基本不等式说课稿
- 格式:doc
- 大小:43.50 KB
- 文档页数:4
基本不等式说课稿一、说教材本文是高中数学课程中关于基本不等式的重要内容。
基本不等式不仅是解决数学问题的重要工具,而且在实际生活中也有着广泛的应用。
它对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
本文在课文中的作用和地位如下:1. 本文是对之前所学不等式的巩固和拓展。
通过基本不等式,学生可以更深入地理解不等式的性质和运用。
2. 本文为后续学习其他高级不等式和数学分析等内容奠定了基础。
3. 本文与其他数学知识(如代数、几何等)相互渗透,有助于提高学生的综合素质。
主要内容:1. 基本不等式的定义和性质。
2. 基本不等式的证明方法。
3. 基本不等式在实际问题中的应用。
4. 基本不等式的推广和拓展。
二、说教学目标学习本课需要达到以下教学目标:1. 知识与技能:(1)理解基本不等式的定义和性质。
(2)掌握基本不等式的证明方法。
(3)能够运用基本不等式解决实际问题。
2. 过程与方法:(1)通过自主探究、合作交流,培养学生的逻辑思维能力和团队协作能力。
(2)通过解决实际问题,提高学生将数学知识应用于实际情境的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和热情。
(2)引导学生认识到数学知识在实际生活中的重要性。
三、说教学重难点1. 教学重点:(1)基本不等式的定义和性质。
(2)基本不等式的证明方法。
(3)基本不等式在实际问题中的应用。
2. 教学难点:(1)基本不等式的证明过程。
(2)如何引导学生将基本不等式应用于实际问题。
在教学中,要注意对重点内容的讲解和练习,同时针对难点进行有针对性的指导,帮助学生克服困难,提高学习效果。
四、说教法为了提高教学效果,我采用了以下几种教学方法,并突出了自己与其他教师教法的不同之处:1. 启发法:在讲解基本不等式的定义和性质时,我通过设计一系列具有启发性的问题,引导学生主动思考。
例如,我会提问:“为什么基本不等式在数学中如此重要?”“它与其他不等式有何联系和区别?”通过这些问题,激发学生的好奇心和求知欲。
基本不等式说课稿今天我说课的内容是《基本不等式》。
下面主要从教材,学情,教学目标,教法学法,教学过程,教学反思等几个方面进行说课。
一、教材和学情分析:(一)本节课的地位、作用和意义本节课选自普遍高中课程(人民教育出版社出版高中数学A 版)必修5,第3章第4节《基本不等式》。
基本不等式又称为均值不等式,是后面应用基本不等式求最大(小)值的基础,在高中数学中有着比较重要的地位,在现实生活中有比较广的实际应用。
(二)学情分析学生在初中学习了完全平方公式、初步认识了不等式,同时,在本章前面学习了比较大小、一元二次不等式解法和简单线性规划等,这些给本节课提供了坚实的基础;(三)教学目标通过解读课标和分析教材以及对学生现状的分析确定以下教学目标:1、知识与技能目标(1)学会推导基本不等式:ab b a ≥+2 ; (2)理解 ab b a ≥+2的几何意义; (3)会利用基本不等式求最值。
2、过程方法与能力目标(1)探索并了解均值不等式的形成和证明过程;(2)体会均值不等式的证明方法和简单应用。
3、情感、态度、价值观目标(1)通过探索均值不等式的证明过程,培养探索、研究精神;(2)通过对均值不等式成立的条件的分析,养成严谨的科学态度,勇于提出问题、分析问题的习惯。
(四)重点难点依据教材的上述地位和作用,我确定如下教学重难点:重点:通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以应用数形结合的思想理解基本不等式为重点之一,并从不同角度探索基本不等式abba≥+2证明过程;再者,均值不等式有比较广的应用,需重点掌握,而掌握均值不等式,关键是对不等式成立条件的准确理解,因此,均值不等式成立的条件及应用也是教学重点。
突出重点的方法:我将采用分组讨论,多媒体展示、引导启发法来突出基本不等式的推导。
难点:很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出错误,所以,本节课的难点是基本不等式成立的条件以及应用基本不等式求最大值和最小值。
不等式基本性质说课稿不等式的基本性质说课稿1《不等式的基本性质》它是北师大版八班级下册第一章其次节的内容。
今日我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。
同时,不等式的基本性质也为同学以后顺当学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。
依据《新课程标准》的要求,教材的内容兼顾我校八班级同学的特点,我制定了如下教学目标:学问与技能:1. 感受生活中存在的不等关系,了解不等式的意义。
2. 把握不等式的基本性质。
过程与方法:经受不等式的基本性质的探究过程,初步体会不等式与等式的异同。
情感态度与价值观:经受由详细实例建立不等式模型的过程,进一步符号感与数学化的力量。
教学重难点:重点:不等式概念及其基本性质难点:不等式基本性质3教法与学法:1. 教学理念:“ 人人学有用的数学”2. 教学方法:观看法、引导发觉法、争论法.3. 教学手段:多媒体应用教学4. 学法指导:尝试,猜想,归纳,总结依据《数学课程标准》的要求,教材和同学的特点,我制定了以下四个教学环节。
下面我将详细的教学过程阐述一下:一、创设情境,导入新课上课伊始,我将用一个公园买门票如何才划算的例子导入课题。
世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。
某班有27名团员去世纪公园进行活动。
当领队王小华预备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。
但有的同学不明白,明明我们只有27个人,买30张票,岂不是“铺张”吗?(此处同学是很简单得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。
由此建立了一个数与数之间的不等关系式)紧接着进一步提问:若人数是x时,又当如何买票划算?二、探求新知,讲授新课引例列出了数与数之间的不等关系和含有未知量120<5x的不等关系。
《基本不等式》的说课稿教材: 《普通高中数学课程标准试验教科书(人教A版) 》必修5“3.4 基本不等式”第一课时下面我将从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计及教学评价设计六个方面对本课进行说明。
一、背景分析1、学习任务分析基本不等式是本章最后一节,是继一元二次不等式、简单线性规划之后又一工具性的知识, 它是高中数学中解决最值问题的一个重要工具,同时在实际生活中也有着非常广泛的应用。
本节课的主要学习任务是通过赵爽弦图中面积的直观比较抽象出基本不等式,在此基础上探究基本不等式的证明,了解分析法的思维过程,使学生体会数形结合的思想,进一步培养学生的抽象能力和推理论证能力。
其中基本不等式的证明是从代数、几何两个方面展开,既有逻辑推理,又有直观的几何图形,使得不等式的证明成为本节课的核心部分,自然也是本节课的重点。
2、学生情况分析学生在此之前,已经具备了圆和三角形的基本知识,熟知了三角函数的定义,掌握了不等式的性质和比较法证明不等式。
由于没有基础,学生会对分析法感到陌生,加上基本不等式的几何证明中线段间的关系比较隐蔽,学生不易发现。
因而本节课的难点仍然是基本不等式的证明。
二、教学目标设计《课程标准》对本节课有以下两个方面的要求:1.探索并了解基本不等式的证明过程;2.会用基本不等式解决简单的最值问题;结合“课标”的要求和学生的实际,我将本节课的教学目标确定为以下三点:1.通过观察背景图形,抽象出基本不等式;2.了解分析法的证明思路,理解基本不等式的几何背景;3.体会数形结合的数学思想,培养学生的抽象能力和推理能力;三、课堂结构设计首先从背景图象出发,抽象出基本不等式,再从代数、几何两个方面进行证明,然后通过例题理解基本不等式的初步应用;最后通过课堂小结提高学生认识,加深印象。
四、教学媒体设计为了顺利完成教学任务,实现教学目标,帮助学生理解教学难点,在媒体的使用上我做了以下安排:制作了多媒体课件,借助几何画板动态地展示了知识的背景,增加了学生的感性认识,分解了难点;五、教学过程设计本节课我设计了以下六个步骤:步骤一:创设问题情景,抽象重要不等式a 2+b 2新的教学理念更加注重知识产生的背景,重点体现知识的形成过程。
《基本不等式》说课稿各位评委老师,上午好,我选择的课题是必修5第三章第四节《基本不等式》第一课时。
关于本课的设计,我将从以下五个方面向各位评委老师汇报。
★教材分析★教法说明★学法指导★教学设计★板书设计一、教材分析◆本节教材的地位和作用◆教学目标◆教学重点、难点1、本节教材的地位和作用“基本不等式”是必修5的重点内容,在课本封面上就体现出来了(展示课本和参考书封面)。
它是在学完“不等式的性质”、“不等式的解法”及“线性规划”的基础上对不等式的进一步研究.在不等式的证明和求最值过程中有着广泛的应用。
求最值又是高考的热点。
同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。
2、教学目标(1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。
(2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。
(3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。
3、教学重点、难点根据课程标准制定如下的教学重点、难点重点: 应用数形结合的思想理解不等式,并从不同角度探索基本不等式。
难点:基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。
二、教法说明本节课借助几何画板,使用多媒体辅助进行直观演示.采用启发式教学法创设问题情景,激发学生开始尝试活动.运用生活中的实际例子,让学生享受解决实际问题的乐趣. 课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。
通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使认知效益最大。
让学生爱学、乐学、会学、学会。
三、学法指导为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,教师为主导.因此我在教学中让学生从不同角度去观察、分析,指导学生解决问题,感受知识的形成过程,培养学生数形结合的意识和能力,让学生学会学习。
四、教学设计◆运用2002年国际数学家大会会标引入◆运用分析法证明基本不等式◆不等式的几何解释◆基本不等式的应用1、运用2002年国际数学家大会会标引入如图,这是在北京召开的第24届国际数学家大会会标.会标根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。
《基本不等式》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《基本不等式》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析1、教材的地位和作用“基本不等式”是高中数学必修 5 第三章第四节的内容。
它是在学习了不等式的性质、一元二次不等式的解法等知识的基础上进行的。
基本不等式不仅是不等式中的重要内容,也是解决最值问题的有力工具,在数学和实际生活中都有着广泛的应用。
2、教材的内容和结构教材首先通过几何图形引入基本不等式,让学生直观感受其几何意义,然后从代数角度进行推导和证明,最后通过例题和练习让学生掌握其应用。
二、学情分析1、学生已有的知识基础学生在初中已经学习了不等式的基本性质,在高中阶段又学习了一元二次不等式的解法,具备了一定的不等式知识基础。
2、学生的认知水平和能力高中生的思维已经从形象思维向抽象思维过渡,但对于抽象的数学概念和定理的理解还存在一定的困难,需要通过具体的实例和直观的图形来帮助他们理解。
3、学生可能遇到的困难在应用基本不等式求最值时,学生容易忽略不等式成立的条件,或者不能正确变形和构造式子来使用基本不等式。
三、教学目标1、知识与技能目标(1)理解基本不等式的内容和证明方法。
(2)掌握基本不等式的应用,能够用基本不等式求最值。
2、过程与方法目标(1)通过对基本不等式的推导和证明,培养学生的逻辑推理能力。
(2)通过对基本不等式的应用,提高学生分析问题和解决问题的能力。
3、情感态度与价值观目标(1)让学生感受数学的简洁美和应用价值,激发学生学习数学的兴趣。
(2)培养学生严谨的治学态度和勇于探索的精神。
四、教学重难点1、教学重点(1)基本不等式的内容和证明。
(2)基本不等式的应用。
2、教学难点(1)基本不等式的推导和证明。
(2)应用基本不等式求最值时,对不等式成立条件的把握和式子的变形构造。
五、教法与学法1、教法(1)启发式教学法:通过设置问题,引导学生思考和探索,激发学生的学习兴趣和主动性。
基本不等式说课稿基本不等式说课稿(精选9篇)作为一名辛苦耕耘的教育工作者,有必要进行细致的说课稿准备工作,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。
那么说课稿应该怎么写才合适呢?以下是小编整理的基本不等式说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
基本不等式说课稿篇1各位评委老师,上午好!我是来应聘高中数学的一号考生,我今天说课的题目是《基本不等式》,下面我将从说教材,说学情,说教法,说学法,说教学过程,说板书设计六个方面展开我的说课,下面开始我的说课!一、说教材。
1教材的地位和作用:《基本不等式》是人教版高中数学必修五第三章第四节的内容。
本节主要内容是基本不等式的证明和简单应用。
它是在学完不等式性质,不等式的解法及线性规划等知识的基础上,对不等式的进一步研究,在不等式的证明和求最值的过程中有着广泛的应用。
2教学目标:(1)知识与技能:学生能写出基本不等式,会应用基本不等式解决相关问题。
(2)过程与方法:学生通过观察图形,推导、证明等过程,培养观察、分析、归纳、总结的能力。
(3)情感态度与价值观:学生领略数学的实际应用价值,感受数学学习的乐趣。
3教学重难点:重点:理解基本不等式的本质并会解决实际问题。
难点:基本不等式几何意义的理解。
二、说学情。
为了更好地实现教学目标,我将对学生情况进行一下简要分析。
对于高一年级的学生来说,他们对不等式的知识有了一定的了解,但对基本不等式的理解运用能力不足。
这一阶段的学生正处在由抽象思维到逻辑思维的过渡期,对图形的观察、分析、总结可能会感到比较困难。
这都将成为我组织教学的考虑因素。
三、说教法。
科学合理的教学方法能使教学效果事半功倍,达到教育学的和谐完美与统一。
根据本节课的特点并结合新课改的要求,在本节课中,我将采用讲授法、演示法、引导启发法等教学方法。
四、说学法。
教师的教是为了学生更好地学,结合本节内容,我将学法确定为自主探究法、分析归纳法。
充分调动学生的眼、手、脑等多种感官参与学习,既培养了他们的学习兴趣,又使他们感受到了学习的乐趣。
《基本不等式》说课稿一、 教材分析1、本节课的地位、作用和意义基本不等式又称为均值不等式,选自人教社普通高中课程实验标准教科书必修5 ,第3章第4节内容。
是在学完不等式性质的基础上对不等式的进一步研究,同时是为了以后学习(选修4-5)《不等式的选讲》中的几种重要不等式,以及不等式的证明作铺垫,起着承上启下的作用。
“基本不等式”在不等式的证明和求最值过程上有着广泛的应用,求最值是高考的热点。
它在科学研究,经济管理,工程设计都有广泛的作用。
2、教学目标分析(1)、知识与技能目标①学会推导基本不等式: 。
②理解它的几何意义。
③掌握定理中取等号的条件。
(2)、过程方法与能力目标①探索并了解均值不等式的证明过程。
②体会均值不等式的证明方法。
(3)、情感、态度、价值观目标①通过探索均值不等式的证明过程,培养探索、研究精神。
②通过对均值不等式成立条件的分析,养成严谨的科学态度,勇于提出问题、分析问题的习惯。
3、本节课的教学重点和难点重点:通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以均值不等式的推导证明是本节课的重点之一;再者,均值不等式有比较广的应用,需重点掌握,而掌握均值不等式,关键是对不等式成立条件的准确理解,因此,均值不等式以及其成立的条件也是教学重点。
突出重点的方法:我将采用①用分组讨论,多媒体展示、引导启发法来突出均值不等式的推导;②应用数形结合的思想理解不等式,并从不同角度探索不等式ab b a 2≥+的证明过程;③用重复法(在课堂的每一环节,以各种方式进行强调均值不等式和其成立的条件),变式教学来突出均值不等式及其成立的条件。
难点:用基本不等式求最大最小值;很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出错误,所以,均值不等式成立的条件是本节课的难点。
突破难点的方法:找一些有代表性的例题来说明如何取最大最小值;仍然用重复法在课堂的每一环节(以各种方式进行强调均值不等式和其成立的条件),变式教学等等来突破均值不等式成立的条件这个难点。
《基本不等式》说课稿尊敬的各位评委老师:大家好!今天我说课的内容是《基本不等式》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“基本不等式”是高中数学必修 5 第三章“不等式”中的重要内容。
它不仅是证明不等式和求最值的重要工具,还蕴含着丰富的数学思想和方法。
本节课在教材中的地位和作用十分重要。
从知识体系上看,它是在学生已经掌握了不等式的性质和简单不等式的解法之后,对不等式知识的进一步深入研究。
从数学思想方法上看,它体现了从特殊到一般、从具体到抽象的数学思维过程,以及数形结合、转化与化归的数学思想。
二、学情分析学生在之前的学习中已经具备了一定的不等式知识和代数运算能力,但对于抽象的数学概念和数学思想的理解还存在一定的困难。
同时,学生在观察、分析和解决问题的能力上也有待进一步提高。
在本节课的教学中,要充分考虑学生的认知水平和思维特点,通过具体的实例和直观的图形,引导学生逐步理解和掌握基本不等式的本质。
三、教学目标基于对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解基本不等式的内容及其证明过程。
(2)掌握基本不等式的应用,能够运用基本不等式求最值。
2、过程与方法目标(1)通过对基本不等式的探究过程,培养学生观察、分析、归纳和推理的能力。
(2)引导学生体会数学中的转化与化归思想,提高学生解决问题的能力。
3、情感态度与价值观目标(1)通过数学活动,激发学生的学习兴趣,培养学生的创新意识和合作精神。
(2)让学生在解决问题的过程中,感受数学的严谨性和实用性,培养学生的数学素养。
四、教学重难点1、教学重点(1)基本不等式的内容及其证明。
(2)运用基本不等式求最值的方法。
2、教学难点(1)基本不等式的证明。
(2)运用基本不等式求最值时,等号成立的条件。
五、教法与学法1、教法为了实现教学目标,突出重点,突破难点,我将采用以下教学方法:(1)启发式教学法:通过设置问题,引导学生思考,激发学生的学习积极性和主动性。
基本不等式说课稿同学们好,今天我给大家讲解一下基本不等式的概念和应用方法。
首先,我们先来了解一下什么是基本不等式。
基本不等式指的是形如a≥b的不等式,其中a和b是实数。
它与我们熟知的基本方程不同,方程要求等号成立,而不等式则允许不等号成立。
对于基本不等式,我们有一些重要的性质和运算规则。
首先是加法性质,即如果在不等式两边同加上(或减去)相同的数,不等式的方向不变。
例如,对于不等式a≥b,如果我们在两边同时加上一个正数x,那么得到的不等式a+x≥b+x仍然成立。
类似地,如果我们在两边同时减去一个正数x,也可以得到相同的结果。
另外,如果我们在两边同时加上一个负数x,或者减去一个负数x,那么不等式的方向会发生改变。
这是因为负数的绝对值大于它本身,所以加上负数相当于减去绝对值,而减去负数则相当于加上绝对值。
其次是乘法性质,即如果在不等式两边同乘(或除以)相同的正数,不等式的方向不变。
例如,对于不等式a≥b,如果我们在两边同时乘以一个正数x,那么得到的不等式ax≥bx仍然成立。
同样地,如果我们在两边同时除以一个正数x,也可以得到相同的结果。
但是需要注意的是,如果我们在两边同时乘以(或除以)一个负数,不等式的方向会发生改变。
这是因为负数的平方大于它本身,所以乘以负数会改变不等式的方向。
接下来,让我们来看一些基本不等式的应用方法。
首先是解不等式。
解不等式的方法与解方程的方法有些相似,但需要特别注意不等式的方向。
例如,对于不等式3x+2≥5,我们将2移到左边得到3x≥3,然后除以3得到x≥1。
所以不等式的解集是x≥1。
类似地,对于不等式2x-4<10,我们将4移到右边得到2x<14,然后除以2得到x<7。
所以不等式的解集是x<7。
其次是证明不等式。
证明不等式的方法比较灵活,可以利用之前介绍的不等式性质和运算规则。
例如,我们要证明一个关于实数x的不等式3x+2≥5x-1成立。
首先,我们可以将不等式化简为2x≥-3,然后除以2得到x≥-3/2。
说课稿
各位老师:大家上(下)午好!
我的说课题目是:基本不等式。
下面我讲从以下几个方面阐述:
1.说教材
本节内容是人民教育出版社出版的普通高中课程标准实验教科书《数学》必修5第三章第四节第一课时。
在此之前,学生学习了“不等式的性质”、“不等式的解法”及“线性规划”,这为学习本节内容起到铺垫作用。
本节内容是学过不等式的性质后的延续与拓展,在不等式的证明和求最值过程中有着广泛的应用。
求最值又是高考的热点。
同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。
本节课中应用数形结合的思想理解不等式,并从不同角度探索基本不等式是学习的重点,基本不等式的内涵及几何意义的挖掘,用基本不等式求最值是学习的难点。
基于以上对教材的认识,考虑到学生已有的认知结构与心理特征,制定如下教学目标。
2.说目标
知识与技能:探索基本不等式的证明过程;会用基本不等式解决最值问题。
能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。
情感目标:培养学生严谨求实的科学态度,体会数与形的和
谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。
为突出重点、突出难点,使学生能达到本节课的教学目标,我将采取以下教学设计思路。
3. 说教学方法
教法选择与教法手段:基于本节课的特点,在教学中我主要采用讲授式教学、合作式教学、探索式教学、自主式教学等教学方法,在教学过程中特别注意创设思维情境坚持以学生为主体、教师为主导的方针,以增加课堂效率和教学直观性。
板书设计(主板书与辅助板书)
下面,再谈谈本节课的教学过程。
4. 说教学过程
(一)情境导入
首先,运用2002年国际数学家大会会标引入,让同学
们边观察边思考:图上有哪些相等或不等关系?通过展示来激发学生的学习兴趣。
接下来是新授环节。
我将会标抽象成几何图形,正方形ABCD 中有4
个全等的直角三角形,让学生自主探究,比较三角形
面积之和与正方形面积的大小,从而让学生自主推导出不等式ab b a 222>+,再通过变换三角形两直角边,
让学生自己将结论补充完整。
接下来,我会提问:你们能给出它的证明吗?给两分钟的时间让学生自主探究。
然后用讲授
C
法给出基本不等式的常用形式)0,0(2
>>+≤b a b a ab ,并给出具体的证明过程,强调等号成立的条件。
基本不等式的证明是本节课的重点,先通过学生的自主探究,再通过我的讲授,学生可以更快地理解这一知识点。
再探索利用不等式的性质直接推导这一式子,接下来是探究基本不等式的几何意义。
先由学生自主思考两分钟的时间,然后通过我的讲授,让学生理解基本不等式的几何意义,最后画出图像,让学生更直观地感受基本不等式的几何意义。
这样就突破了基本不等式的几何意义这一难点。
接下来是巩固新知环节。
(二)巩固新知
这个环节,我将利用两个例题对刚才所讲的知识进行巩固练习 例1.x>0,当x 取什么值,1+x x
的值最小?最小值是多少? 例2.一段长为36m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园面积最大?最大面积为多少?
第一道例题:这道例题很简单, 比课本例题简单,这样,循序渐进, 有利于学生理解不等式的内涵。
第二道例题:是利用基本不等式求最值进而解决实际问题,体现了基本不等式的应用价值,而且例题包含了公式的正向应用和逆向应用,锻炼了学生的灵活使用能力。
(三)归纳总结
谈谈谁的收获最大?同学们互相交流,旨在提高学生对数学来源于生活的认识、唤醒学生亲近数学的热情,帮助学生强化教学知识的记忆逐步拉近他们观念中数学与生活的联系,激发学生学习数学兴
趣。
(四)板书设计
为了帮助学生清晰地把握本节课的内容,掌握重点,突破难点,我采用这样分块式板书。
将整个版面分为三个部分。
第一部分用来回顾以前所学的相关知识及后面所要探索新知识的相关概念。
第二部分实例分析,探索新知是本节课所要学习的重要部分,需学生共同探索参入,理解所学知识的价值,而第三部分则用于课堂的相关练习,便于巩固新知,理解加深,让学生懂得如何运用新知。
这样的板书设计使本节课所要学习内容清晰明了,学生更容易理解。
(五)布置作业
在本环节,我将课后作业的布置分为两个层次:一是数学练习即课后作业的布置,旨在让学生通过及时地巩固练习加深对所学知识内容的理解与掌握。
将课后作业分成两类:1、必做题,2、选做题。
必做题是针对所有学生对新知识的巩固,而选做题则针对有兴趣同学更深入的学习。
二是数学思考。
各位老师,以上所述仅是预设的一种方案,课堂面对的学生是一个个具有灵性的思维个体,课堂教学是千变万化的动态过程,预设的教学效果如何,还有待课堂教学的实践检验。
本说课定有许多不足,敬望老师们指正。
谢谢
2012-11-6。