材料的光学性能材料物理
- 格式:ppt
- 大小:1.08 MB
- 文档页数:80
材料物理性能及测试材料的物理性能是指材料在物理方面的性质和行为,包括材料的力学性能、热学性能、电学性能以及光学性能等。
这些性能对于材料的使用和应用起着重要的作用。
为了准确地评估和测试材料的物理性能,科学家和工程师使用了各种测试方法和仪器设备。
一、力学性能力学性能是衡量材料在外力作用下的行为的一种性能。
主要指材料的强度、韧性、硬度、延展性等。
常用的测试方法包括拉伸测试、压缩测试、剪切测试和弯曲测试等。
1.拉伸测试拉伸测试是一种常见的方法,用来评估材料的强度和延展性。
在拉伸测试中,材料样品被施加拉伸力,通常通过测量载荷和伸长量来计算拉伸应力和应变。
拉伸强度是指材料在拉伸过程中承受的最大应力,屈服强度是指材料开始产生可观察的塑性变形的应力。
2.压缩测试压缩测试用于测量材料在受压力下的性能。
将材料样品放入压力装置中,施加压力使其受到压缩,通过测量载荷和位移来计算压缩应力和应变。
压缩强度是指材料在压缩过程中承受的最大应力。
3.剪切测试剪切测试用于评估材料的抗剪切能力。
将材料样品放入剪切装置中,施加剪切力使其发生剪切变形,通过测量载荷和位移来计算剪切应力和应变。
剪切强度是指材料在剪切过程中承受的最大应力。
弯曲测试用于评估材料在弯曲载荷下的行为。
将材料样品放入弯曲装置中,施加弯曲力使其发生弯曲变形,通过测量载荷和位移来计算弯曲应力和应变。
弯曲强度是指材料在弯曲过程中承受的最大应力。
二、热学性能热学性能是指材料在温度变化下的行为。
主要包括热膨胀性、热导率、比热容等性能。
常用的测试方法包括热膨胀测试、热导率测试和比热容测试等。
1.热膨胀测试热膨胀测试用于测量材料随温度变化而发生的膨胀或收缩。
在热膨胀测试中,材料样品被加热或冷却,通过测量长度变化来计算热膨胀系数。
2.热导率测试热导率测试用于测量材料传导热的能力。
在热导率测试中,材料样品的一侧被加热,另一侧被保持在恒定温度,测量两侧温度差来计算热导率。
3.比热容测试比热容测试用于测量材料吸热或放热的能力。
材料物理知识点材料物理是研究物质的结构、性质和行为的学科,涉及到多个领域,包括固体物理学、材料科学和化学等。
本文将以“材料物理知识点”为标题,介绍一些与材料物理相关的重要知识。
1.原子结构和晶体结构材料物理的基础是对原子结构的认识。
原子由原子核和围绕核运动的电子组成。
不同元素的原子核中有不同数量的质子和中子,而电子的数量则决定了原子的化学特性。
晶体是由原子、分子或离子按照一定的规则排列而成的固体,晶体结构的特征决定了材料的宏观性质。
2.晶体缺陷晶体中可能存在各种缺陷,如点缺陷、线缺陷和面缺陷。
点缺陷是指原子位置的变化,如空位、间隙原子和替代原子等。
线缺陷是沿晶体内部存在的缺陷,如位错和螺旋线等。
面缺陷是晶体表面或晶界上的缺陷,如晶界、堆垛错误和孪生等。
晶体缺陷的存在对材料的性能有重要影响。
3.材料的力学性能材料的力学性能是指材料在外力作用下的变形和破坏行为。
材料的力学性能包括弹性模量、屈服强度、断裂韧性等指标。
弹性模量是材料在应力作用下的单位应变量,衡量了材料的刚度。
屈服强度是指材料开始塑性变形的应力值,断裂韧性则反映了材料抵抗断裂的能力。
4.材料的导电性和磁性材料的导电性和磁性是材料物理中的重要研究方向。
导电性是指材料对电流的导电能力,与材料中的自由电子浓度和移动性有关。
金属是良好的导电材料,而绝缘体则是导电性很差的材料。
磁性是指材料对磁场的响应能力,材料可以是顺磁性、抗磁性、铁磁性或反铁磁性。
5.半导体材料半导体是介于导电材料和绝缘体之间的一类材料。
半导体的导电性能可以通过施加外界电场或控制温度来调节。
半导体材料在电子学和光电子学中有广泛应用,如晶体管、光电二极管和太阳能电池等。
6.材料的光学性能材料的光学性能与材料与电磁辐射的相互作用有关。
材料的折射率、透明度和吸收系数等光学性能参数决定了材料对光的传播和吸收能力。
材料的光学性能在材料科学和光电子学等领域具有重要应用。
总结:材料物理是研究物质结构、性质和行为的学科。
材料物理性能材料的物理性能是指材料在受力、受热、受光、受电、受磁等外界作用下所表现出的性质和特点。
它是材料的内在本质,直接影响着材料的使用性能和应用范围。
材料的物理性能包括了热学性能、光学性能、电学性能、磁学性能等多个方面。
首先,热学性能是材料的一个重要物理性能指标。
热学性能包括导热性、热膨胀性和热稳定性等。
导热性是指材料传导热量的能力,通常用热导率来表示。
热膨胀性是指材料在温度变化下的体积变化情况,通常用线膨胀系数来表示。
热稳定性是指材料在高温环境下的性能表现,包括了热变形温度、热老化等指标。
这些性能对于材料在高温环境下的应用具有重要意义。
其次,光学性能是材料的另一个重要物理性能。
光学性能包括透光性、反射率、折射率等指标。
透光性是指材料对光的透过程度,通常用透光率来表示。
反射率是指材料对光的反射程度,通常用反射率来表示。
折射率是指材料对光的折射程度,通常用折射率来表示。
这些性能对于材料在光学器件、光学仪器等领域的应用具有重要意义。
此外,电学性能是材料的另一个重要物理性能。
电学性能包括导电性、介电常数、电阻率等指标。
导电性是指材料导电的能力,通常用电导率来表示。
介电常数是指材料在电场中的极化能力,通常用介电常数来表示。
电阻率是指材料对电流的阻碍程度,通常用电阻率来表示。
这些性能对于材料在电子器件、电气设备等领域的应用具有重要意义。
最后,磁学性能是材料的另一个重要物理性能。
磁学性能包括磁导率、磁饱和磁化强度、矫顽力等指标。
磁导率是指材料对磁场的导磁能力,通常用磁导率来表示。
磁饱和磁化强度是指材料在外磁场作用下的最大磁化强度,通常用磁饱和磁化强度来表示。
矫顽力是指材料在外磁场作用下的抗磁化能力,通常用矫顽力来表示。
这些性能对于材料在磁性材料、电机、传感器等领域的应用具有重要意义。
综上所述,材料的物理性能是材料的重要特性,直接影响着材料的使用性能和应用范围。
不同类型的材料具有不同的物理性能,因此在材料选择和应用过程中,需要充分考虑材料的物理性能指标,以确保材料能够满足特定的使用要求。
现代材料物理化学作业参考资料(全面)一.材料物理-材料的电学性能1.何谓能带结构?满带,导带,价带,空带和禁带?能带结构:由多条能带组成,是指各原子中能量相近的能级将分裂成一系列和原能级接近的新能级,这些新能级基本上连成一片,形成能带(energy band)。
满带:能带中各能级都被电子填满。
导带:被电子部分填充的能带及空带(一般与价带相邻)。
价带:价电子能级分裂后形成的能带。
一般情况下,价带是被电子所填充的能量最高的能带。
空带:所有能级均未被电子填充的能带。
禁带:在能带之间的能量间隙区,电子不能填充。
2.简述绝缘体、半导体与导体的能带结构差异及对其导电性的影响;导体:分两类,一类是价带和导带交叠,加电压后电子能够很容易从价带顶部跃迁到导带底部而导电。
另一类是价带和导带不交叠,但它的价带未填满,因而加电压后电子也能够很容易从价带顶部跃迁到导带底部而导电绝缘体:价带和导带不交叠存在很大的能量间隙,且价带被填满因而因而加电压后电子不能够很容易从价带顶部跃迁到导带底部,故不导电。
半导体:1.本征半导体:价带和导带不交叠,但能隙很小,2. n型半导体3. p型半导体3.简述造成半导体材料与金属材料在电导温度函数上的差别原因;半导体的导电特性:即热敏性当环境温度升高时,温度愈高,载流子的数目愈多导电能力显著增强,正比关系金属电导温度函数:随着温度的升高,金属电阻也在增加。
在低温下“电子-电子”散射对电阻的贡献可能是显著的,但高温下,金属的电阻都决定于“电子-声子”散射。
划分这两个区域的温度θD称为德拜温度或特征温度。
且金属的电阻在不同的温度区域内表现出不同幂次(升幂)的温度函数关系。
4.简述导电高分子的类型?及导电机理上的差异?分类:导电高分子分成两大类。
一类是复合型导电聚合物,另一类是结构型(本征型)导电聚合物。
差异:复合型导电聚合物是在本身不具备导电性的聚合物材料中掺混入大量导电物质,聚合物材料本身并不具备导电性,只充当了粘合剂的角色。
《材料物理性能》习题解答材料物理性能习题与解答吴其胜盐城工学院材料工程学院2007,3目录1 材料的力学性能 (2)2 材料的热学性能 (12)3 材料的光学性能 (17)4 材料的电导性能 (20)5 材料的磁学性能 (29)6 材料的功能转换性能 (37)1材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:根据题意可得下表由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-2一试样长40cm,宽10cm,厚1cm ,受到应力为1000N 拉力,其杨氏模量为3.5×109 N/m 2,能伸长多少厘米?解:拉伸前后圆杆相关参数表体积V/mm 3 直径d/mm 圆面积S/mm 2 拉伸前1227.2 2.5 4.909 拉伸后1227.22.44.524 1cm 10cm40cmLoad Load)(0114.0105.310101401000940000cm E A l F l El l ==??===?-σε0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =?==-σ名义应力0851.0100=-=?=A A l lε名义应变)(99510524.445006MPa A F T =?==-σ真应力1-3一材料在室温时的杨氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。
解:根据可知:1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。
证:1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
无机材料物理性能无机材料是指在自然界中存在的,或者是人工合成的,不含有碳的材料。
它们的物理性能对于材料的应用具有重要意义。
无机材料的物理性能主要包括热性能、电性能、光学性能和力学性能等方面。
首先,热性能是无机材料的重要性能之一。
热导率是评价材料导热性能的重要指标,无机材料中的金属和陶瓷材料通常具有较高的热导率,而聚合物材料的热导率较低。
此外,无机材料的热膨胀系数也是其热性能的重要表征之一,它决定了材料在温度变化时的尺寸变化程度。
这些热性能参数对于材料在高温或者低温环境下的应用具有重要意义。
其次,电性能是无机材料的另一个重要性能。
导电性和绝缘性是评价材料电性能的重要指标。
金属材料通常具有良好的导电性,而绝缘材料则具有较高的电阻率。
此外,半导体材料的导电性介于金属和绝缘材料之间,其电性能的调控对于电子器件的制备具有重要意义。
光学性能是无机材料的另一个重要性能。
透明度、折射率、反射率和光学吸收等是评价材料光学性能的重要指标。
无机材料中的玻璃、晶体和光学薄膜等材料通常具有良好的光学性能,它们在光学器件、光学仪器和光学通信等领域具有重要应用。
最后,力学性能是无机材料的另一个重要性能。
强度、硬度、韧性和蠕变等是评价材料力学性能的重要指标。
金属材料通常具有较高的强度和硬度,而聚合物材料则具有较高的韧性。
这些力学性能参数对于材料在受力状态下的性能表现具有重要意义。
总之,无机材料的物理性能对于材料的应用具有重要意义。
热性能、电性能、光学性能和力学性能是无机材料的重要性能之一,它们的表征和调控对于材料的设计、制备和应用具有重要意义。
希望本文对无机材料的物理性能有所帮助,谢谢阅读。
第四章材料的光学性能_材料物理第四章主要介绍材料的光学性能,包括传统光学性能和现代光学性能。
在本章中,我们将探讨材料的折射率、透过率、吸收率、反射率、透射率和散射率等光学性能,并深入了解这些性能对材料的应用和性能起到的影响。
首先,折射率是一个物质对光的折射能力的度量。
它表示光在通过一种介质时,光线的传播速度相对于真空中的传播速度的比值。
折射率越大,光线在介质中的传播速度越慢,同时也会使光线的传播方向发生变化。
折射率在光学器件的设计和制造中起着至关重要的作用,例如在光纤通信和光学透镜等领域。
透过率是指光线从一个介质传播到另一个介质时的透明程度。
透过率越高,介质光学效果越好。
材料的透过率取决于折射率和吸收率等因素。
在光学器件中,透过率是一个重要的性能指标,它决定了器件的光学传输效率和亮度。
吸收率是材料吸收光的能力。
当光线穿过材料时,一部分能量被材料所吸收,而另一部分则被材料所反射或透射。
吸收率对于材料的应用非常重要,特别是在光电子器件和光热器件中。
高吸收率的材料可以有效地将光能转化为电能或热能,以实现各种功能。
反射率是指光线从介质中的表面反射回来的能力。
反射率取决于入射角度和材料的折射率。
反射率高的材料适用于光学镜面和反射镜等应用,可以将光线有效地反射出去,而不是被吸收或透射。
透射率是指光线通过材料时传输的能力。
透射率在光学器件和材料中起着重要作用,尤其是在光纤传输和光学滤波器等应用中。
高透射率的材料可以有效地传输光线,减少能量损失。
散射率是指光线在碰撞或与材料表面相互作用时发生方向改变的能力。
散射率对于材料的外观和质量也有很大影响,尤其是在透明材料和杂质掺杂材料中。
控制散射率可以改善材料的光学性能,使其更适用于各种应用。
总之,材料的光学性能对于很多应用至关重要。
通过理解和控制材料的折射率、透过率、吸收率、反射率、透射率和散射率等光学性能,我们可以设计和制造出更好的光学器件和材料,满足不同领域的需求。
第一章:电学性能1、绝缘体ρ﹥10^10Ω·m 半导体:10^-2<ρ10^10Ω·m 导体:10^-2Ω·m ﹥ρ2、电阻对应三种散射机制:声子散射、电子散射、电子在杂质和缺陷上的散射。
3、马基申定则:金属固溶体中溶质原子的浓度较小,以致可以略去它们之间的相互影响,把固溶体的电阻看成由金属的基本电阻和残余电阻组成,即ρ=ρ(T )+ρ残。
这实际上表明,在一级近似下不同散射机制对电阻的贡献可以加法求和。
根据马基申定律,在高温时金属的电阻率基本上取决于ρ(T) ,而在低温时取决于ρ残。
既然ρ残是电子在杂质和缺陷上的散射引起的,那么ρ残的大小就可以用来评定金属的电学纯度。
4、影响金属导电性因素:温度、应力、冷加工变形、合金元素及相结构5、载流子:能够携带电荷的粒子称为载流子。
在金属、半导体和绝缘体中携带电荷的载流子是电子;在离子化合物中,携带电荷的载流子则是离子。
6、本征半导体:纯净的无结构缺陷的半导体单晶。
其电学特性:1)本征激发成对产生自由电子和空穴,自由电子浓度与空穴浓度相等;2)禁带宽度Eg 越大,载流子浓度ni 越小;3)温度升高时载流子浓度ni 增大。
4)载流子浓度ni 与原子密度相比是极小的,所以本征半导 体的导电能力很微弱。
7、多子:在n 型半导体中,自由电子的浓度大(1.5×10^14㎝-3),故自由电子称为多数载流子,简称多子。
少子:把n 型半导体中的空穴称为少数载流子,简称少子。
8、杂质半导体:掺入杂质的本征半导体称为杂质半导体。
杂质半导体特性:1)掺杂浓度与原子密度相比虽很微小,但是却能使载流子浓度极大地提高,因而导电能力也显著地增强。
掺杂浓度愈大,其导电能力也愈强。
2)掺杂只是使一种载流子的浓度增加,因此杂质半导体主要靠多子导电。
当掺入五价元素(施主杂质)时,主要靠自由电子导电;当掺入三价元素(受主杂质)时,主要靠空穴导电。
9、电介质的分类:中性电介质、偶性电介质、离子型电介质10、介质损耗:.电介质在电场作用下,单位时间内因发热而消耗的能量称电介质的损耗功率,简称介质损耗。
材料物理化学教案中的材料的光学性质与光学特性材料物理化学作为一门交叉学科,研究了材料的物理和化学性质。
其中,光学性质和光学特性是材料有机组成文化与结构的重要组成部分。
本文将从材料的光学性质以及光学特性的角度来论述材料物理化学教案中的相关内容。
一、材料的光学性质光学性质是指材料对光的吸收、反射、折射等现象的表现。
材料的光学性质受材料结构、分子组成、晶体结构等因素的影响。
根据光的传播方式和材料结构的关系,可以将材料的光学性质分为吸收、反射、透射、散射等方面。
1. 吸收材料的吸收性质是指材料对特定波长的光线吸收的能力。
不同材料对光的吸收能力不同,这与材料的能带结构、化学成分以及晶格结构有关。
通过研究材料的吸收性质,可以了解材料在特定波长下的光学特性,如颜色、透明度等。
2. 反射材料的反射性质是指材料对入射光的反射能力。
根据材料的反射率来判断材料的反射性质,高反射率的材料可以应用于镜面、反光板等领域。
反射性质的研究有助于了解材料与入射光的相互作用,从而设计出具有特定光学性能的材料。
3. 透射材料的透射性质是指材料对光的透过能力。
透射率的高低取决于材料的成分、晶格结构以及光的波长等因素。
通过研究材料的透射性质,可以了解材料对不同波长光的透明度,为材料的应用提供理论依据。
4. 散射材料的散射性质是指材料对光的散射程度。
材料的散射程度与材料的粒度、晶格结构以及光的波长等因素有关。
通过研究材料的散射性质,可以了解材料对光的传播产生的影响,为光学器件的设计与制备提供基础知识。
二、材料的光学特性光学特性包括吸光度、发光性质、折射率和色散等方面,这些特性是通过对材料的光学性质进行测定和分析得出的。
1. 吸光度吸光度是指材料对特定波长的光线吸收的程度。
通过吸光度的测定,可以了解材料在不同波长下的吸收能力,从而确定材料的光学特性。
2. 发光性质发光性质是指材料在受到电磁激发或其他刺激下产生的发光现象。
根据材料的分子或晶格结构不同,发光的波长和频率也会有所差异,从而呈现出不同的颜色和亮度。
材料物理性能-复习资料第⼆章材料的热学性能热容:热容是分⼦或原⼦热运动的能量随温度⽽变化的物理量,其定义是物体温度升⾼1K所需要增加的能量。
不同温度下,物体的热容不⼀定相同,所以在温度T时物体的热容为:物理意义:吸收的热量⽤来使点阵振动能量升⾼,改变点阵运动状态,或者还有可能产⽣对外做功;或加剧电⼦运动。
晶态固体热容的经验定律:⼀是元素的热容定律—杜隆-珀替定律:恒压下元素的原⼦热容为25J/(K?mol);⼆是化合物的热容定律—奈曼-柯普定律:化合物分⼦热容等于构成此化合物各元素原⼦热容之和。
不同材料的热容:1.⾦属材料的热容:由点阵振动和⾃由电⼦运动两部分组成,即式中和分别代表点阵振动和⾃由电⼦运动的热容;α和γ分别为点阵振动和⾃由电⼦运动的热容系数。
合⾦的摩尔热容等于组成的各元素原⼦热容与其质量百分⽐的乘积之和,符合奈曼-柯普定律:式中,n i和c i分别为合⾦相中元素i的原⼦数、摩尔热容。
2.⽆机材料的热容:(1)对于绝⼤多数氧化物、碳化物,热容都是从低温时的⼀个低的数值增加到1273K左右的近似于25J/(K·mol)的数值。
温度进⼀步增加,热容基本⽆变化。
(也即它们符合热容定律)(2)对材料的结构不敏感,但单位体积的热容却与⽓孔率有关。
⽓孔率越⾼,热容越⼩。
相变可分为⼀级相变和⼆级相变。
⼀级相变:体积发⽣突变,有相变潜热,例如,铁的a-r转变、珠光体相变、马⽒体转变等;⼆级相变:⽆体积发⽣突变、⽆相变潜热,它在⼀定温度范围逐步完成。
例如,铁磁顺磁转变、有序-⽆序转变等,它们的焓⽆突变,仅在靠近转变点的狭窄温度区间内有明显增⼤,导致热容的急剧增⼤,达转变点时,焓达最⼤值。
3.⾼分⼦材料热容:⾼聚物多为部分结晶或⽆定形结构,热容不⼀定符合理论式。
⼀般,⾼聚物的⽐热容⽐⾦属和⽆机材料⼤,⾼分⼦材料的⽐热容由化学结构决定,它存在链段、链节、侧基等,当温度升⾼时,链段振动加剧,⽽⾼聚物是长链,使之改变运动状态较困难,因⽽,需提供更多的能量。
材料性能的影响因素材料化学组成和显微结构不同,决定其有不同的特性;材料的内部分子层次上,原子、离子之间的相互作用和化学键合对材料性能产生决定性的影响;多晶多相材料的显微结构的不同,影响材料的大部分性能。
晶体结合类型、特征:(1)离子晶体:离子键合、高硬度、高升华热,可溶于极性溶剂、低温不导电,高温离子导电。
(2)共价晶体:共价键合、高硬度、高熔点,几乎不溶于所有溶剂,高折射率,强反射本领。
(3)金属晶体:金属键合、高密度、导电率高,延展性好,只溶于液体金属。
(4)分子晶体:范德华力结合,高热膨胀,易溶于非极性有机溶剂中,低熔点、沸点,压缩系数大,保留分子的性质。
(5)氢键:低熔点、沸点,结合力高于无氢键的类似分子。
单晶体是由一个微小的晶核各向均匀生长而成,其内部的粒子基本上按其特有的规律整齐排列。
晶体微粒(包括离子、原子团)在空间排列有一定的规律晶体性质:1.均与性;2.各向异性;3.规则的多面体外形;4.确定的熔点;5.对称性晶体可分为单晶、多晶、微晶等微晶:粒度很小的晶体组成的物质(显晶质、隐晶质、单晶、多晶)晶体和非晶体的区别如下:晶体有规则的几何外形非晶体没有一定的外形晶体有固定的熔点非晶体没有固定的熔点晶体显各向异性非晶体显各向同性按热力学观点看:晶体一般都具有最低的能量,因而较稳定非晶体一般能量较高,都处于介稳或亚稳态晶格确定步骤:1.确定基本结构单元;2.将结构基元看做一点;3.这些几何点聚焦形成点阵(面角守恒:同组晶体和对应面之间夹角恒定不变)材料应用考虑因素:使用寿命、性能、可靠性、环境适应性、性价比。
材料性能是一种用于表征材料在给定外界条件下的行为参量。
同一材料不同性能,只是相同的内部结构,在不同的外界条件下所表现出的不同行为。
材料性能的研究:材料性能的研究,既是材料开发的出发点,也是其重要归属。
材料强度、表面光洁度、绝缘性能、热导性、热膨胀系数等是衡量基板材料好坏的重要指标。