铸造工艺方案确定(精)
- 格式:ppt
- 大小:3.34 MB
- 文档页数:13
职业教育材料成型与控制技术专业教学资源库《铝合金铸件铸造技术》课程教案低压铸造参数确定制作人:张保林陕西工业职业技术学院低压铸造参数确定一、引言低压铸造的工艺规范包括升液、充型、增压、保压结晶、卸压、冷却、延时,以及铸型预热温度、浇注温度、铸型的涂料等。
二、升液压力和升液速率升液压力是指当金属液面上升到浇口,所需要的压力。
式中,p1——升液阶段所需压力(MPa ); h1——金属液面至浇道的高度(cm);ρ ——金属液密度(g/cm3 );10200——单位换算系数(g/N); K ——充型阻力因数,K=1~1.5(阻力小取下限,阻力大取上限)。
在升液过程中,升液高度将随着坩埚中金属液面下降而增加。
因此,所需的压力将相应增大。
金属液在升液管内的上升速度即为升液速度,升液应平稳,以有利于型腔内气体的排出,同时也可使金属液在进入浇口时不致产生喷溅。
随着压力增大,升液管中的液面升高。
因此,增压速度实际上反应了升液速度。
增压速度可用下式计算,即式中,v1——升液阶段的增压速度(MPa/s );p1——升液压力(MPa );t1——升液时间(s )。
1020011K h p ρ=111t p v =一般情况下,为了有利于型腔中气体的排出,升液速度缓慢些为好。
对于铝合金,升液速度控制在5~15cm/s ,加压速度为1.27~1.75KPa/s 。
三、充型压力和充型速度充型压力是指使金属液充型上升到铸型顶部所需的压力。
式中,p2——充型压力(MPa );h2——金属液上升至铸件顶面的高度(cm);同样,所需的充型压力随着坩埚中金属液面下降而增大。
充型速度取决于通入坩埚内气体压力增加的速度,可按下式计算:式中,v2——充型速度(MPa/s );p1、p2——分别为升液和充型压力(MPa );t2——充型时间(s ) 充型速度关系到金属液在型腔中的流动状态和温度分布,因而影响铸件的质量。
充型速度慢,金属液充填平稳,有利于型腔中气体的排除,铸件各种温差增大。
精密铸造工艺方案范本1. 引言本文档对精密铸造工艺方案进行了详细介绍和说明,包括工艺流程、材料选用、设备配置等内容。
精密铸造是一种重要的制造工艺,在各个行业中得到广泛应用,本文档旨在提供一个范本,帮助读者编写适用于各种精密铸造项目的工艺方案。
2. 工艺流程精密铸造的工艺流程可以分为以下几个主要步骤:1.模具制备:根据产品要求,制作精密的铸造模具,包括精密机械加工、热处理等工艺。
2.熔炼与浇注:选取合适的原料,进行熔炼,然后将熔融金属倒入预制的模具中进行铸造。
3.冷却与固化:待浇注完成后,让铸件自然冷却,使其固化成型。
4.模具拆卸:将固化成型的铸件从模具中拆卸出来。
5.去毛刺与清洁:清理铸件表面的毛刺,进行清洁处理,保证产品质量。
6.加工与检验:对铸件进行机械加工,如车削、铣削等,然后进行质量检验。
3. 材料选用精密铸造的材料选用十分重要,需要根据产品要求和工艺性能选择合适的材料。
常用的精密铸造材料包括:•不锈钢:具有优异的耐腐蚀性和耐高温性,适用于制作复杂的零件。
•高温合金:具有优异的高温强度和耐腐蚀性能,适用于高温工作环境。
•钛合金:具有优良的力学性能和化学稳定性,适用于航空航天领域。
•铝合金:具有较低的密度和良好的强度,适用于汽车零部件等领域。
在选择材料时,还需要考虑到成本、加工性能、产品质量等方面的因素。
4. 设备配置精密铸造需要使用到一系列设备和工具来完成铸造过程。
常用的设备包括:•高频感应熔炼炉:用于将金属材料熔融成液态,以便进行浇注。
•真空铸造设备:通过在高真空环境中进行铸造,避免气体和杂质对产品质量的影响。
•数控机床:用于对铸件进行加工和修整,提高产品尺寸精度和表面质量。
•检测设备:包括X射线探伤、超声波检测、金相分析等,用于对铸件进行质量检验。
根据具体的生产需求,可以进行设备配置的调整和选型。
5. 质量控制精密铸造的质量控制是保证产品质量的关键。
在工艺流程中,需要进行严格的质量控制措施,包括:•材料检验:对原材料进行化学成分、力学性能等方面的检测。
铸造工艺方案1. 简介铸造是一种重要的制造工艺,主要通过将熔化后的金属或合金倒入模具中,经凝固、凝固和冷却过程,制造出所需的零件或产品。
铸造工艺方案是指针对特定产品和材料,制定的一套铸造工艺流程和参数,旨在保证零件质量和生产效率。
2. 工艺流程通常,铸造工艺包括以下几个主要步骤:2.1 模具制备模具是铸造过程中用于容纳熔化金属的形状工具。
根据产品的设计和要求,选择合适的模具,并确保其具有足够的强度和耐磨性。
常用的模具材料包括铸铁、钢等。
2.2 材料准备根据产品的要求,选择适合的金属或合金作为铸造材料。
根据材料的成分和比例,进行合金配料和坩埚熔炼,确保熔化金属的化学成分符合要求。
2.3 熔化和浇注将准备好的铸造材料放入熔炉中进行熔化。
根据不同的金属,选择适当的熔炉和熔炼工艺。
熔化后的金属通过浇注系统,倒入模具中。
2.4 凝固和冷却在模具中倒入的熔化金属逐渐凝固。
根据不同的工艺和产品要求,控制凝固过程中的温度和时间,以保证零件的结构和机械性能。
2.5 脱模和后处理经过一定的凝固和冷却时间后,零件可以从模具中取出。
根据需要,进行去毛刺、修整、退火等后处理工艺,以提高零件的表面质量和性能。
3. 工艺参数铸造工艺方案中的参数设置对于零件的品质和生产效率具有重要影响。
以下是一些常见的工艺参数:•浇注温度:熔化金属的温度,根据金属的熔点和浇注系统的特点确定;•浇注速度:控制熔化金属流动的速度,避免产生气孔和缺陷;•浇注压力:在一些特殊情况下,通过施加压力,改善金属的凝固结构;•凝固时间:根据零件的尺寸和凝固速率,确定零件在模具中的冷却时间;•冷却介质:通过选择适当的冷却介质,加速零件的冷却过程;•后处理工艺:根据产品的要求,选择合适的去毛刺、退火等工艺,提高零件的性能。
4. 质量控制在铸造过程中,质量控制是至关重要的,以确保生产出符合要求的零件。
以下是一些常用的质量控制措施:•材料检验:对铸造材料进行化学成分和物理性能的检验,确保其符合标准;•模具检查:检查模具的磨损和变形情况,及时进行维修和更换;•熔炼质量控制:对熔炼过程中的温度、时间和熔化金属的化学成分进行监控;•壳材质量检验:对制作壳材的材料和工艺进行检验,确保壳材的质量和性能;•零件外观检查:对铸造零件的表面和尺寸进行检查,确保不存在缺陷和变形;•机械性能测试:通过拉伸试验、硬度测试等手段,评估铸件的机械性能。