向量的实际背景及基本概念
- 格式:ppt
- 大小:1.43 MB
- 文档页数:9
《平面向量的实际背景及基本概念》教案全面版一、教学目标:1. 了解平面向量的实际背景,理解向量的概念及物理意义。
2. 掌握平面向量的基本运算,包括加法、减法、数乘和共线定理。
3. 能够运用平面向量的知识解决实际问题。
二、教学内容:1. 平面向量的实际背景:引入向量的概念,解释向量在物理学、几何学等领域的应用。
2. 向量的概念:定义向量的基本属性,包括大小、方向和起点。
3. 向量的表示:介绍平面向量的几何表示法和坐标表示法。
4. 向量的加法:定义向量加法,讲解平行四边形法则和三角形法则。
5. 向量的减法:定义向量减法,转化为加法运算。
6. 向量的数乘:定义向量的数乘,讲解数乘对向量大小和方向的影响。
7. 向量共线定理:介绍共线定理及其应用。
三、教学方法:1. 采用问题驱动的教学方法,引导学生从实际问题中抽象出向量的概念。
2. 利用几何图形和物理情境,帮助学生直观地理解向量的运算。
3. 运用案例分析和练习题,巩固学生对向量知识的理解和应用。
四、教学评估:1. 通过课堂提问,检查学生对向量概念的理解。
2. 布置课后作业,检验学生掌握向量运算的能力。
3. 进行小组讨论和报告,评估学生对向量应用问题的解决能力。
五、教学资源:1. 教案、PPT课件。
2. 几何图形和物理情境的图片或视频。
3. 练习题和案例分析题。
4. 小组讨论和报告的评价标准。
六、教学重点与难点:1. 教学重点:向量的概念、表示方法、基本运算(加法、减法、数乘)及共线定理。
2. 教学难点:向量加法、减法的几何意义,数乘对向量的影响,共线定理的应用。
七、教学步骤:1. 引入向量的概念:通过实际问题,引导学生认识向量,理解向量表示物体运动和力的作用。
2. 向量的表示:讲解几何表示法和坐标表示法,让学生能用图形和坐标表示向量。
3. 向量加法:讲解平行四边形法则和三角形法则,让学生理解向量加法的几何意义。
4. 向量减法:转化为加法运算,让学生掌握减法与加法的联系。
2.1 平面向量的实际背景及基本概念向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量. 与长度相等方向相反的向量叫做的相反向量.课堂训练一、选择题1、下列物理量中, 不能称为向量的是 ( )A .距离B .加速度C .力D .位移2、下列四个命题正确的是 ( )A .两个单位向量一定相等B .若与不共线,则与都是非零向量C .共线的单位向量必相等D .两个相等的向量起点、方向、长度必须都相同3、下列说法错误的是 ( )A .向量OA 的长度与向量AO 的长度相等B .零向量与任意非零向量平行C .长度相等方向相反的向量共线D .方向相反的向量可能相等4、对于以下命题:(1)平行向量一定相等; (2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线。
其中真命题的个数是 ( )A .0个B .1个C .2个D .3个5、在△ABC 中,AB=AC ,D 、E 分别是AB 、AC 的中点,则 ( ) A. 与AC 共线 B. 与CB 共线 C. 与相等 D. 与相等6、两个向量共线是两个向量相等的 ( )A 、 充分不必要条件B 、必要不充分条件C 、充要条件D 、 既不充分也不必要条件二、填空题1、与非零向量平行的单位向量的个数是_______。
2、||||b a =是b a =的___ __条件。
3、已知B ,C 是线段AD 的两个三等分点,分别以图中各点为起点和终点最多可以写出___ __个互不相等的非零向量。
4、已知平面上不共线的四点满足=,则以下四个命题:(1)ABCD 是平行四边形;(2)ACBD 是平行四边形;(3)ADBC 是平行四边形;(4)ACDB 是平行四边形。