13.|ED ―→|=13,同理|BF ―→|=13. ∴cos 〈ED ―→,BF ―→〉=ED ―→·BF ―→| ED ―→||BF ―→|=413.8.已知抛物线y 2=8x ,过点P (3,2)引抛物线的一弦,使它恰在点P 处被平分,则这条弦所在的直线l 的方程为( )A .2x -y -4=0B .2x +y -4=0C .2x -y +4=0D .2x +y +4=0解析:选A 设l 交抛物线于A (x 1,y 1),B (x 2,y 2)两点,由y 21=8x 1,y 22=8x 2,两式相减得:得(y 1+y 2)·(y 1-y 2)=8(x 1-x 2), 又P (3,2)是AB 的中点,∴y 1+y 2=4, ∴直线l 的斜率k =y 1-y 2x 1-x 2=2,∴直线l 的方程为2x -y -4=0.9.正△ABC 与正△BCD 所在平面垂直,则二面角A -BD -C 的正弦值为( ) A.55B.33C.255D.63解析:选C 取BC 中点O ,连接AO ,DO .建立如图所示坐标系,设BC =1,则A ⎝⎛⎭⎫0,0,32, B ⎝⎛⎭⎫0,-12,0,D ⎝⎛⎭⎫32,0,0. ∴OA ―→=⎝⎛⎭⎫0,0,32,BA ―→=⎝⎛⎭⎫0,12,32,BD ―→=⎝⎛⎭⎫32,12,0.由于OA ―→=⎝⎛⎭⎫0,0,32为平面BCD 的一个法向量,可进一步求出平面ABD 的一个法向量n =(1,-3,1),∴cos 〈n ,OA ―→〉=55, ∴sin 〈n ,OA ―→〉=255.10.双曲线x 2m -y 2n =1(mn ≠0)的离心率为2,它的一个焦点与抛物线y 2=4x 的焦点重合,则mn 的值为( )A.316B.38C.163D.83解析:选A 抛物线y 2=4x 的焦点为F (1,0), 故双曲线x 2m -y 2n =1中,m >0,n >0且m +n =c 2=1.① 又双曲线的离心率e =c m = m +nm=2,② 联立方程①②,解得⎩⎨⎧m =14,n =34.故mn =316.11.在正棱柱ABC -A 1B 1C 1中,AA 1=AB =2,直线AC 与平面A 1BC 的夹角为θ,平面ABC 与平面A 1BC 的夹角为φ,则θ与φ的大小关系是( )A .θ>φB .θ<φC .θ=φD .大小不确定解析:选B 建立空间直角坐标系,如图.则B (3,1,0),C (0,2,0),A 1(0,0,2),BC ―→=(-3,1,0),A 1C ―→=(0,2,-2),AC ―→=(0,2,0). 设平面A 1BC 的一个法向量为n =(1,y ,z ),则⎩⎪⎨⎪⎧-3+y =0,2y -2z =0,得y =z =3,n =(1,3,3), ∴sin θ=|cos 〈AC ―→,n 〉|=2327=217.又AA 1―→=(0,0,2)是平面ABC 的一个法向量, ∴cos φ=|cos 〈AA 1―→,n 〉|=2327=217,sin φ=1-cos 2φ=277>sin θ.∴φ>θ.12.若点P 为共焦点的椭圆C 1和双曲线C 2的一个交点,F 1,F 2分别是它们的左、右焦点,设椭圆的离心率为e 1,双曲线的离心率为e 2,若PF 1―→·PF 2―→=0,则1e 21+1e 22=( )A .1B .2C .3D .4解析:选B 设椭圆的方程为x 2a 21+y 2b 21=1(a 1>b 1>0),双曲线的方程为x 2a 22-y 2b 22=1(a 2>0,b 2>0),它们的半焦距为c ,不妨设P 为它们在第一象限的交点,因为PF 1―→·PF 2―→=0,故|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2①.由椭圆和双曲线的定义知,⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,解得|PF 1|=a 1+a 2,|PF 2|=a 1-a 2,代入①式,得(a 1+a 2)2+(a 1-a 2)2=4c 2,即a 21+a 22=2c 2,所以1e 21+1e 22=a 21c 2+a 22c2=a 21+a 22c 2=2. 二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填在题中的横线上) 13.命题“存在x ∈R ,使2x 2-3ax +9<0”为假命题,则实数a 的取值范围是________. 解析:∵存在x ∈R ,2x 2-3ax +9<0为假命题, ∴任意x ∈R ,2x 2-3ax +9≥0为真命题, ∴Δ=9a 2-4×2×9≤0,即a 2≤8, ∴-22≤a ≤2 2. 答案:[-22,2 2 ]14.设点O (0,0,0),A (1,-2,3),B (-1,2,3),C (1,2,-3),若OA ―→与BC ―→的夹角为θ,则cos θ=________.解析:OA ―→=(1,-2,3),BC ―→=(2,0,-6), ∴cos θ=OA ―→·BC ―→| OA ―→||BC ―→|=-43535.答案:-4353515.已知点A (-1,-2)在抛物线C :y 2=2px (p >0)的准线上,记C 的焦点为F ,过点F 且与x 轴垂直的直线与抛物线交于M ,N 两点,则|MN |=________.解析:因为点A (-1,-2)在抛物线C :y 2=2px (p >0)的准线上,所以-p2=-1,p =2,抛物线的方程为y 2=4x ,焦点F (1,0),当x =1时,y =±2,则M (1,2),N (1,-2)或N (1,2),M (1,-2),所以|MN |=2-(-2)=4.答案:416.(2019·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ―→=AB ―→,F 1B ―→·F 2B ―→=0,则C 的离心率为________.解析:法一:由F 1A ―→=AB ―→,得A 为F 1B 的中点. 又∵O 为F 1F 2的中点, ∴OA ∥BF 2.又F 1B ―→·F 2B ―→=0,∴∠F 1BF 2=90°. ∴OF 2=OB ,∴∠OBF 2=∠OF 2B .又∵∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B , ∴∠BOF 2=∠OF 2B =∠OBF 2, ∴△OBF 2为等边三角形.如图所示,不妨设B 为⎝⎛⎭⎫c2,-32c .∵点B 在直线y =-b a x 上,∴ba =3,∴离心率e =ca =1+b 2a2=2. 法二:∵F 1B ―→·F 2B ―→=0,∴∠F 1BF 2=90°.在Rt △F 1BF 2中,O 为F 1F 2的中点,∴|OF 2|=|OB |=c .如图,作BH ⊥x 轴于H ,由l 1为双曲线的渐近线,可得|BH ||OH |=b a ,且|BH |2+|OH |2=|OB |2=c 2,∴|BH |=b ,|OH |=a ,∴B (a ,-b ),F 2(c,0).又∵F 1A ―→=AB ―→,∴A 为F 1B 的中点. ∴OA ∥F 2B ,∴b a =bc -a ,∴c =2a ,∴离心率e =ca =2.答案:2三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知命题p :方程x 22+y 2m =1表示焦点在y 轴上的椭圆;命题q :任意x ∈R ,4x 2-4mx +4m -3≥0.若(綈p )且q 为真,求m 的取值范围.解:p 真时,m >2.q 真时,4x 2-4mx +4m -3≥0在R 上恒成立. Δ=16m 2-16(4m -3)≤0,解得1≤m ≤3. ∵(綈p )且q 为真,∴p 假,q 真.∴⎩⎪⎨⎪⎧m ≤2,1≤m ≤3,即1≤m ≤2. ∴所求m 的取值范围为[1,2].18.(本小题满分12分)已知抛物线C :y 2=4x ,F 是抛物线C 的焦点,过点F 的直线l 与C 相交于A ,B 两点,O 为坐标原点.(1)如果l 的斜率为1,求以AB 为直径的圆的方程; (2)设|FA |=2|BF |,求直线l 的方程. 解:设A (x 1,y 1),B (x 2,y 2).(1)∵y 2=4x ,∴F (1,0),又∵直线l 的斜率为1,∴直线l 的方程为y =x -1,代入y 2=4x ,得x 2-6x +1=0,由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=6,x 1·x 2=1,易得AB 的中点,即圆心的坐标为(3,2),又|AB |=x 1+x 2+p =8,∴圆的半径r =4, ∴所求的圆的方程为(x -3)2+(y -2)2=16. (2)∵|FA |=2|BF |,∴FA ―→=2BF ―→,而FA ―→=(x 1-1,y 1),BF ―→=(1-x 2,-y 2),∴⎩⎪⎨⎪⎧x 1-1=2(1-x 2),y 1=-2y 2, 易知直线l 的斜率存在,设直线l 的斜率为k , 则直线l 的方程为y =k (x -1),代入y 2=4x , 得k 2x 2-(2k 2+4)·x +k 2=0,由根与系数的关系得⎩⎨⎧x 1+x 2=2k 2+4k 2,x 1·x 2=1,∵x 1-1=2(1-x 2),∴⎩⎪⎨⎪⎧x 1=1,x 2=1或⎩⎪⎨⎪⎧x 1=2,x 2=12,∴k =±22, ∴直线l 的方程为y =±22(x -1).19.(本小题满分12分)(2019·全国卷Ⅲ)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B -CG -A 的大小.解:(1)证明:由已知得AD ∥BE ,CG ∥BE , 所以AD ∥CG ,所以AD ,CG 确定一个平面, 从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,且BE ∩BC =B , 所以AB ⊥平面BCGE . 又因为AB ⊂平面ABC , 所以平面ABC ⊥平面BCGE . (2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°, 可求得BH =1,EH = 3.以H 为坐标原点,HC ―→的方向为x 轴的正方向,建立如图所示的空间直角坐标系H -xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3), CG ―→=(1,0,3),AC ―→=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CG ―→·n =0, AC ―→·n =0,即⎩⎪⎨⎪⎧x +3z =0,2x -y =0.所以可取n =(3,6,-3).又平面BCGE 的法向量可取m =(0,1,0),所以cos 〈n ,m 〉=n ·m|n ||m |=32.因此二面角B -CG -A 的大小为30°.20.(本小题满分12分)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x ,F 为其焦点,点E 的坐标为(2,0),设M 为抛物线C 上异于顶点的动点,直线MF 交抛物线C 于另一点N ,连接ME ,NE 并延长分别交抛物线C 于点P ,Q .(1)当MN ⊥x 轴时,求直线PQ 与x 轴交点的坐标;(2)当直线MN ,PQ 的斜率存在且分别记为k 1,k 2时,求证:k 1=2k 2.解:(1)抛物线C :y 2=4x 的焦点为F (1,0).当MN ⊥x 轴时,直线MN 的方程为x =1.将x =1代入抛物线方程y 2=4x ,得y =±2.不妨设M (1,2),N (1,-2),则直线ME 的方程为y =-2x +4,由⎩⎪⎨⎪⎧y =-2x +4,y 2=4x ,解得x =1或x =4,于是得P (4,-4).同理得Q (4,4),所以直线PQ 的方程为x =4.故直线PQ 与x 轴的交点坐标为(4,0).(2)证明:设直线MN 的方程为x =my +1,M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4),由⎩⎪⎨⎪⎧x =my +1,y 2=4x ,得y 2-4my -4=0,于是y 1y 2=-4 ①,从而x 1x 2=y 214·y 224=1 ②.设直线MP 的方程为x =ty +2,由⎩⎪⎨⎪⎧x =ty +2,y 2=4x ,得y 2-4ty -8=0. 所以y 1y 3=-8 ③,x 1x 3=4 ④. 同理y 2y 4=-8 ⑤,x 2x 4=4 ⑥.由①②③④⑤⑥,得y 3=2y 2,x 3=4x 2,y 4=2y 1,x 4=4x 1.从而k 2=y 4-y 3x 4-x 3=2y 1-2y 24x 1-4x 2=12·y 1-y 2x 1-x 2=12k 1,即k 1=2k 2. 21.(本小题满分12分)(2019·北京高考)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3,E 为PD 的中点,点F 在PC 上,且PF PC =13.(1)求证:CD ⊥平面PAD ;(2)求二面角F -AE -P 的余弦值;(3)设点G 在PB 上,且PG PB =23.判断直线AG 是否在平面AEF 内,说明理由. 解:(1)证明:因为PA ⊥平面ABCD ,所以PA ⊥CD .又因为AD ⊥CD ,PA ∩AD =A ,所以CD ⊥平面PAD .(2)过点A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .以A 为坐标原点,AM ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点,所以E (0,1,1).所以AE ―→=(0,1,1), PC ―→=(2,2,-2), AP ―→=(0,0,2).所以PF ―→=13PC ―→=⎝⎛⎭⎫23,23,-23, 所以AF ―→=AP ―→+PF ―→=⎝⎛⎭⎫23,23,43.设平面AEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AE ―→=0,n ·AF ―→=0,即⎩⎪⎨⎪⎧y +z =0,23x +23y +43z =0. 令z =1,则y =-1,x =-1.于是n =(-1,-1,1).又因为平面PAD 的一个法向量为p =(1,0,0),所以cos 〈n ,p 〉=n ·p|n ||p |=-33. 由图知,二面角F -AE -P 为锐角,所以二面角F -AE -P 的余弦值为33. (3)直线AG 在平面AEF 内,理由如下:因为点G 在PB 上,且PG PB =23,PB ―→=(2,-1,-2), 所以PG ―→=23PB ―→=⎝⎛⎭⎫43,-23,-43, 所以AG ―→=AP ―→+PG ―→=⎝⎛⎭⎫43,-23,23. 由(2)知,平面AEF 的一个法向量n =(-1,-1,1),所以AG ―→·n =-43+23+23=0. 所以直线AG 在平面AEF 内.22.(本小题满分12分)(2019·全国卷Ⅱ)已知点A (-2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为-12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连接QE 并延长交C 于点G .①证明:△PQG 是直角三角形;②求△PQG 面积的最大值.解:(1)由题设得y x +2·y x -2=-12, 化简得x 24+y 22=1(|x |≠2), 所以C 为中心在坐标原点,焦点在x 轴上不含长轴端点的椭圆.(2)①证明:设直线PQ 的斜率为k ,则其方程为y =kx (k >0).由⎩⎪⎨⎪⎧y =kx ,x 24+y 22=1得x =±21+2k 2 . 设u =21+2k 2,则P (u ,uk ),Q (-u ,-uk ),E (u,0). 于是直线QG 的斜率为k 2,其方程为y =k 2(x -u ).由⎩⎨⎧ y =k 2(x -u ),x 24+y 22=1消去y ,得(2+k 2)x 2-2uk 2x +k 2u 2-8=0.(*) 设G (x G ,y G ),则-u 和x G 是方程(*)的解,故x G =u (3k 2+2)2+k 2,由此得y G =uk 32+k 2. 从而直线PG 的斜率为uk 32+k 2-uk u (3k 2+2)2+k 2-u =-1k . 所以PQ ⊥PG ,即△PQG 是直角三角形. ②由①得|PQ |=2u1+k 2,|PG |=2uk k 2+12+k 2, 所以△PQG 的面积S =12|PQ ||PG |=8k (1+k 2)(1+2k 2)(2+k 2)=8⎝⎛⎭⎫1k +k 1+2⎝⎛⎭⎫1k +k 2. 设t =k +1k ,则由k >0得t ≥2,当且仅当k =1时取等号.因为S =8t 1+2t2在[2,+∞)上单调递减, 所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169.。
选修1-2 模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·湖北高考)i为虚数单位,i607的共轭复数....为( )A.i B.-iC.1 D.-1【解析】因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.【答案】 A2.根据二分法求方程x2-2=0的根得到的程序框图可称为( )A.工序流程图B.程序流程图C.知识结构图D.组织结构图【解析】由于该框图是动态的且可以通过计算机来完成,故该程序框图称为程序流程图.【答案】 B3.下列框图中,可作为流程图的是( )A.整数指数幂→有理指数幂→无理指数幂B.随机事件→频率→概率C.入库→找书→阅览→借书→出库→还书D.推理图像与性质定义【解析】流程图具有动态特征,只有答案C符合.【答案】 C4.(2016·安庆高二检测)用反证法证明命题“a,b∈N,如果ab可被5整除”,那么a,b至少有一个能被5整除.则假设的内容是( )A.a,b都能被5整除B.a,b都不能被5整除C.a不能被5整除D.a,b有一个不能被5整除【解析】“至少有一个”的否定为“一个也没有”,故应假设“a,b都不能被5整除”.【答案】 B5.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误【解析】 一般的演绎推理是三段论推理:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理对特殊情况作出的判断.此题的推理不符合上述特征,故选C.【答案】 C6.(2015·安徽高考)设i 是虚数单位,则复数2i1-i在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【解析】2i1-i=1+-+=-2=-1+i ,由复数的几何意义知-1+i 在复平面内的对应点为(-1,1),该点位于第二象限,故选B.【答案】 B7.考察棉花种子是否经过处理跟生病之间的关系得到如表数据:A .种子经过处理跟是否生病有关B .种子经过处理跟是否生病无关C .种子是否经过处理决定是否生病D .以上都是错误的【解析】 计算3293与101314可知相差很小,故选B.【答案】 B8.给出下面类比推理:①“若2a <2b ,则a <b ”类比推出“若a 2<b 2,则a <b ”; ②“(a +b )c =ac +bc (c ≠0)”类比推出“a +bc =a c +bc(c ≠0)”; ③“a ,b ∈R ,若a -b =0,则a =b ”类比推出“a ,b ∈C ,若a -b =0,则a =b ”; ④“a ,b ∈R ,若a -b >0,则a >b ”类比推出“a ,b ∈C ,若a -b >0,则a >b (C 为复数集)”.其中结论正确的个数为( ) A .1 B .2 C .3D .4【解析】 ①显然是错误的;因为复数不能比较大小,所以④错误,②③正确,故选B.【答案】 B9.(2015·全国卷Ⅰ)执行下面的程序框图1,如果输入的t =0.01,则输出的n =( )图1A .5B .6C .7D .8【解析】 逐次运行程序,直至输出n .运行第一次:S =1-12=12=0.5,m =0.25,n =1,S >0.01;运行第二次:S =0.5-0.25=0.25,m =0.125,n =2,S >0.01; 运行第三次:S =0.25-0.125=0.125,m =0.062 5,n =3,S >0.01; 运行第四次:S =0.125-0.062 5=0.062 5,m =0.031 25,n =4,S >0.01; 运行第五次:S =0.031 25,m =0.015 625,n =5,S >0.01; 运行第六次:S =0.015 625,m =0.007 812 5,n =6,S >0.01; 运行第七次:S =0.007 812 5,m =0.003 906 25,n =7,S <0.01. 输出n =7.故选C. 【答案】 C10.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 33为( )A .3B .-3C .6D .-6【解析】 a 1=3,a 2=6,a 3=a 2-a 1=3,a 4=a 3-a 2=-3,a 5=a 4-a 3=-6,a 6=a 5-a 4=-3,a 7=a 6-a 5=3,a 8=a 7-a 6=6,…,观察可知{a n }是周期为6的周期数列,故a 33=a 3=3. 【答案】 A11.(2016·大同高二检测)设a ,b ,c 均为正实数,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P ,Q ,R 同时大于0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 必要性显然成立;PQR >0,包括P ,Q ,R 同时大于0,或其中两个为负两种情况.假设P <0,Q <0,则P +Q =2b <0,这与b 为正实数矛盾.同理当P ,R 同时小于0或Q ,R 同时小于0的情况亦得出矛盾,故P ,Q ,R 同时大于0,所以选C.【答案】 C12.有人收集了春节期间平均气温x 与某取暖商品销售额y 的有关数据如下表:y =bx +a 的系数b =-2.4,则预测平均气温为-8℃时该商品销售额为( )A .34.6万元B .35.6万元C .36.6万元D .37.6万元【解析】 x =-2-3-5-64=-4,y =20+23+27+304=25,所以这组数据的样本中心点是(-4,25). 因为b =-2.4,把样本中心点代入线性回归方程得a =15.4, 所以线性回归方程为y =-2.4x +15.4. 当x =-8时,y =34.6.故选A. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上) 13.已知复数z =m 2(1+i)-m (m +i)(m ∈R ),若z 是实数,则m 的值为________. 【解析】 z =m 2+m 2i -m 2-m i =(m 2-m )i ,∴m 2-m =0,∴m =0或1. 【答案】 0或114.在平面几何中,△ABC 的∠C 内角平分线CE 分AB 所成线段的比|AE |∶|EB |=|AC |∶|CB |(如图2①),把这个结论类比到空间,如图2②,在三棱锥A BCD 中,平面CDE 平分二面角A CD B 且与AB 相交于E ,结论是__________________.图2【解析】 依平面图形与空间图形的相关元素类比,线段之比类比面积之比. 【答案】 S △ACD ∶S △BCD =AE 2∶EB 215.(2015·山东高考)执行下边的程序框图3,若输入的x 的值为1,则输出的y 的值是________.图3【解析】 当x =1时,1<2,则x =1+1=2;当x =2时,不满足x <2,则y =3×22+1=13.【答案】 1316.(2016·江西吉安高二检测)已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论________. 【导学号:67720029】【解析】 由等比数列的性质可知,b 1b 30=b 2b 29=…=b 11b 20,∴10b 11b 12…b 20=30b 1b 2…b 30.【答案】10b 11b 12…b 20=30b 1b 2…b 30三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)(2016·哈尔滨高二检测)设z =-++2+4i3+4i,求|z |.【解】 z =1+i -4i +4+2+4i 3+4i =7+i3+4i ,∴|z |=|7+i||3+4i|=525= 2.18.(本小题满分12分)给出如下列联表:(参考数据:P (χ2≥6.635)=0.010,P (χ2≥7.879)=0.005) 【解】 由列联表中数据可得 χ2=-230×80×50×60≈7.486.又P (χ2≥6.635)=0.010,所以在犯错误的概率不超过0.010的前提下,认为高血压与患心脏病有关系. 19.(本小题满分12分)已知a 2+b 2=1,x 2+y 2=1,求证:ax +by ≤1(分别用综合法、分析法证明).【证明】 综合法:∵2ax ≤a 2+x 2,2by ≤b 2+y 2, ∴2(ax +by )≤(a 2+b 2)+(x 2+y 2). 又∵a 2+b 2=1,x 2+y 2=1, ∴2(ax +by )≤2,∴ax +by ≤1. 分析法:要证ax +by ≤1成立, 只要证1-(ax +by )≥0, 只要证2-2ax -2by ≥0, 又∵a 2+b 2=1,x 2+y 2=1,∴只要证a 2+b 2+x 2+y 2-2ax -2by ≥0, 即证(a -x )2+(b -y )2≥0,显然成立.20.(本小题满分12分)某省公安消防局对消防产品的监督程序步骤为:首先受理产品请求,如果是由公安部发证的产品,则审核考察,领导复核,不同意,则由窗口将信息反馈出去,同意,则报公安部审批,再经本省公安消防局把反馈信息由窗口反馈出去.如果不是由公安部发证的产品,则由窗口将信息反馈出去.试画出此监督程序的流程图.【解】某省公安消防局消防产品监督程序的流程图如下:21.(本小题满分12分)某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:(1)(2)求出y对x的线性回归方程;(3)若广告费为9万元,则销售收入约为多少万元?【解】(1)散点图如图:(2)观察散点图可知各点大致分布在一条直线附近,列出下列表格,以备计算a,b.于是x=52,y=692,代入公式得:b =∑i =14x i y i -4x -y-∑i =14x 2i -4x -2=418-4×52×69230-4×⎝ ⎛⎭⎪⎫522=735,a =y -b x =692-735×52=-2.故y 与x 的线性回归方程为y =735x -2.(3)当x =9万元时,y =735×9-2=129.4(万元).所以当广告费为9万元时,可预测销售收入约为129.4万元.22.(本小题满分12分)某少数民族的刺绣有着悠久的历史,如图4①,②,③,④为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.图4(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f+1f-1+1f-1+…+1fn -1的值.【解】 (1)f (5)=41.(2)因为f (2)-f (1)=4=4×1,f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4,…由上式规律,所以得出f (n +1)-f (n )=4n .因为f (n +1)-f (n )=4n ⇒f (n +1)=f (n )+4n ⇒f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3)=…=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1. (3)当n ≥2时,1fn -1=12nn -=12⎝ ⎛⎭⎪⎫1n -1-1n , ∴1f+1f-1+1f-1+…+1fn -1=1+12·⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1-1n =1+12⎝ ⎛⎭⎪⎫1-1n =32-12n .。
选修2-3综合测试时间120分钟,满分150分。
一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.从单词“equation”中选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有( )A.120个B.480个C.720个D.840个[答案] B[解析]第一步,先从除“qu”之外的另外6个字母中任选3个不同的字母,与“qu”一起分成一堆,共有C36种不同的选法;第二步,把“qu”看作一个字母,与另外3个字母排列,且“qu”顺序不变,共有A44种不同的排法,由分步乘法计数原理,共有C36·A44=480个不同的排列.故选B.2.(2015·陕西理,4)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=( ) A.4 B.5C.6 D.7[答案] C[解析](x+1)n=(1+x)n,系数C2n=15⇒n=6.故本题正确答案为C.3.(2015·四川理,6)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A.144个B.120个C.96个D.72个[答案] B[解析]据题意,万位上只能排4、5.若万位上排4,则有2×A34个;若万位上排5,则有3×A34个.所以共有2×A34+3×A34=5×24=120个.选B.4.有甲、乙两种钢材,从中各取等量样品检验它们的抗拉强度指标如下:A.均值与方差B.正态分布C .卡方χ2D .概率[答案] A[解析] 检验钢材的抗拉强度,若平均抗拉强度相同,再比较波动情况.故选A. 5.设随机变量ξ服从二项分布ξ~B (n ,p ),则 D ξ2E ξ 2等于( )A .p 2B .(1-p )2C .npD .p 2(1-p )[答案] B[解析] 因为ξ~B (n ,p ),(D (ξ))2=[np (1-p )]2,(E ξ)2=(np )2,所以 D ξ2E ξ2=[np 1-p ]2np2=(1-p )2.故选B. 6.(2015·山东理,8)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74%[答案] B[解析] P (3<ξ<6)=12[P (-6<ξ<6)-P (-3<ξ<3)]=12×(0.954 4-0.682 6)=0.135 9.故选B.7.在一次试验中,测得(x ,y )的四组值分别是A (1,2)、B (2,3)、C (3,4)、D (4,5),则y 与x 之间的线性回归方程是( )A .y =x +1B .y =x +2C .y =2x +1D .y =x -1[答案] A[解析] ∵A ,B ,C ,D 四点共线,都在直线y =x +1上,故选A.8.某校从学生中的10名女生干部与5名男生干部中随机选6名学生干部组成“文明校园督察队”,则组成4女2男的“文明校园督察队”的概率为( )A.C 615A 615B .C 310C 35C 615C.C 410C 25C 615 D .C 410A 25A 615[答案] C[解析] 此题为超几何分布问题,组成4女2男的“文明校园督察队”的概率为C 410C 25C 615.9.为了评价某个电视栏目的改革效果,在改革前后分别从居民点随机抽取了100位居民进行调查,经过计算χ2的观测值χ2=99.9,根据这一数据分析,下列说法正确的是( )A .有99.9%的人认为该栏目优秀B .有99.9%的人认为栏目是否优秀与改革有关C .有99.9%的把握认为电视栏目是否优秀与改革有关系D .以上说法都不对 [答案] C[解析] 当χ2>10.828时有99.9%的把握认为电视栏目是否优秀与改革有关系.故选C.10.假设每一架飞机的引擎在飞行中出现故障的概率为1-p ,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;2引擎飞机要2个引擎全部正常运行,飞机才可成功飞行.要使4引擎飞机比2引擎飞机更安全,则p 的取值范围是( )A.⎝ ⎛⎭⎪⎫23,1B .⎝ ⎛⎭⎪⎫13,1 C.⎝ ⎛⎭⎪⎫0,23 D .⎝ ⎛⎭⎪⎫0,13 [答案] B[解析] 4引擎飞机成功飞行的概率为C 34p 3(1-p )+p 4,2引擎飞机成功飞行的概率为p 2,要使C 34(1-p )+p 4>p 2,必有13<p <1.故选B.二、填空题(本大题共5小题,每小题5分,共25分)11.(2015·上海理,8)在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选法有________种(用数值表示)[答案] 120[解析] 由题意得,去掉选5名教师情况即可:C 59-C 56=126-6=120. 12.(2015·上海理,11)在(1+x +1x2015)10的展开式中,x 2项的系数为________(结果用数值表示)[答案] 45[解析] 因为(1+x +1x2015)10=[(1+x )+1x2015]10=(1+x )10+C 110(1+x )9·1x2015+…,所以x 2项只能在(1+x )10展开项中,即为C 810x 2,系数为C 810=45.13.一个袋中装有黑球、白球和红球共n (n ∈N *)个,这些球除颜色外完全相同.已知从袋中任意摸出1个球,得到黑球的概率是25,现从袋中任意摸出2个球.若n =15,且摸出的2个球都是白球的概率是221,设ξ表示摸出的2个球中红球的个数,则随机变量ξ的均值E (ξ)= ________.[答案]815[解析] 设袋中黑球的个数为x (个),记“从袋中任意摸出一个球,得到黑球”为事件A ,则P (A )=x 15=25.∴x =6.设袋中白球的个数为y (个),记“从袋中任意摸出两个球,得到的都是白球”为事件B ,则P (B )=C 2yC 215=221,∴y y -115×14∴y =5或y =-4(舍去)即白球的个数为5(个).∴红球的个数为15-6-5=4(个). ∴随机变量ξ的取值为0,1,2,分布列是ξ的均值E (ξ)=1121×0+105×1+35×2=15.14.已知X ~N (1.4,0.052),则X 落在区间(1.35,1.45)中的概率为____________. [答案] 0.6826[解析] 因为μ=1.4,σ=0.05,所以X 落在区间(1.35,1.45)中的概率为P (1.4-0.05<X <1.4+0.05)=0.6826.15.若两个分类变量x 与y 的列联表为:则“X 与Y [答案] 0.01[解析] 由列联表中的数据,得χ2的观测值为χ2= 10+15+40+16 10×16-15×40 210+15 40+16 10+40 15+16≈7.227>6.635,因为P(χ2≥6.635)≈0.01,所以“X与Y有关系”这一结论是错误的概率不超过0.01.三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分)16.(2014·沈阳市质检)为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.(1)87分的同学至少有一名被抽中的概率;(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.(参考公式:χ2=a+b c+d a+c b+d)[解析](1)甲班成绩为87分的同学有2个,其他不低于80分的同学有3个“从甲班数学成绩不低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有C25=10个,“抽到至少有一个87分的同学”所组成的基本事件有C13C12+C22=7个,所以P=710.(2)χ2=20×20×20×20=6.4>5.024,因此,我们有97.5%的把握认为成绩优秀与教学方式有关. 17.已知二项式(x -2x)10的展开式中,(1)求展开式中含x 4项的系数;(2)如果第3r 项和第r +2项的二项式系数相等,试求r 的值. [解析] (1)设第k +1项为T k +1 =C k10x10-k(-2x)k =(-2)k C k10x 10-32k令10-32k =4,解得k =4,∴展开式中含x 4项的系数为(-2)4C 1410=3360. (2)∵第3r 项的二项式系数为C 3r -110, 第r +2项的二项式系数为C r +110∴C 3r -110=C r +110,故3r -1=r +1(r ∈N )或3r -1+r +1=10(r ∈N ),解得r =1. 18.(2015·福建理,16)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X ,求X 的分布列和均值. [解析] (1)设“当天小王的该银行卡被锁定”的事件为A , 则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1、2、3. 又P (X =1)=16,P (X =2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为所以E (X )=1×16+2×16+3×3=2.19.在高中“自选模块”考试中,某考场的每位同学都选了一道数学题,第一小组选《数学史与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5人,第二小组选《数学史与不等式选讲》的有2人,选《矩阵变换和坐标系与参数方程》的有4人,现从第一、第二两小组各任选2人分析得分情况.(1)求选出的4人均为选《矩阵变换和坐标系与参数方程》的概率;(2)设X 为选出的4个人中选《数学史与不等式选讲》的人数,求X 的分布列和均值. [解析] (1)设“从第一小组选出的2人均选《矩阵变换和坐标系与参数方程》”为事件A ,“从第二小组选出的2人均选《矩阵变换和坐标系与参数方程》”为事件B .由于事件A 、B 相互独立,所以P (A )=C 25C 26=23,P (B )=C 24C 26=25,所以选出的4人均选《矩阵变换和坐标系与参数方程》的概率为P (A ·B )=P (A )·P (B )=23×25=415. (2)X 可能的取值为0、1、2、3,则P (X =0)=415,P (X =1)=C 25C 6·C 12C 14C 6+C 15C 6·C 24C 6=2245,P (X =3)=C 15C 26·1C 26=145.P (X =2)=1-P (X =0)-P (X =1)-P (X =3)=29.故X 的分布列为所以X 的均值E (X )=0×15+1×45+2×9+3×45=1.20.班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学、15名男同学中随机抽取一个容量为8的样本进行分析.(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出算式即可,不必计算出结果)(2)随机抽出8位,他们的数学分数从小到大排序是:60、65、70、75、80、85、90、95,物理分数从小到大排序是:72、77、80、84、88、90、93,95.①若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;②若这8位同学的数学、物理分数对应如下表:x 之间是否具有线性相关性?如果具有线性相关性,求y 与x 的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.参考公式:相关系数r =∑i =1nx i -x - y i -y -∑i =1nx i -x - 2 y i -y -2;回归直线的方程是y =bx +a ,其中b =∑i =1nx i -x - y i -y -∑i =1nx i -x -2,a =y --b x -;其中y i 是与x i 对应的回归估计值.参考数据:x -=77.5,y -=85,∑i =18(x 1-x -)2≈1 050,∑i =18(y 1-y -)2≈456,∑i =18(x 1-x -)(y 1-y -)≈688,1 050=32.4,456≈21.4,550=23.5.[解析] (1)应选女生25×840=5(个),男生15×840=3(个),可以得到不同的样本个数是C 525C 315.(2)①这8位同学中恰有3位同学的数学和物理分数均为优秀,则需要先从物理的4个优秀分数中选出3个与数学优秀分数对应,种数是C 34A 33(或A 34),然后剩下的5个数学分数和物理分数任意对应,种数是A 55.根据乘法原理,满足条件的种数是C 34A 33A 55.这8位同学的物理分数和数学分数分别对应的种数共有A 88.故所求的概率P =C 34A 35A 55A 88=114.②变量y 与x 的相关系数是r =68832.4×21.4≈0.99.可以看出,物理与数学成绩是高度正相关.若以数学成绩x 为横坐标,物理成绩y 为纵坐标作散点图如下,从散点图可以看出这些点大至分布在一条直线附近,并且在逐步上升,故物理与数学成绩是高度正相关.设y 与x 线性回归方程y =bx +a ,根据所给的数据,可以计算出b =6881 050=0.65,a=85-0.65×77.5=34.63,所以y 与x 的线性回归方程是y =0.65x +34.63.21.某城市一个交通路口原来只设有红绿灯,平均每年发生交通事故80起,案件的破获率为70%,为了加强该路口的管理,第二年在该路口设置了电子摄像头,该年发生交通事故70起,共破获56起,第三年白天安排了交警执勤,该年发生交通事故60起,共破获了54起.(1)根据以上材料分析,加强管理后的两年该路口的交通状况发生了怎样的变化? (2)试采用独立性检验进行分析,设置电子摄像头对该路口交通肇事案件的破获产生了什么样的影响?设置电子摄像头和交警白天执勤的共同作用对该路口交通肇事案件的破获产生了什么样的影响?[解析] (1)由统计数据可知,没有采取措施之前,案件的发生较多,并且破获率只有70%,安装电子摄像头之后,案件的发生次数有所减少,并且破获率提高到了80%,白天安排交警执勤后,案件的发生次数进一步减少,并且破获率提高到了90%.由此可知,电子摄像头对遏制交通案件的发生起到了一定作用,并且给破案带了一定的帮助,而安排交警执勤对这些的影响更大.(2)根据所提供的数据可以绘制对应的2×2列联表如下:案件的破获率有了明显提高,这说明两种措施对案件的破获都起到了一定的积极作用.先分析电子摄像头对破案的影响的可信度,令a =56,b =24,c =56,d =14,构造随机变量χ2=n ad -bc 2a +bc +d a +c b +d=150× 56×14-24×56 280×70×112×38≈1.974.其中n =a +b +c +d .而查表可知,P (χ2≥1.323)=0.25.且1-0.25=0.75=75%,因此约有75%的把握认为,安装电子摄像头对案件的破获起到了作用.再分析安装电子摄像头及交警执勤的情况,同样令a =56,b =24,c =54,d =6,则χ2=n ad -bc 2a +bc +d a +c b +d=140× 56×6-24×54 280×60×110×30≈8.145,其中n =a +b +c +d .而查表可知,P (χ2≥6.635)=0.01,且1-0.01=0.99=99%,因此约有99%的把握认为安装电子摄像头及交警执勤对案件的破获起到了作用.。
高中数学学习材料马鸣风萧萧*整理制作模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若p则q”的逆命题是()A.若q则p B.若綈p则綈qC.若綈q则綈p D.若p则綈q【解析】根据原命题与逆命题之间的关系可得:逆命题为“若q则p”,选A.【答案】 A2.已知命题p:在直角坐标平面内,点M(sin α,cos α)与N(1,2)在直线x+y -2=0的异侧;命题q:若向量a,b满足a·b>0,则向量a,b的夹角为锐角.以下命题中为真命题的是()A.p或q真,p且q真B.p或q真,p且q假C.p或q假,p且q真D.p或q假,p且q假【解析】∵sin α+cos α-2≤2-2<0,∴点M(sin α,cos α)在直线x+y -2=0的左下侧.又∵1+2-2>0,∴N(1,2)在直线x+y-2=0的右上侧,故命题p为真.若向量a,b满足a·b>0,则向量a,b的夹角为锐角,显然为假.因为当a,b同向时,设a·b=1>0,但是a,b夹角为0,所以命题q为假.【答案】 B3.设p:x<-1或x>1,q:x<-2或x>1,则綈p是綈q的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 綈p :-1≤x ≤1;綈q :-2≤x ≤1,显然{x |-1≤x ≤1}{x |-2≤x ≤1},所以綈p 是綈q 的充分不必要条件.【答案】 A4.已知抛物线顶点在坐标原点,焦点在y 轴上,抛物线上的点M (m ,-2)到焦点的距离为4,则m 等于( )A .4B .2C .4或-4D .2或-2【解析】 由已知可设抛物线方程为x 2=-2py (p >0),由抛物线的定义知2+p2=4,∴p =4.∴x 2=-8y .将(m ,-2)代入上式得m 2=16,∴m =±4.【答案】 C5.已知E 、F 分别是正方体ABCD -A 1B 1C 1D 1中BB 1、DC 的中点,则异面直线AE 与D 1F 所成的角为( )A .30°B .60°C .45°D .90°【解析】 以A 1为原点,A 1B 1→、A 1D 1→、A 1A →为x 轴、y 轴、z 轴建立空间直角坐标系.不妨设正方体的棱长为2,则A (0,0,2),E (2,0,1),D 1(0,2,0),F (1,2,2),AE →=(2,0,-1),D 1F →=(1,0,2),所以AE →·D 1F →=0,所以AE ⊥D 1F ,即AE 与D 1F 所成的角为90°.【答案】 D6.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )【导学号:32550101】A.12 B .32 C .1D . 3【解析】 由题意可得,抛物线的焦点为(1,0),双曲线的渐近线方程为y =±3x ,即±3x -y =0,由点到直线的距离公式可得抛物线的焦点到双曲线的渐近线的距离d =|±3-0|2=32.【答案】 B7.如图1所示,空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,点N 为BC 的中点,则MN →等于( )图1A.12a -23b +12c B .-23a +12b +12c C.12a +12b -12c D .-23a +23b -12c【解析】 连接ON ,由向量加法法则,可知MN →=MO →+ON →=-23OA →+12(OB →+OC →)=-23a +12(b +c )=-23a +12b +12c .故选B.【答案】 B8.已知椭圆x 2a 2+y 2b 2=1(a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .椭圆B .圆C .双曲线的一支D .线段【解析】 ∵P 为MF 1中点,O 为F 1F 2的中点,∴|OP |=12|MF 2|,又|MF 1|+|MF 2|=2a , ∴|PF 1|+|PO |=12|MF 1|+12|MF 2|=a . ∴P 的轨迹是以F 1,O 为焦点的椭圆. 【答案】 A9.若双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1 B .y 24-x 24=1 C.y 24-x 28=1D .x 28-y 24=1【解析】 由于双曲线的顶点坐标为(0,2),可知a =2, ∴双曲线的标准方程为y 24-x 2b 2=1.根据题意,得2a +2b =2×2c ,即a +b =2c . 又∵a 2+b 2=c 2,且a =2,⎩⎨⎧a +b =2c ,a 2+b 2=c 2,a =2,解得b 2=4,∴适合题意的双曲线方程为y 24-x 24=1,故选B. 【答案】 B10.正三棱柱ABC -A 1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则直线AD 与平面B 1DC 所成角的正弦值为( )A.35 B .45 C.34D .55【解析】 如图,取AC 的中点为坐标原点,建立空间直角坐标系. 设各棱长为2,则有A (0,-1,0),D (0,0,2),C (0,1,0),B 1(3,0,2), 设n =(x ,y ,z )为平面B 1CD 的法向量, 则有⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0⇒⎩⎨⎧-y +2z =0,3x -y +2z =0⇒n =(0,2,1). ∴sin 〈AD →,n 〉=AD →·n |AD →||n |=45.【答案】 B11.如图2,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )图2A. 2 B . 3 C.32D .62【解析】 由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3. 因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4,所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|=12-4=8,所以|AF 2|-|AF 1|=22,因此对于双曲线有a =2,c =3, 所以C 2的离心率e =c a =62. 【答案】 D12.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则双曲线E 的方程为( )A.x 23-y 26=1 B .x 24-y 25=1 C.x 26-y 23=1D .x 25-y 24=1【解析】 由已知得k AB =-15-0-12-3=1.设E :x 2a 2-y 2b 2=1,A (x 1,y 1),B (x 2,y 2), ∴x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1,则(x 1-x 2)(x 1+x 2)a 2-(y 1-y 2)(y 1+y 2)b 2=0,而⎩⎨⎧x 1+x 2=-24,y 1+y 2=-30,所以y 1-y 2x 1-x 2=4b 25a 2=1,b 2=54a 2.①又c 2=a 2+b 2=9,②联立①②解得a 2=4,b 2=5,∴E 的方程为x 24-y25=1.【答案】 B二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.命题“任意x ∈R ,都有x 2+x -4>0”的否定________. 【解析】 全称命题的否定为特称命题.【答案】 存在x 0∈R ,使得x 20+x 0-4≤0.14.已知命题p :函数y =(c -1)x +1在R 上单调递增;命题q :不等式x 2-x +c ≤0的解集是∅.若p 且q 为真命题,则实数c 的取值范围是________.【解析】 p 且q 为真命题⇒p 是真命题,q 是真命题.①p 是真命题⇒c -1>0⇒c >1,②q 是真命题⇒Δ=(-1)2-4c <0⇒c >14,故p 且q 为真命题⇒c >1⇒c ∈(1,+∞).【答案】 (1,+∞)15.如图3所示,正方形ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1的中点,则点E 到平面ABC 1D 1的距离是________.图3【解析】 建立如图所示的空间直角坐标系,∵正方体的棱长为1,∴A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),C 1(0,1,1),D 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,12,1.设平面ABC 1D 1的法向量为n =(x ,y ,z ).∴n ·AB →=0,且n ·BC 1→=0,即(x ,y ,z )·(0,1,0)=0,且(x ,y ,z )·(-1,0,1)=0.∴y =0,且-x +z =0,令x =1,则z =1,∴n =(1,0,1).∴n 0=⎝ ⎛⎭⎪⎫22,0,22,又EC 1→=⎝ ⎛⎭⎪⎫-1,12,0,∴点E 到平面ABC 1D 1的距离为|EC 1→·n 0|=⎪⎪⎪⎪⎪⎪⎝⎛⎭⎪⎫-1,12,0·⎝ ⎛⎭⎪⎫22,0,22=22. 【答案】 2216.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于两点A ,B ,点Q 为线段AB 的中点,若|FQ |=2,则直线的斜率等于________.【解析】 设直线l 的方程为y =k (x +1),联立⎩⎨⎧y =k (x +1),y 2=4x ,消去y 得k 2x 2+(2k 2-4)x +k 2=0,由根与系数的关系知,x A +x B =-2k 2-4k 2, 于是x Q =x A +x B 2=2k 2-1,把x Q 带入y =k (x +1),得到y Q =2k , 根据|FQ |=⎝ ⎛⎭⎪⎫2k 2-22+⎝ ⎛⎭⎪⎫2k 2=2,解出k =±1. 【答案】 ±1三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.【导学号:32550102】【解】 由于不等式|x -1|>m -1的解集为R , 所以m -1<0,m <1;又由于f (x )=-(5-2m )x 是减函数, 所以5-2m >1,m <2.即命题p :m <1,命题q :m <2.又由于p 或q 为真,p 且q 为假,所以p 和q 中一真一假. 当p 真q 假时应有⎩⎨⎧ m <1,m ≥2,m 无解.当p 假q 真时应有⎩⎨⎧m ≥1,m <2,1≤m <2.故实数m 的取值范围是1≤m <2.18.(本小题满分12分)已知p :{x |x +2≥0且x -10≤0},q :{x |1-m ≤x ≤1+m ,m >0},若綈p 是綈q 的必要不充分条件,求实数m 的取值范围.【解】 p :{x |-2≤x ≤10},綈p :A ={x |x <-2或x >10}, 綈q :B ={x |x <1-m 或x >1+m ,m >0}.因为綈p 是綈q 的必要不充分条件, 所以綈q ⇒綈p ,綈p綈q .所以B A .分析知,B A 的充要条件是⎩⎨⎧m >0,1-m ≤-2,1+m >10或⎩⎨⎧m >0,1-m <-2,1+m ≥10,解得m ≥9,即m 的取值范围是[9,+∞).19.(本小题满分12分)如图4所示,已知P A ⊥平面ABCD ,ABCD 为矩形,P A =AD ,M ,N 分别为AB ,PC 的中点.求证:图4(1)MN ∥平面P AD ; (2)平面PMC ⊥平面PDC . 【证明】如图所示,以A 为坐标原点,AB ,AD ,AP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系Axyz .设P A =AD =a ,AB =b .(1)P (0,0,a ),A (0,0,0),D (0,a,0),C (b ,a,0),B (b,0,0). 因为M 、N 分别为AB ,PC 的中点, 所以M ⎝ ⎛⎭⎪⎫b 2,0,0,N ⎝ ⎛⎭⎪⎫b 2,a 2,a 2.所以MN →=⎝ ⎛⎭⎪⎫0,a 2,a 2,AP →=(0,0,a ),AD →=(0,a,0), 所以MN →=12AD →+12AP →.又因为MN ⊄平面P AD ,所以MN ∥平面P AD .(2)由(1)可知:P (0,0,a ),C (b ,a,0), M ⎝ ⎛⎭⎪⎫b 2,0,0,D (0,a,0). 所以PC →=(b ,a ,-a ),PM →=⎝ ⎛⎭⎪⎫b 2,0,-a ,PD →=(0,a ,-a ).设平面PMC 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·PC →=0n 1·PM →=0⇒⎩⎪⎨⎪⎧bx 1+ay 1-az 1=0,b 2x 1-az 1=0,所以⎩⎪⎨⎪⎧x 1=2a b z 1,y 1=-z 1.令z 1=b ,则n 1=(2a ,-b ,b ).设平面PDC 的一个法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·PC →=0,n 2·PD →=0,⇒⎩⎨⎧bx 2+ay 2-az 2=0,ay 2-az 2=0, 所以⎩⎨⎧x 2=0,y 2=z 2.令z 2=1,则n 2=(0,1,1).因为n 1·n 2=0-b +b =0,所以n 1⊥n 2.所以平面PMC ⊥平面PDC . 20.(本小题满分12分)已知点A (0,4),B (0,-2),动点P (x ,y )满足P A →·PB →-y 2+8=0.(1)求动点P 的轨迹方程;(2)设(1)中所求轨迹与直线y =x +2交于C ,D 两点,求证:OC ⊥OD (O 为原点).【解】 (1)由题意可知,P A →=(-x,4-y ),PB →=(-x ,-2-y ), ∴x 2+(4-y )(-2-y )-y 2+8=0,∴x 2=2y 为所求动点P 的轨迹方程. (2)证明:设C (x 1,y 1),D (x 2,y 2).由⎩⎨⎧y =x +2,x 2=2y ,整理得x 2-2x -4=0,∴x 1+x 2=2,x 1x 2=-4,∵k OC ·k OD =y 1x 1·y 2x 2=(x 1+2)(x 2+2)x 1x 2=x 1x 2+2(x 1+x 2)+4x 1x 2=-4+4+4-4=-1, ∴OC ⊥OD .21.(本小题满分12分)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,过F 的直线l 与椭圆C 相交于A 、B 两点,直线l 的倾斜角为60°,AF →=2FB →.(1)求椭圆C 的离心率;(2)如果|AB |=154,求椭圆C 的方程.【解】 设A (x 1,y 1),B (x 2,y 2),由题意知y 1<0,y 2>0.(1)直线l 的方程为y =3(x -c ),其中c =a 2-b 2.联立⎩⎪⎨⎪⎧ y =3(x -c ),x 2a 2+y 2b 2=1,得(3a 2+b 2)y 2+23b 2cy -3b 4=0.解得y 1=-3b 2(c +2a )3a 2+b 2,y 2=-3b 2(c -2a )3a 2+b 2. 因为AF →=2FB →,所以-y 1=2y 2.即3b 2(c +2a )3a 2+b 2=2·-3b 2(c -2a )3a 2+b 2. 得离心率e =c a =23.(2)因为|AB |=1+13|y 2-y 1|,所以23·43ab 23a 2+b2=154. 由c a =23得b =53a ,所以54a =154,得a =3,b = 5.椭圆C 的方程为x 29+y 25=1.22.(本小题满分12分)如图5①,正三角形ABC 的边长为2a ,CD 是AB 边上的高,E ,F 分别为AC 和BC 边上的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B ,如图5②.① ②图5(1)试判断翻折后的直线AB 与平面DEF 的位置关系,并说明理由;(2)求二面角B -AC -D 的余弦值;(3)求点C 到平面DEF 的距离.【解】 建立如图所示的空间直角坐标系,则D (0,0,0),B (a,0,0),A (0,0,a ),C (0,3a,0),F ⎝ ⎛⎭⎪⎫a 2,32a ,0,E ⎝⎛⎭⎪⎫0,32a ,a 2.(1)AB →=(a,0,-a ),EF →=⎝ ⎛⎭⎪⎫a 2,0,-a 2=12(a,0,-a ), ∴EF →=12AB →.∴EF →∥AB →.∴EF ∥AB .又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .(2)易知DB →=(a,0,0)是平面ADC 的一个法向量.设平面ACB 的一个法向量为n =(x ,y ,z ).而AB →=(a,0,-a ),BC →=(-a ,3a,0),则⎩⎪⎨⎪⎧ n ·AB →=xa -az =0,n ·BC →=-ax +3ay =0.令x =1,得z =1,y =33,∴平面ACB 的一个法向量为n =⎝ ⎛⎭⎪⎫1,33,1. ∴n ·DB →=a .∴cos 〈n ,DB →〉=a a ·1+13+1=217. ∴二面角B -AC -D 的余弦值为217.(3)平面DEF 内的向量DE →=⎝ ⎛⎭⎪⎫0,32a ,a 2,DF →=⎝ ⎛⎭⎪⎫a 2,32a ,0. 设平面DEF 的一个法向量为m =()x ,y ,z ,则 ⎩⎨⎧ m ·DE →=32ay +a 2z =0,m ·DF →=a 2x +32ay =0.令y =3,则z =-3,x =-3.∴平面DEF 的一个法向量m =(-3,3,-3). 又DC →=(0,3a,0),∴DC →·m =3a .∴点C 到平面DEF 的距离d =|DC →·m ||m | =3a 9+3+9=217a .。
模块综合测评(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( )A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3解析:根据一个命题的否命题的构成,即将条件和结论均否定,因此所求命题的否命题是“若a+b+c≠3,则a2+b2+c2<3”.答案:A2.已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)在[0,1]上是增加的”是“f(x)在[3,4]上是减少的”的( )A.既不充分也不必要的条件B.充分而不必要的条件C.必要而不充分的条件D.充要条件解析:若f(x)在[0,1]上是增加的,则f(x)在[-1,0]上是减少的,根据f(x)的周期为2可推出f(x)在[3,4]上是减少的;若f(x)在[3,4]上是减少的,则f(x)在[-1,0]上也是减少的,所以f(x)在[0,1]上是增加的,故选D.答案:D3.设命题p:函数y=sin 2x的最小正周期为;命题q:函数y=cos x的图像关于直线x=对称.则下列判断正确的是( )A.p为真B.非q为假C.p且q为假D.p或q为真解析:因周期T==π,故p为假命题.因cos x的对称轴为x=kπ(k∈Z),故q也为假命题.所以p且q为假.答案:C4.已知a>0,则x0满足关于x的方程ax=b的充要条件是( )A.存在x∈R,ax2-bx≥-bx0B.存在x∈R,ax2-bx≤-bx0C.对任意的x∈R,ax2-bx≥-bx0D.对任意的x∈R,ax2-bx≤-bx0解析:由于x0=是抛物线y=ax2-bx的对称轴,且a>0,所以由抛物线的性质可以知道对任意的x∈R,ax2-bx≥-bx0,即为C选项.答案:C5.已知椭圆=1的一个焦点为F1,点P在椭圆上,如果线段PF1的中点M在y轴上,那么点M的纵坐标为( )A.±B.C.D.解析:设F1为椭圆=1的左焦点,F2为右焦点,PF1与y轴的交点为M.∵M是PF1的中点,O是F1F2的中点,∴MO∥PF2,∴PF2⊥x轴.又半焦距c==3,∴设P(x,y),则x=3,代入椭圆方程,得=1,解得y=±.∴点M的纵坐标为±.故应选A.答案:A6.(2014湖北高考)设a,b是关于t的方程t2cosθ+t sinθ=0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线=1的公共点的个数为( )A.0B.1C.2D.3解析:可解方程t2cosθ+t sinθ=0,得两根0,-.由题意可知不管a=0还是b=0,所得两个点的坐标是一样的.不妨设a=0,b=-,则A(0,0),B,可求得直线方程y=-x,因为双曲线渐近线方程为y=±x,故过A,B的直线即为双曲线的一条渐近线,直线与双曲线无交点,故选A.答案:A7.(2014四川高考)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,=2(其中O 为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.解析:设AB所在直线方程为x=my+t.由消去x,得y2-my-t=0.设A(,y1),B(,y2)(不妨令y1>0,y2<0),故=m,y1y2=-t.而·+y1y2=2.解得y1y2=-2或y1y2=1(舍去).所以-t=-2,即t=2.所以直线AB过定点M(2,0).而S△ABO=S△AMO+S△BMO=|OM||y1-y2|=y1-y2,S△AFO=|OF|×y1=y1=y1,故S△ABO+S△AFO=y1-y2+y1=y1-y2.由y1-y2=y1+(-y2)≥2=2=3,得S△ABO+S△AFO的最小值为3,故选B.答案:B8.有以下四个命题:①“对任意x,y∈R,如果xy=0,则x=0”的否命题;②“设a,b为向量,如果a⊥b,则a·b=0”的逆命题;③“如果四边形是菱形,则它的四边相等”的逆命题;④“对任意x,y∈N,如果+|y|=0,则x=0,且y=0”的否命题.其中假命题的个数是( )A.1B.2C.3D.4解析:①判断原命题的否命题“对任意x,y∈R,如果xy≠0,则x≠0”的真假,也可以判断原命题的逆命题“对任意x,y∈R,如果x=0,则xy=0”的真假,因为逆命题与否命题等价,容易得否命题是真命题.②原命题的逆命题是“设a,b为向量,如果a·b=0,则a⊥b”,这是一个真命题.③原命题的逆命题是“如果四边形的四边相等,则它是菱形”,这在立体几何中是不成立的,故它是假命题.④原命题的否命题是“对任意x,y∈N,如果+|y|≠0,则x≠0或y≠0”,它与逆命题“对任意x,y∈N,如果x=0,且y=0,则+|y|=0”的真假性相同.因为逆命题是真命题,所以否命题也是真命题.由以上分析,可知应选A.答案:A9.已知a=(2,-1,3),b=(-4,2,x),c=(1,-x,2),若(a+b)⊥c,则x等于( )A.4B.-4C.D.-6解析:a+b=(-2,1,x+3),∵(a+b)⊥c,∴(a+b)·c=0,即-2×1+1×(-x)+(x+3)×2=0.解得x=-4.答案:B10.已知a=(1-t,1-t,t),b=(2,t,t),则|b-a|的最小值为( )A. B. C. D.解析:∵b-a=(1+t,2t-1,0),∴|b-a|2=(b-a)2=(1+t)2+(2t-1)2+0=5t2-2t+2.当t=时,|b-a,∴|b-a|的最小值是.答案:C11.已知在长方体ABCD-A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是( )A. B. C. D.解析:如图,建立空间直角坐标系,则A1(2,0,4),A(2,0,0),B1(2,2,4),D1(0,0,4).设平面AB1D1的法向量为n=(x,y,z),则解得x=2z且y=-2z.不妨设n=(2,-2,1),设点A1到平面AB1D1的距离为h,则h=.故选C.答案:C12.已知椭圆C:=1(a>b>0)的离心率为.双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为( )A.=1B.=1C.=1D.=1解析:双曲线x2-y2=1的渐近线为y=±x,与椭圆C有四个交点,以这四个交点为顶点的四边形面积为16,可得四边形为正方形,其边长为4,双曲线的渐近线与椭圆C的一个交点为(2,2),所以有=1,又因为e=,a2=b2+c2,联立解方程组得a2=20,b2=5,故选D.答案:D二、填空题(本大题共4个小题,每小题4分,共16分.把答案填在题中的横线上)13.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)·(2b)=-2,则x=.解析:c-a=(0,0,1-x),(c-a)·(2b)=2(0,0,1-x)·(1,2,1)=2(1-x)=-2,解得x=2.答案:214.由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得m的取值范围是(a,+∞),则实数a的值是.解析:∵“存在x∈R,使x2+2x+m≤0”是假命题,∴“任意x∈R,使x2+2x+m>0”是真命题,∴Δ=4-4m<0,解得m>1,故a的值是1.答案:115.如图,在正方体ABCD-A1B1C1D1中,O是上底面A1B1C1D1的中心,则OC与BC1夹角的余弦值为.解析:设以D为坐标原点,以DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系.设正方体棱长为1,O,C(0,1,0),B(1,1,0),C1(0,1,1),=(-1,0,1),cos<>==-.∴OC与BC1夹角的余弦值为.答案:16.(2014北京高考)设双曲线C经过点(2,2),且与-x2=1具有相同渐近线,则C的方程为;渐近线方程为.解析:双曲线-x2=1的渐近线方程为y=±2x.设与双曲线-x2=1有共同渐近线的方程为-x2=λ,又(2,2)在双曲线上,故-22=λ,解得λ=-3.故所求双曲线方程为-x2=-3,即=1.所求双曲线的渐近线方程为y=±2x.答案:=1 y=±2x三、解答题(本大题共6个小题,共74分.解答时应写出文字说明、证明过程或演算步骤)17.(12分)已知p:x2-8x-20>0,q:x2-2x+1-a2>0.若p是q的充分不必要条件,求正实数a的取值范围.解:解不等式x2-8x-20>0得p:A={x|x>10,或x<-2}.解不等式x2-2x+1-a2>0得q:B={x|x>1+a,或x<1-a,a>0}.依题意,p⇒q但q不能推出p,说明A⫋B.于是,有解得0<a≤3.∴正实数a的取值范围是0<a≤3.18.(12分)(2014安徽高考)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1,A2两点,l2与E1,E2分别交于B1,B2两点.(1)证明:A1B1∥A2B2;(2)过O作直线l(异于l1,l2)与E1,E2分别交于C1,C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.分析:(1)先将直线l1,l2的方程设出来,再分别与抛物线y2=2p1x和y2=2p2x联立求出A1与A2的坐标,同理再求得B1,B2的坐标,利用向量这一工具,把的坐标求出,由向量共线(平行)条件知A1B1∥A2B2.(2)由(1)中的结论,得出B1C1∥B2C2,C1A1∥C2A2,进而得出△A1B1C1∽△A2B2C2,以及△A1B1C1与△A2B2C2的相似比,再由相似三角形的面积比等于相似比的平方从而求解.(1)证明:设直线l1,l2的方程分别为y=k1x,y=k2x(k1,k2≠0),则由得A1,由得A2.同理可得B1,B2.所以=2p1.=2p2.故,所以A1B1∥A2B2.(2)解:由(1)知A1B1∥A2B2,同理可得B1C1∥B2C2,C1A1∥C2A2.所以△A1B1C1∽△A2B2C2.因此.又由(1)中的.故.19.(12分)(2014福建高考改编)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD 折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC夹角的正弦值.分析:在第(1)问中,考查线线垂直问题,要寻求线线垂直的条件,可以是线面垂直或面面垂直.结合具体条件,利用面面垂直去证明线线垂直,只需在其中一个平面内的一条直线垂直于交线就可以了.在第(2)问中,欲求直线与平面夹角的正弦值,自然联想到借助于向量解决,建立合适的坐标系之后,求得平面的法向量n,再在直线上确定一个方向向量,求得这两个向量夹角的余弦值,其绝对值即为线面夹角的正弦值.(1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⫋平面ABD,AB⊥BD,∴AB⊥平面BCD.又CD⫋平面BCD,∴AB⊥CD.(2)解:过点B在平面BCD内作BE⊥BD,如图.由(1)知AB⊥平面BCD,BE⫋平面BCD,BD⫋平面BCD,∴AB⊥BE,AB⊥BD.以B为坐标原点,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系.依题意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M,则=(1,1,0),=(0,1,-1).设平面MBC的法向量n=(x0,y0,z0),则取z0=1,得平面MBC的一个法向量n=(1,-1,1).设直线AD与平面MBC夹角为θ,则sinθ=|cos<n,>|=,即直线AD与平面MBC夹角的正弦值为.20.(12分)(2013课标全国Ⅱ高考)平面直角坐标系xOy中,过椭圆M:=1(a>b>0)右焦点的直线x+y-=0交M于A,B两点,P为AB的中点,且OP的斜率为.(1)求M的方程;(2)C,D为M上两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.解:(1)设A(x1,y1),B(x2,y2),P(x0,y0),则=1,=1,=-1,由此可得=-=1.因为x1+x2=2x0,y1+y2=2y0,,所以a2=2b2.又由题意知,M的右焦点为(,0),故a2-b2=3.因此a2=6,b2=3.所以M的方程为=1.(2)由解得因此|AB|=.由题意可设直线CD的方程为y=x+n,设C(x3,y3),D(x4,y4).由得3x2+4nx+2n2-6=0.于是x3,4=.因为直线CD的斜率为1,所以|CD|=|x4-x3|=.由已知,四边形ACBD的面积S=|CD|·|AB|=.当n=0时,S取得最大值,最大值为.所以四边形ACBD面积的最大值为.21.(13分)(2013广东高考)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为.设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|·|BF|的最小值.解:(1)依题意,设抛物线C的方程为x2=4cy,由,结合c>0,解得c=1.所以抛物线C的方程为x2=4y.(2)抛物线C的方程为x2=4y,即y=x2,求导得y'=x,设A(x1,y1),B(x2,y2),则切线PA,PB的斜率分别为x1,x2,所以切线PA的方程为y-y1=(x-x1),即y=x-+y1,即x1x-2y-2y1=0,同理可得切线PB的方程为x2x-2y-2y2=0,因为切线PA,PB均过点P(x0,y0),所以x1x0-2y0-2y1=0,x2x0-2y0-2y2=0.所以(x1,y1),(x2,y2)为方程x0x-2y0-2y=0的两组解.所以直线AB的方程为x0x-2y-2y0=0.(3)由抛物线定义可知|AF|=y1+1,|BF|=y2+1,所以|AF|·|BF|=(y1+1)(y2+1)=y1y2+(y1+y2)+1.联立方程消去x整理得y2+(2y0-)y+=0.由一元二次方程根与系数的关系可得y1+y2=-2y0,y1y2=,所以|AF|·|BF|=y1y2+(y1+y2)+1=-2y0+1.又点P(x0,y0)在直线l上,所以x0=y0+2.所以-2y0+1=2+2y0+5=2.所以当y0=-时,|AF|·|BF|取得最小值,且最小值为.22.(13分)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M,N分别是AB,PC的中点.(1)求二面角P-CD-B的大小;(2)求证:平面 MND⊥平面PCD;(3)求点P到平面MND的距离.(1)解:∵PA⊥平面ABCD,∴AD是PD在平面ABCD上的射影.由ABCD是正方形知AD⊥CD.∴PD⊥CD.∴∠PDA是二面角P-CD-B的平面角.∵PA=AD,∴∠PDA=45°,即二面角P-CD-B的大小为45°.(2)证明:如图,建立空间直角坐标系,则P(0,0,2),D(0,2,0),C(2,2,0),M(1,0,0),∵N是PC的中点,∴N(1,1,1),∴=(0,1,1),=(-1,1,-1),=(0,2,-2).设平面MND的一个法向量为m=(x1,y1,z1),平面PCD的一个法向量为n=(x2,y2,z2).∴m·=0,m·=0,即有令z1=1,得x1=-2,y1=-1.∴m=(-2,-1,1).同理,由n·=0,n·=0,即有令z2=1,得x2=0,y2=1,∴n=(0,1,1).∵m·n=-2×0+(-1)×1+1×1=0,∴m⊥n.∴平面MND⊥平面PCD.(3)解:设P到平面MND的距离为d.由(2)知平面MND的法向量m=(-2,-1,1).∵·m=(0,2,-2)·(-2,-1,1)=-4,∴|·m|=4,又|m|=,∴d=.即点P到平面MND的距离为.。