专题第1讲 集合与不等式
- 格式:ppt
- 大小:645.00 KB
- 文档页数:24
第一章集合和不等式的解法第一节集合的含义与表示例1已知集合A={a,a+b,a+2b},B={a,ac,a c 2},若A=B,求实数c 的值。
例2用适当的方法表示集合(1) x 2=9的解集;(2) 不等式2x+1>5的解集;(3) 方程组解集{x +y =2x −y =4; (4) {x |y=√4−2x };(5) {y |y=√4−2x }.例3已知集合A={x |m x 2-3x+2=0},若A 中至多一个元素,求实数m 的取值范围。
第二节集合间的基本关系例1已知集合A={x |x=2n,n ϵz},B={x |x=4n,n ϵz },则A 与B 的关系是____________例2已知集合A={0,1},B={x |x ϵA },C={x |x ⊆A},则A,B,C 的关系是________________________ 例3已知{1,2}⊆A ⊆{1,2,3,4,5},满足条件的集合A 的个数是___________________ 例4M={1,2,3,4,5,6,7},N ≠Ø,N ⊆M,若a ∈N,则8-a ϵN,则满足条件的集合N 的个数为_______________ 例5已知A={x |x 2−2x −3=0},B={x |ax-1=0},若B ⊆A,求a 的值。
第三节集合的基本运算已知A={x |x ≤5},B={x |x>2a-1},若A ∪B=R,求实数a 的取值范围。
设集合A={-2,0,4},B={m,m 2},则使A ∪B=A 成立的m 的值为___________________例2 A={1,3,5,7},B={2,3,5,6,8,9},则A ∩B =_______________________设A={x |x>-1},B={x |x ≤2},则A ∩B =_____________________ 例3已知集合A={x |x 2−3x −10≤0},B={x |m+1≤x ≤2m −1},若A ∩B =B ,则实数m 的取值范围为_________________例4若U={1,2,3},A={1,3}则C U A=_________________若U={2,5,a2+2a+1},A={2,5},C U A={0},则a=________________已知A={1,3,5},C U A={−2,2},C U B={−2,1,3},则B=_____________________例5已知集合A={x|x<a},B={x|1≤x≤2},且A∪(C R B)=R,则实数a的取值范围是____________ 第4节一元二次不等式的解集例1解不含参数的一元二次不等式(1)x2−x−6≤0(2)4x-x2>0(3)-2x2+x-6<0 (4)x2−4x+4≥0例2解含参数的一元二次不等式(1)解关于x的不等式x2−(a+a2)x+a3>0(2)解关于x的不等式a x2−(a+1)x+1<0(a<1)例3不等式恒成立问题若关于x的一元二次不等式2x2−8x+6−m>0对任意的xϵR恒成立,求实数m的取值范围第5节分式不等式和高次不等式的解决例1可化为一元二次不等式的简单分式不等式的解法(1)2−xx+3>0(2)2x−13x+1≥0(3)2−xx+3>1例2解下列不等式(1)(x-2)(x+2)(x-1)(x+1)>0 (2)(x2−5x−6)(1−x)>0(3)(x−2)2(x−3)3(x+1)<0 (4)(x-3)(x+1)(x2+4x+4)≤0第6节绝对值不等式的解法例1解下列不等式(1)|x|<8(2)|5-3x|≥10(3)2<|x+1|<3例2解下列不等式(1)|x+1|>2-x (2)|x2−2x−6|<3x例3解不等式|2x-1|<|x+3|例4解不等式|x-1|+|x+2|<5例5解不等式|2x+3|<|x+8|+5x-2。
第1章集合与不等式【学习目标】1.了解集合的概念及其表示方法.2. 掌握集合之间的运算(子集、真子集、相等、交集、并集、补集).3. 理解区间的概念,会在数轴上表示区间.4. 掌握绝对值不等式、一元二次不等式、分式不等式的解法.5. 培养学生应用数学概念的能力和计算能力.1.1 集合1.集合的概念集合是现代数学中最基本的概念之一.研究集合的数学理论称为集合论,它是数学的一个基本分支,是近代许多数学分支的基础.我们在初中就已经接触到了“集合”一词,如: “自然数的集合” ,“有理数的集合”, “不等式的解集”等. 在数学和日常生活中,也经常把某些指定的对象作为一个整体加以研究,例如:⑴一个班里的全体学生;⑵某图书馆的全部藏书;⑶所有的直角三角形;⑷与一个角的两边距离相等的所有点;⑸不等式21x->3的所有解;⑹某工厂金工车间的所有机床.它们分别是由一些人、书、图形、点、数和机床组成的.一般地,指定的某些对象的全体称为集合(简称为集),用大写字母,,,A B C表示.集合中的每个对象叫做这个集合的元素,用小写字母,,,a b c表示.如果a是集合A的元素,就说“a属于集合A”,记作a A∈;如果a不是集合A的元素,就说“a不属于集合A”,记作a A∉.某校高一(1) 班全体学生就构成了一个集合,该校内的任一学生,或者是高一(1) 班的同学,或者不是,二者必居其一,这一性质叫做集合元素的确定性;在书写高一(1)班全体同学的名单时,谁写在前面或者后面,不论次序如何,都是高一(1)班全体同学的名单,这一性质叫做集合元素的无序性;另外,每名同学的名字,必须写而且只需写一次就可以了,这一性质叫做集合元素的互异性.练一练:判断下列各组元素能否构成一个集合:(1)所有爱唱歌的孩子;(2) 0,1,1,2.集合理论的创始人是康托尔(Cantor,G.F.L.P,1845—1918),德国数学家.任何集合的子集,即∅A⊆.因此,任何一个集合是它本身的子集,即AA⊆.集合A不包含于集合B时,记作A⊆/B.例1 写出集合{},,a b c的所有子集.解集合{},,a b c的所有子集是:{}{}{}{}{}{}{},,,,,,,,,,,,a b c a b a c b c a b c∅2. 真子集在集合{},,a b c的所有子集中,除去它本身{},,a b c外,集合{},,a b c中至少有一个元素不在其余的某个子集中.如果集合A是集合B的子集,且集合B中至少有一个元素不属于A,则称集合A是集合B的真子集,记作A B(或AB≠⊃),读作A真包含于B(或B真包含A).如文氏图1-1所示.集合{},,a b c的子集中,除了{},,a b c外,其它子集都是{},,a b c的真子集.显然,空集是任何非空集合的真子集.练一练:判断集合A B与的关系:(1)集合{}1,2,3A=,{}1,2,3,4B=;设合{}1,2,3A=,{}2,3,1=B.3、集合的相等如果集合A与集合B的元素完全相同,即ABBA⊆⊆且,则称集合A与集合B相等,记作BA=.练一练:对于集合{}1,2A=, {}1,2,3,4,5,6B=,{}2,7C=,思考:符号∈与符号⊆表达的含义相同吗?思考:集合{},,a b c有三个元素,子集个数为8个,即32个;真子集个数为321-个;推广到含有n个元素的集合,则子集个数和真子集的个数分别为多少?{}(1)(2)0D x x x=--=,下列关系是否成立:A D=,A B⊆, A B,A C⊂?例2 指出下列各组中两个集合之间的关系:(1){}{}1,7,1,2,3,7A B==;(2){}{}21,1,1C x x D===-;(3){}{},E F==偶数整数;解(1) A B; (2)C D=; (3)E F.例3 讨论集合{}20A x x=-=与集合{}260B x x x=+-=的关系.解因为集合{}{}22==-=xxA,集合{}{}2,362-==-+=xxxB,所以集合A是集合B的真子集,即A B.【习题1.2】1.用符号∈、∉、=、、≠⊃填空:(1)1 N;(2)0 Z;(3)-2 -Q(4)43Q;(5)πQ;(6)2R;(7){1,2} {2,1};(8){3,5} {1,3,5};(9){2,4,6,8} {2,8};(10)∅ {1,2,3}.2.图1-2中A、B、C表示集合,说明它们之间的关系.图1-23.写出集合{1,3,5}的所有子集.4.设A={1,3,5,7,9},B={1,2,4,6},写出由A和B的所有元素组成的集合C.5.设A={1,3,5,7,9},B={1,2,3,4,6,8,10},写出由A和B的公共元素组成的集合 C.1.3 集合的运算 1. 交集观察集合{}1,237A =,,与{}2,3,67,B =,,容易看出,集合}73,2{,是由集合A 与B 的所有公共元素组成的,对于这样的集合我们给出如下定义.定义 由集合A 与集合B 的所有公共元素组成的集合,叫做集合A 与集合B 的交集(如图1-3的阴影部分所示),记作B A ,读作“A 交B ”.即{}A B x x A x B =∈∈且.由交集的定义及图1-3可以看出, B A 既是A 的子集,也是B 的子集,即A B A ⊆且A B B ⊆.另外,交集还有如下性质:A A A A AB B A∅=∅== 若A B A =,则A B ⊆,反之也成立. 例1 设集合:(1){}2,578A =,,,{}5,68,10B =,; (2) {}A =奇数,{}B =偶数; (3) {}A =奇数,{}B =整数;(4) {}A =等腰三角形,{}B =直角三角形; (5){}(,)25A x y x y =+=,{}(,)27B x y x y =+=; (6){}13A x x =≤≤,{}25B x x =≤≤. 求B A .解 (1) {}{}{}2,5785,68,105,8A B ==,,,; (2) {}{}A B ==∅奇数偶数;(3) {}{}{}AB A ===奇数整数奇数;{}{}{}(4);A B ==等腰三角形直角三角形等腰直角三角形{}{}{}(5)(,)25(,)2725(,)(1,3);27A B x y x y x y x yx yx yx y=+=+=⎧⎫+=⎧⎪⎪==⎨⎨⎬+=⎩⎪⎪⎩⎭(6){}{}{}132523A B x x x x x=≤≤≤≤=≤≤, 如图1-4所示.2. 并集我们把集合{}1,237A=,,与{}2,3,67,B=,的元素放在一起,构建新的集合,由集合元素的互异性得新的集合为{}1,2,3,6,7. 它是由所有属于A,或属于B的元素组成的.对于这样的集合,我们给出如下定义.定义由所有属于集合A或属于集合B的元素组成的集合,称为集合A与集合B的并集(如图1-5的阴影部分所示),记作A B,读作A并B,即{|,}A B x x A x B=∈∈或.由并集的定义及图1-5可以看出,集合A B、都是A B的子集,即A A B⊆,B A B⊆.另外,并集还有如下性质:A AA A AA B B A∅===若A B B=,则A B⊆,反之也成立.例2设集合:(1){}2,578A=,,,{}5,68,10B=,;(2) {}A=奇数,{}B=偶数;(3) {}A=奇数,{}B=整数;(4) {}A=等腰三角形,{}B=直角三角形;(5) {}13A x x=≤≤,{}25B x x=≤≤.求A B.解(1) {}{}{}2,5785,68,1025678,10A B==,,,,,,,;(2) {}{}{}A B==奇数偶数整数;(3) {}{}{}A B B===奇数整数整数;{}{}(4);A B=⎧⎫=⎨⎬⎩⎭等腰三角形直角三角形等腰直角三角形,等腰非直角三角形,直角非等腰三角形(5){}{}{}132515A B x x x x x=≤≤≤≤=≤≤,如图1-6所示.3. 补集观察下列三个集合之间的关系:I={全班同学}, A={班上男同学} , B={班上女同学}.容易看出,集合B就是在集合I中,去掉集合A的所有元素之后,由余下来的元素组成的集合.在研究集合之间的关系时,如果集合I包含我们要研究的各个集合,则称I为全集.设I是全集,A是I的一个子集(即A⊆I),则由I中所有不属于A的元素组成的集合,叫作集合A在I中的补集(如图1-7所示),简称集合A的补集.记作ΑIC,读作“A补”,即{}AxIxxΑ∉∈=且IC.由全集与补集的定义可得:IΑA=IC,oΑA/=IC,oI/=IC,Io=/IC,ΑΑ=)II(CC.例3 设{}I=三角形,{}A=锐角三角形,求ΑIC.解{}形直角三角形,钝角三角=ΑIC.在求集合的并集时,同时属于A和B的公共元素,在他们的并集中只列举一次},2,3,4,5,A=∅,求}{2++=a a A,3,21,(1)1A 、2A 、3A 、4A 中哪两个集合的交集是非空集合?(2)求23A A .(3)求14A A .(4)2A 、3A 、4A 中哪些集合是1A 的真子集.1.4 区间 设,a b 是两个实数,且a b <,则:满足不等式a x b ≤≤的所有实数x 的集合,叫做由a 到b 的闭区间,记作[,]a b .满足不等式a x b <<的所有实数x 的集合,叫做由a 到b 的开区间,记作(,)a b .满足不等式a x b ≤<(或a x b <≤)的所有实数x 的集合,叫做由a 到b 的半开区间,记作[,)a b (或(,]a b ).在这里,实数,a b 叫做相应区间的端点. 上述区间[,]a b ,(,)a b ,[,)a b ,(,]a b 统称为有限区间. 满足,,,x a x a x b x b ≥>≤<的实数x 的集合,分别记作),[+∞a ,),(+∞a ,],(b -∞,),(b -∞,这些区间称为无限区间. 其中符号+∞与-∞分别读做正无穷大与负无穷大. 全体实数的集合R 也是无限区间,记作(,)-∞+∞.区间可以用数轴上的点集来表示,其中用实心点表示端点包括在区间内, 用空心点表示端点不包括在区间内,如图1-8所示.无限区间也可以用数轴上的点集来表示, 如图1-9所示.例1 用区间表示下列集合:(1){}16x x <≤; (2){},1,2x x R x x ∈≠≠. 解 各集合用区间分别表示为(1)(]6,1; (2)(,1)(1,2)(2,)-∞+∞.练一练:用区间表示下列集合:(1){}16x x -≤≤; (2){}5x x ≥;例2 把下列不等式组的解集用集合、区间及数轴上相应的点集表示:(1)2,0;x x >-⎧⎨≤⎩ (2)30,20.x x ->⎧⎨+>⎩解 (1)不等式组2,0,x x >-⎧⎨≤⎩解集的集合形式为{}20x x -<≤.区间形式为(2,0]-.数轴上的点集表示如图1-10(1)所示. (2)不等式组30,20,x x ->⎧⎨+>⎩解集的集合形式为{}3>x x .区间形式为)(∞+,3.数轴上的点集表示如图1-10(2)所示..例3 设集合{}{}21,14A x xB x x=-<<=-≤≤,求,A B A B,并用区间及数轴上的点集表示.解{}{}2114A B x x x x=-<<-≤≤{}11x x=-≤<.区间形式为[1,1)-.数轴上的点集表示如图1-11(1)所示.{}{}2114A B x x x x=-<<-≤≤{}24x x=-<≤.区间形式为(2,4]-.数轴上的点集表示如图1-11(2)所示.今后,我们可以采用不等式、集合、区间、数轴上的点集等不同的方法表示数集.【习题1-4】1.用区间表示下列集合:(1) {}15x x-<<; (2) {}14x x≤≤;(3) {}3≤x x; (4) {}53x x x≥<-或.2. 把下列不等式组的解集用三种方式——集合、区间及数轴上点集表示出来:(1)47;xx>⎧⎨≥⎩(2)4030.xx-≤⎧⎨+>⎩3. 设集合{}{}2,22A x xB x x=-<<+∞=-<≤,求,A B A B,并用区间及数轴上的点集表示.1.5 绝对值不等式的解法一个数的绝对值,表示数轴上与这个数所对应的点到原点的距离.一个实数a 的绝对值记作a ,是指由a 所唯一确定的非负实数,且,0;0,0;,0a a a a a a >⎧⎪==⎨⎪-<⎩当时当时当时.下面,我们学习绝对值不等式的解法.依据绝对值的定义可知,x 是数轴上表示x 的点到原点的距离.从而当0a >时,x a <的解集,是数轴上与原点的距离小于a 的点的集合,即{}x a x a -<<(如图1-12(1)所示);x a >的解集,是数轴上与原点的距离大于a 的点的集合, 即{}x x a x a <->或(如图1-12(2)所示).例1 解下列不等式:(1) 3x <; (2)5x ≥. 解 (1) 3x <的解集为{}33x x -<<; (2)5x ≥ 的解集为{}55x x x ≤-≥或.对于,(0)ax b c ax b c c +<+>>型的不等式,可以把ax b +看作一个整体,转化成,x a x a <>型不等式来求解.例2 解下列不等式,并用区间表示解集: (1) 87x -≤; (2)4214x +>. 解 (1) 由87x -≤,得787x -≤-≤,整理得 115x ≤≤, 所以原不等式的解集为 [1,15].当不等号取"",""≤≥时有类似的性质,其解集可简记为“小于在中间,大于在两边”.(2) 由4214x +> ,得42144214x x +>+<-或, 解得43-<>x x 或, 所以原不等式的解集为(,4)(3,)-∞-+∞.【习题1.5】1. 解下列不等式,将解集表示为集合的形式:(1)132x ≥; (2)1105x ≤; (3)61x -<; (4)38x <-. 2. 解下列不等式,将解集表示为区间的形式: (1)3813x -<; (2)257x -≤;(2)11223x +>; (4)3214x -≥.1.6一元二次不等式的解法形如2200(,,,0)ax bx c ax bx c a b c a ++>++<≠或为常数且的不等式称为一元二次不等式.这里,我们利用一元二次函数的图像,找出一元二次不等式与一元二次函数及一元二次方程之间的关系,进而得到求解一元二次不等式的方法.在一元二次函数22y x x =--中,令0=y ,得022=--x x解得 21=-=x x 或.观察函数22y x x =--的图像(如图1-13),可得 (1) 当12x x =-=或时,0y =; (2) 当12x -<<时,0y <; (3) 当12x x <->或时,0y >.由此可知(a)一元二次方程220x x --=有两个不同的根1212x x =-=,;(b)一元二次不等式220x x --<的解集为{}12x x -<<; (c) 一元二次不等式220x x -->的解集为{}12x x x <->或.该例表明,一元二次函数的图象与x 轴的交点,可以确定相应的一元二次不等式的解集.练一练:讨论:当x 取何值时,下列一元二次函数的值0,0,0y y y >=<? (1) 22y x x =-+ (2) 244y x x =-+ (3)222+-=x x y 下表按一元二次函数2y ax bx c =++(0>a )的判别式000<∆=∆>∆,,三种情形,给出了一元二次不等式的解集.如果二次项系数0a <,我们可用(-1)乘不等式两边,将其变形为二次项系数为正的情况.例1 解下列不等式:(1)260x x -->; (2) 2280x x -++≥. 解 (1)2(1)41(6)250∆=--⨯⨯-=>, 方程260x x --=有两个不相等的实根24b ac ∆=-2y ax bx c =++(0)a >的图象20ax bx c ++=(0)a ≠的根20ax bx c ++<(0)a >的解集2ax bx c ++>(0)a >的解集(1)0∆>21,242b b acx a-±-=12()x x <{}12x xx x <<{}12x x x x x <>或(2)0∆=122b x x a==-∅,2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭(3)0∆<无实根∅R思考: 当0∆=时,不等式2≥++c bx ax 的解集是什么?要解二次不等式,二次系数先变正.0∆>时,大于在两边,小于在中间.复习题1 A 组1.用适当的符号∈∉=⊆“”“”“”“”“”填空: {}{}5____;____;______;______0;;__.Q Q R R a a b A B A B +-+-∅-1________N; -5_______Q; 0.6______; -2 3 ____,2. 用另一种方法表示下列集合: (1){}22150A x x x =+-=; (2){}44,B x x x Z =-≤≤∈;(3){}4绝对值等于的数; (4){}215,A x x x Z =+=∈.3.判断下列各组元素是否构成一个集合?(1)非常小的数; (2)本班兴趣广泛的同学; (3)0与1之间的实数; (4) 非常漂亮的孩子. 4. 写出集合{},,红绿蓝的所有子集和真子集. 5. 设集合{}{}25,32A x x B x x =-≤<=-<<. 用区间及数轴上相应的点集表示,A B ; (2)求,AB A B .6. 解下列绝对值不等式:(1) 2x ≤; (2) 5x >; (3) 2515x -<; (4) 212x +≥. 7.解下列不等式:(1) 240x x -+->; (2) 243(43)x x >-;(3)23620x x -+<; (4) 29610x x -+<. 8. 解下列不等式:(1)3212x x +≥-; (2) 1111x x +≤-; (3)4502x x ->-; (4) 3443x x -<+.}N +,{}1,2,3,4,5,9A =,B ,B ΑI I C C .已知{2A x x =-{}3,求,a b 的值.4. 已知x (1)2x +60m。
第1讲——不等式(3大难点)难点1:基本不等式(1)——配凑均值不等式在高考数学中,我们经常会遇到求两个数的积的最大值,对于这类题我们需要构造不等式,利用基本不等式来求解,即a b +≥【例题】(多选)已知0a >,0b >,且21a b +=,则下列不等式一定成立的有 A.18ab ≤C.2214a b +≥ B.12a b +>D.41313a b +≥++ 【答案】ABD 【解析】由题意, 对于选项A ,我们发现要求的是从a 和b 的乘积的范围,而题目中所给的是2a 和b ,因此我们考虑配凑一个2ab .∵0a >,0b >,且21a b +=,∴22a b+≥ 化简得出ab 的不等式,而我们知道21a b +=,即可得出的范围.∴2121228a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当122a b ==时,等号成立, A 正确; 对于选项B ,我们知道21a b +=,而我们要求的是a 和b 的和的取值范围,我们发现条件是两个数字的和,让我们求的也是两个数字的和,不能使用均值不等式,那该怎么办呢?对于题目条件是两个数字和的形式,我们可以借助题目条件进行换元,我们把其中一个字母用另一个字母来表示,进而利用等式和0a >,0b >求出a 和b 的和的取值范围. ∵12(0,1)b a =-∈,∴0,2a ∈ ⎪⎝⎭ ,∴11,12a b a ⎛⎫+=-∈ ⎪⎝⎭ ,B 正确; 对于选项C ,我们要求2a 和2b b 用含a 的式子表达,得出只含a 的表达式,即可求出2a 和2b 的和的取值范围.∵10,2a ⎛⎫∈ ⎪⎝⎭,∴222222211(12)5415555a b a a a a a ⎛⎫+=+-=-+=-+≥ ⎪⎝⎭, C 错误; 对于选项D , 我们要求411a b ++的范围,分母不是单独的a 和b 1a +和b 分别设为x 和y ,将求411a b++的范围转化为求41x y+的范围,将已知等式化为23x y +=.而所求的是分母中含有x 和y ,已知等式中含有x 和y ,因此我们为了消去分母中的x 和y 考虑用乘法,而由于等式和是3,因此用乘法时需要乘13.设110,x a y b =+>=>, ∴23x y +=,∴24814141141(2)133x y y xx y a b x y x y +++⎛⎫+=+=++= ⎪+⎝⎭,这样,分子和分母中都包含了x 和y ,相乘即可消掉,而基本不等式既可以转化成两数相乘,还可以求范围,因此我们考虑用基本不等式,即可求出411a b++的范围.∴8133y x+++≥=+,当且仅当2y x =时, ∵23x y += ,∴当3(4737x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,D 正确. 故选:ABD.【总结】在求解不等式问题的时候,我们需要注意以下几点:(1)换元法一般是将分母的式子设成两个新的未知量,然后将已知的等式化为两个未知数的等量关系,进而利用“1”的性质求解;(2)如果给出了一个含有,a b 等式,并且所求范围的式子中含有分母项,且分母中含有,a b ,就可以利用“1”的性质,使用不等式来进行计算.【变式训练1】(多选)已知正实数,a b 满足4a b +=,则下列说法正确的是 A. 4ab ≤ B. 223a b +≤ C.1494a b +≥ D.1111a b≤+【答案】ACD 【解析】对于 A , 利用基本不等式2a b+≥, 将 4a b += 代入,得 4ab ≤ , 当且仅当 2,2a b == 时等号成立, 故A 正确;对于B , 222()21628a b a b ab ab +=+-=-≥ , 当且仅当 2,2a b == 等号成立,故B 错误; 对于C ,1414559444444a b b a a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪⎪⎝⎭⎝⎭, 当且仅当 48,33a b == 时等号成立,故C 正确; 对于D ,111114ab aba b a b a bab===≤+++, 当且仅当 2,2a b == 时等号成立, 故D 正确; 故选:ACD【变式训练2】已知821(0,0)a b a b +=>>,则ab 的最大值为 . 【答案】164【解析】由题意,211821821616264a b ab a b +⎛⎫=⨯⨯⨯= ⎪⎝⎭, 当且仅当11,164a b ==时取等号, ∴ab 的最大值为164.故答案为:164.难点2:基本不等式(1)——两个复杂分式求和的最小值在高考数学中,我们经常会遇到两个复杂分式求和的最小值,对于这类题我们需要通过乘以“1”的形式进行转化,而乘以的对象一般是两个分母的加和相关的形式,进而构造不等式,利用基本不等式来求解,即a b +≥【例1】已知实数,x y 满足0x y >>且2x y +≤,则213x y x y++-的最小值为 .【答案】34+ 【解析】由题意,题目给的是,x y 和x y +范围,我们要求的是213x y x y ++-的最小值,即是求213x y x y++-的范围,我们在上一道题中发现,对于这种分式的加和,我们一般是通过乘以“1”的形式进行转化,而乘以的对象一般是两个分母的加和相关的形式,因此我们需要先求3x y x y ++-的范围.∵()2,3222x y x y x y x y x y +≤++-=+=+, ∴()324x y x y x y ++-=+≤,即()1314x y x y ++-≤, 和难点1一样,我们将3x y +和x y -分别看成一个整体,已知的等式中含有3x y +和x y -,我们要求的式子分母中含有3x y +和x y -,若消去分母则需用乘法,而基本不等式既可以转化成两数相乘,还可以求范围,因此我们考虑用基本不等式,即可求出213x y x y++-的范围. ∴()2112112233334343x y x y x y x y x y x y x y x y x y x y ⎛⎫⎛⎫-++≥++-+=++ ⎪ ⎪+-+-+-⎝⎭⎝⎭, ∵0x y >>,∴0x y ->,∴2233x y x yx y x y-++≥+-当且仅当5xy=+∴min21334x y x y ⎛⎫++= ⎪+-⎝⎭,故答案为:34+. 【总结】在求解不等式问题的时候,我们需要注意以下几点: (1)求和的最小值的时候,往往考虑正用基本不等式;(2)如果给出了一个含有,a b 等式,并且所求范围的式子中含有分母项,且分母中含有,a b ,就可以利用“1”的性质,使用不等式来进行计算.【变式训练】若,00x y >>,且224log 3log 9log 81x y +=,则213x y+的最小值为 .【答案】43+ 【解析】由题意,∵0,0x y >>∴4224222222log 31log 3log 3log 3log 3log 42xy+===,()222222log 3log 9log 33log 3x y x y x y ++=⋅=,∴2222log 3log 3x y +=, ∴22x y +=,即()1212x y +=, ∴()21121124182232323323y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=+++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝1823⎛== ⎝⎭当且仅当43y x x y =,即4322y xx y x y ⎧=⎪⎨⎪+=⎩,解得61x y ⎧=-⎪⎨=⎪⎩∴min21433x y ⎛⎫++= ⎪⎝⎭难点3:三个及以上正数的算术——几何平均不等式在高考数学中,我们遇到的不等式证明题往往是两个数以上的,对于两个数以上的这类不等式证明,如何配凑是解决此类问题的难点。
引例(4)中集合可表示为{某车间的车床}; 又如:方程0322=--x x 的所有解组成的集合可表示为{}0322=--x x x再如:抛物线2x y =所有点(y x ,)组成的集合可表示为{(y x ,)|2x y =}.括号内“|”的左方表示集合所包含元素的一般形式,右方表示集合中元素所具有的特定性质.在实际应用中,我们通常把方程或不等式的所有解组成的集合称为解集.含有有限个元素的集合称为有限集;含有无限个元素的集合称为无限集;只含有一个元素的集合叫做单元素集;不含有任何元素的集合叫做空集,记为∅.有时为了形象地表示一个集合,我们可以画一条封闭的曲线,用它的内部来表示一个非空集合,如图1—1—1表示集合A图1—1—14、元素和集合的关系一般地,如果x 是集合A 的元素就记为“x ∈A ”,读作“x 属于A ”;如果x 不是集合A 的元素,就记为“x ∉A ”,读作“x 不属于A ”.例如 2∈N ,-3∈Z , 2∉Q 等等. 【例1】 用列举法写出下列集合:难点一、复习1、集合的概念2、集合的表示法3、元素与集合的关系及符号表示4、几个常用数集二、引入新课已知6的正约数集A={1,2,3,6},8的正约数集B={1,2,4,8},于是6和8的正公约数集是C={1,2}.显然,{1,2}是由A,B的所有公共元素组成的集合.三、新授§1-1集合的概念(二)集合的运算1.交集定义设A,B是两个集合,由所有既属于A又属于B的元素组成的集合称为A与B的交集(简称交),记作A∩B,即A∩B={x|x∈A且x∈B} (1—1—1)图1—1—2图1-1-2中的阴影部分表示A与B的交集A∩B.上面的例3中C=A∩B,由交集的定义和图1—1—2可知,A∩B既是A 的子集,也是B的子集,即: 1—1—2)2分钟5分钟5分钟38分钟A ∩B ⊆A ; A ∩B ⊆B .显然,对任意一个集合有A ∩A =A ,A ∩∅=∅.(1—1—3) 求交集的运算称为交运算.【例3】 设A ={12的正约数},B ={18的正约数},用列举法写出12与18的正公约数集.解:因为A ={1,2,3,4,6,12};B ={1,2,3,6,9,18}.由交的定义知,12与8的正约数集是A ∩B ={1,2,3,4,6,12}∩{1,2,3,6,9,18}={1,2,3,6}. 【例4】 设A ={x |x ≥-3},B ={x |x <2},求A ∩B . 解:A ∩B ={x |x ≥-3}∩{x |x <2}={x |-3≤x <2}. 其几何意义如图1—1—3所示图1—1—3【例5】设{}64),(=+=y x y x A {}723),(=+=y x y x B 求B A . 解:{}{})2,1(72364),(==+=+=y x y x y x B A 且 2.并集【引例】 已知方程x 2-1=0的解集A ={1,-1},方程x 2-4=0的解集B ={2,-2}于是方程(x 2-1)(x 2-4)=0的解集C 是C ={1,-1,2,-2}。
集合1.集合点、线、面等概念都是几何中原始的、不加定义的概念,集合则是集合论中原始的、不加定义的概念.一般地,某些指定的对象集在一起就成为一个集合,也简称集.一般用大括号表示集合。
例如“汽车,飞机,轮船”等交通运输工具组成的集合可以写成{汽车、飞机、轮船}为了方便.我们还通常用大写的拉丁字母A、B、C……表示集合,例如A={a,b,c}。
2.集合中的元素集合中的每个对象叫做这个集合的元素.例如“中国的直辖市”这一集合的元素是:北京、上海、天津、重庆.集合中的元素常用小写的拉丁字母a,b,c,…表示.如果a是集合A的元素,就说a属于集合A,记作a∈A;如果a不是集合A的元素,就说a不属于集合A,记作a A.3.集合中元素的特性(1)确定性对于集合A和某一对象x,有一个明确的判断标准是x∈A,还是x A,二者必成其一,不会模棱两可.例如:“著名的数学家”,“漂亮的人”这类对象,一般不能构成数学意义上的集合,因为找不到用以判别每一具体对象是否属于集合的明确标准.(2)互异性对于一个给定的集合,它的任何两个元素都是不同的;因此,集合中的相同元素只能算作一个。
如方程x2-2x+1=0的两个等根,x1=x2=1,用集合记为{1},而不写为{1,1},如果把集合{1,2,3},{2,3,4}的元素合并起来构成一个新集合,那么新集合只有1,2,3,4这四个元素.(3)无序性集合中的元素是不排序的。
如集合{1,2}与{2,1}是同一个集合,但实际上在书写时还是按一定顺序书写的,如{-1,0,1,2}而不写成{0,1,-1,2},这样写不方便,其更深刻的含义是揭示了集合元素的“平等地位”.4.集合表示法(1)列举法将集合中的所有元素一一列举出来,写在大括号内.(2)描述法用描述表示的集合,对其元素的属性要准确理解.例如,集合{y|y=x2}表示函数y值的全体,即{y|y≥0};集合{x|y=x2}表示自变量x的值的全体,即{x|x为任一实数};集合{x,y|y=x2}表示抛物线y=x2上的点的全体,是点集(一条抛物线);而集合{y=x2}则是用列举法表示的单元素集,也就是只有一个元素(方程y=x2)的有限集.(3)图示法为了形象地表示集合,我们常常画一条封闭曲线,用它的内部来表示一个集合。
镇(乡) 学校 班级 考号 姓名 ……○……题……○……不……○……得……○……超……○……过……○……此……○……密……○……封……○……总复习专题一:集合与不等式(含均值不等式与对勾函数、充要条件)编辑,整理:冉春第一部分:讲义部分:一、集合1、定义:把一些确定的研究对象,不考虑顺序、不重复地放在一起,就构成一个集合,集合里的每一个研究对象叫做元素。
集合中元素的三要素:确定性、互异性、无序性。
集合用{ }表示,用大写字母A,B,C 等表示,元素用小写字母a 、b 、c 表示。
例:中国古代四大名著就构成一个集合,记作集合A={西游记,红楼梦,三国演义,水浒传}。
集合里的研究对象必须是确定的,如长得很高的人、很帅的人、很接近1的数,都不能构成一个集合。
集合里的元素不能重复(即相同的元素只写一次),如{1,2,2}不能构成一个集合。
例题1:下列各组对象能组成集合的是( )①一切很大的书;②所有的等腰三角形;③函数y=2x-10的图象上的所有点. A. ①②B .②③C .①③D .①②③练习1:下列对象能组成集合的是( );A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数 2、表示集合的方法:列举法和描述法(1)列举法 如小于5的正整数构成一个集合,{1,2,3,4},里面的元素用逗号隔开 (2)描述法 如{x|x <5},如{x:1<x <3},注意{x|x <3且x ∈R}中的x ∈R 一般省略不写,因为我们现在学的都是实数集。
即{x|x <3且x ∈R}={X|X <3}注意{x ∈Z|1<x <3}与{x|1<x <3且x ∈Z}均可,一般后者常见,注意都是有限集。
3、集合分类:集合根据元素个数是否有限,分为无限集和有限集 A={x|1<x <6}是无限集,B={x|1<x <6且x ∈Z}={2,3,4,5}是有限集3、只要构成两个集合的元素是一样的,就称这两个集合相等。
专题01集合、常用逻辑与不等式(第一部分)一、单选题1.集合{}1,2,3,4A =,{}2,3,4,5B =,则A B =I ( )A .{}1,2,3,4B .{}2,3,4C .{}2,4D .{}1 2.已知集合{}1,2,3,4,{|32},A B y y x x A ===-∈,则A B ⋂=A .{1}B .{4}C .{1,3}D .{1,4} 3.已知集合,,则A B ⋂=A .B .C .D . 4.已知集合{}{}{}1,2,3,4,5,1,3,1,2,4U A B ===,则U B A =U ð( )A .{}1,3,5B .{}1,3C .{}1,2,4D .{}1,2,4,5 5.设全集{}2,1,0,1,2U =--,集合{}{}0,1,21,2A =-,B=,则()U A B =I ð( ) A .{}01, B .{}0,1,2 C .{}1,1,2- D .{}0,1,1,2- 6.设集合{}{}{}1,0,11,3,5,0,2,4A B C =-==,,则()A B C ⋂⋃=( )A .{}0B .{0,1,3,5}C .{0,1,2,4}D .{0,2,3,4} 7.设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =I ð( ) A .{3,3}- B .{0,2} C .{1,1}- D .{3,2,1,1,3}---8.设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈<… ,则()A C B =I U A .{2} B .{2,3} C .{-1,2,3} D .{1,2,3,4} 9.设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x R x =∈-≤<,则()A B C ⋃⋂= A .{1,1}- B .{0,1}C .{1,0,1}-D .{2,3,4}10.设全集为R ,集合{}02A x x =<<,{}1B x x =≥,则()R A B =I ðA .{}01x x <≤B .{}01x x <<C .{}12x x ≤<D .{}02x x << 11.设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C ⋃⋂=A .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6} 12.设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C ⋃⋂=A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x R x ∈-≤≤13.已知全集{}1,2,3,4,5,6U =,集合{}2,3,5A =,集合{}1,3,4,6B =,则集合U A B⋂=()ð A .{}3 B .{}2,5 C .{}1,4,6 D .{}2,3,5 14.已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B ⋂=ðA .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,8二、填空题15. 设x R ∈,使不等式2320x x +-<成立的x 的取值范围为.16.已知0,0,8,a b ab >>= 则当a 的值为时()22log log 2a b ⋅取得最大值.三、单选题17.已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a R ∈,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是A .47[,2]16-B .4739[,]1616- C.[- D.39[]16-四、填空题18.若0 , 0a b >>,则21a b a b ++的最小值为. 19.已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为. 20. 设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为. 21.设0,0,25x y x y >>+=. 22.已知,R a b ∈,且360a b -+=,则128a b+的最小值为.23.若,a b R ∈,0ab >,则4441a b ab++的最小值为.。